JPS6336502A - Electromagnetic actuator - Google Patents

Electromagnetic actuator

Info

Publication number
JPS6336502A
JPS6336502A JP61180304A JP18030486A JPS6336502A JP S6336502 A JPS6336502 A JP S6336502A JP 61180304 A JP61180304 A JP 61180304A JP 18030486 A JP18030486 A JP 18030486A JP S6336502 A JPS6336502 A JP S6336502A
Authority
JP
Japan
Prior art keywords
magnetic
iron core
adjusting
magnetic circuit
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61180304A
Other languages
Japanese (ja)
Other versions
JPH0648648B2 (en
Inventor
Masayuki Okamoto
岡本 正幸
Noriyoshi Ohashi
大橋 徳良
Yoshimitsu Fujiwara
義光 藤原
Masaki Yamaguchi
正樹 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61180304A priority Critical patent/JPH0648648B2/en
Publication of JPS6336502A publication Critical patent/JPS6336502A/en
Publication of JPH0648648B2 publication Critical patent/JPH0648648B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electromagnets (AREA)

Abstract

PURPOSE:To enable the magnetic flux passing through the moving core and the stationary attractor to be changed and adjusted as a result by changing the insertion amount of the adjusting core into the stationary attractor, thereby simultaneously changing the magnetic resistances of the first adjusting magnetic circuit and the second adjusting magnetic circuit. CONSTITUTION:The magnetic resistances of two adjusting magnetic circuits, a first adjusting magnetic circuit 13 and a second adjusting magnetic circuit 9, are simultaneously adjusted by changing the insertion amount of an adjusting core 8 into a stationary attractor 2, whereby the magnetic flux passing through a moving core 3 and the stationary attractor 2 is adjusted as a result. Moreover, the relation between the insertion amount and the magnetic flux becomes linear, or in other words, the relation between the insertion amount and the operating voltage becomes linear, so the operating voltage adjustment becomes easy. In this manner, an electromagnetic actuator can be obtained which is easy to adjust whether the operating voltage is high or low.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は永久磁石を磁気回路中に有し、作動すべき時に
外部からの電源から瞬時通電等により、駆動させる電磁
アクチエータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electromagnetic actuator that has a permanent magnet in its magnetic circuit and is driven by instantaneous energization from an external power source when it is to be activated.

従来の技術 従来より電磁コイルの発熱をさけたり1.駆動回路側の
省電力化をはかるため、永久磁石を使用し電磁コイルは
瞬間励磁だけに利用して、状態の保持は永久磁石によシ
行なう形式の電磁アクチエータが使われている。特に近
年、駆動電源としてAC電源からだけではなく、乾電池
等の使用が増えており、そのため電源となる電池の温度
特性や負荷抵抗特性等の影響によシミ磁アクチエータに
印加される電圧条件に制限がでてくる。したがって、自
己保持型ソレノイドの作動する電圧を電源に対応した一
定の範囲内に収める必要が発生してくる。
Conventional technology The heat generation of the electromagnetic coil can be avoided from the past.1. In order to save power on the drive circuit side, an electromagnetic actuator is used in which a permanent magnet is used, the electromagnetic coil is used only for instantaneous excitation, and the state is maintained by the permanent magnet. In particular, in recent years, the use of dry batteries, etc. in addition to AC power sources has been increasing as a drive power source, and as a result, the voltage conditions applied to the stain magnetic actuator are limited due to the temperature characteristics and load resistance characteristics of the battery that serves as the power source. comes out. Therefore, it becomes necessary to keep the voltage at which the self-holding solenoid operates within a certain range corresponding to the power supply.

これらに対して従来より電磁アクチエータの構成部品の
材料の磁気特性の精度、部品の寸法精度を上げたシして
、その作動するに必要な電圧のバラツキをおさえたりし
ているが、それでも要望される一定の範囲内に収めるの
が難しいため種々の作動電圧調整方法が採用されている
In response to these problems, efforts have been made to improve the accuracy of the magnetic properties of the materials used in the components of electromagnetic actuators and the dimensional accuracy of the parts, thereby suppressing variations in the voltage required for actuation. Since it is difficult to keep the operating voltage within a certain range, various methods of adjusting the operating voltage have been adopted.

以下図面を参照しながら、前述した従来の電磁アクチエ
ータの一例について説明する。
An example of the conventional electromagnetic actuator mentioned above will be described below with reference to the drawings.

第6図は従来例の構造の概略を示すものである。FIG. 6 schematically shows the structure of a conventional example.

第5図において、永久磁石1は厚み方向に着磁するとと
もにその方向に貫通孔1&を設けている。
In FIG. 5, the permanent magnet 1 is magnetized in the thickness direction and has a through hole 1& in that direction.

その上には磁性材料製の固定吸着体2を設けており、磁
性材料製の可動鉄芯3が吸着面4で吸着離脱動作できる
様になっている。磁性材料製の第1固定継鉄5a、第2
固定継鉄6bと永久磁石1、固定吸着体2、可動鉄芯3
とで永久磁石1の磁気回路6を形成し、可動鉄芯3を固
定吸着体2に吸着面4で吸着保持している。
A fixed attracting body 2 made of a magnetic material is provided on top of the movable iron core 3 made of a magnetic material so that a movable iron core 3 made of a magnetic material can be attracted to and removed from the attracting surface 4. The first fixed yoke 5a and the second yoke are made of magnetic material.
Fixed yoke 6b, permanent magnet 1, fixed adsorption body 2, movable iron core 3
A magnetic circuit 6 of the permanent magnet 1 is formed, and the movable iron core 3 is attracted and held on the fixed attraction body 2 by the attraction surface 4.

駆動用の電磁コイル7はその中央部を可動鉄芯3が上下
に摺動する板案内するとともに、前記磁気回路6を励磁
する様になっている。第2固定継鉄5bの前記永久磁石
1の貫通孔1aに対応する位置にめすネジ部が設けられ
ておシその部分におすネジ部を有した母性材料製の調整
鉄芯8が貫通孔1&を貫通する形でねじ込まれており、
前記固定吸着体2との隙間Eが可変できる構造となって
いる。永久磁石1、第2固定継鉄sb、調整鉄芯8、固
定吸着体2の間で、可動鉄芯3を含まない調整磁気回路
9が形成されている。可動鉄芯3の先端にはバネ受け1
0が装着されておシ、第1固定継鉄5&との間に圧縮バ
ネ11が設けられている。
The driving electromagnetic coil 7 guides the movable iron core 3 vertically sliding in its center, and also excites the magnetic circuit 6. A female threaded portion is provided at a position corresponding to the through hole 1a of the permanent magnet 1 of the second fixed yoke 5b, and an adjusting iron core 8 made of a mother material and having a male threaded portion at that portion is attached to the through hole 1 & It is screwed through the
The structure is such that the gap E with respect to the fixed adsorbent 2 can be varied. An adjustment magnetic circuit 9 that does not include the movable iron core 3 is formed between the permanent magnet 1, the second fixed yoke sb, the adjustment iron core 8, and the fixed adsorption body 2. A spring receiver 1 is attached to the tip of the movable iron core 3.
0 is attached, and a compression spring 11 is provided between the first fixed yoke 5 and the first fixed yoke.

以上の様に構成された電磁アクチエータについて、以下
その動作を説明する。
The operation of the electromagnetic actuator configured as described above will be described below.

、基本的な動作原理として、外部からの駆動電源によシ
ミ磁コイル7に、前記磁気回路6の磁界方向とは逆方向
の磁界が発生する様に電圧を瞬間的に印加することによ
シ、吸着面4での可動鉄芯3と固定吸着体2との吸着保
持力が弱まり、この吸着保持力をうわまわる圧縮バネ1
1の反撥力によシ、吸着面4よシ離反し可動鉄芯3を押
し上げる様になっている。また逆に図には示していない
が可動鉄芯3が押し上げられた状態では、電磁コイル7
に永久磁石1と同方向の磁界を生じる電圧を印加するこ
とによシ圧縮バネ11の反撥力に打勝って再び可動鉄芯
3を吸着保持位置に戻すことができる。
The basic operating principle is that a voltage is momentarily applied to the stain magnetic coil 7 by an external drive power source so that a magnetic field is generated in the opposite direction to the magnetic field direction of the magnetic circuit 6. , the suction holding force between the movable iron core 3 and the fixed suction body 2 on the suction surface 4 weakens, and the compression spring 1 exceeds this suction holding force.
Due to the repulsive force of 1, the movable iron core 3 is moved away from the suction surface 4 and pushed up. Conversely, although not shown in the figure, when the movable iron core 3 is pushed up, the electromagnetic coil 7
By applying a voltage to generate a magnetic field in the same direction as that of the permanent magnet 1, it is possible to overcome the repulsive force of the compression spring 11 and return the movable iron core 3 to the attracting and holding position.

ここで、前述の可動鉄芯3と固定吸着体2との間の吸着
保持状態での吸着保持力をF、圧縮バネ11の反撥力を
fとし、可動鉄芯3を押し上げる。
Here, the movable iron core 3 is pushed up, with the suction holding force in the suction holding state between the movable iron core 3 and the fixed suction body 2 described above being F, and the repulsive force of the compression spring 11 being f.

すなわち作動させる時に必要な電磁コイル7への印加電
圧を作動電圧Vとすると、作動電圧Vの値は作動原理か
らも理解できる様にFとfとの差(F−f)値に依存し
決定される。すな□わち、吸着保持力Fが大又は反撥力
fが小の場合は作動電圧Vが大に、逆にFが小又はfが
大の場合はVが小となる。また、可動鉄芯3が吸着面4
より離れている状態では圧縮バネ11の反撥力fが大き
い程、再吸着するための作動電圧Vは大となる。従って
、圧縮バネ11の強さは離反する時と吸着する時で作動
電圧Vには逆に作用する。
In other words, if the voltage applied to the electromagnetic coil 7 required for operation is the operating voltage V, the value of the operating voltage V is determined depending on the difference (F - f) value between F and f, as can be understood from the operating principle. be done. That is, when the attracting and holding force F is large or the repulsive force f is small, the operating voltage V becomes large, and conversely, when F is small or f is large, V becomes small. In addition, the movable iron core 3 is attached to the suction surface 4.
In a state where it is further away, the larger the repulsive force f of the compression spring 11 is, the larger the operating voltage V for re-adsorption becomes. Therefore, the strength of the compression spring 11 has opposite effects on the operating voltage V when it separates and when it attracts.

ここで、磁気回路6を通る永久磁石1による磁束Φ1は
磁気回路6を構成する可動鉄芯3、第1固定継鉄6a、
第2固定継鉄5b、固定吸着体2等の透磁率すなわち磁
気特性や吸着面40表面粗度及び永久磁石1そのものの
磁気特性のバラツキの影響を大きく受けるものである。
Here, the magnetic flux Φ1 due to the permanent magnet 1 passing through the magnetic circuit 6 is generated by the movable iron core 3, the first fixed yoke 6a, which constitutes the magnetic circuit 6,
It is greatly influenced by variations in the magnetic permeability, that is, magnetic properties, of the second fixed yoke 5b, the fixed attracting body 2, etc., the surface roughness of the attracting surface 40, and the magnetic properties of the permanent magnet 1 itself.

一方、吸着保持力Fは磁束Φ1に比例する様な形で決定
される。
On the other hand, the attraction and holding force F is determined in such a manner that it is proportional to the magnetic flux Φ1.

このことは、電磁アクチエータを同じ構造で組み立て製
造しても個別の物ごとに吸着保持力Fが構成部品の磁性
材料の磁気特性等のバラツキによって大きく変化するこ
とを示しておシ、したがって圧縮バネ11の反撥力fが
仮に一定としても(F−f)の差力がバラつくことにな
るので結果として個別の物毎に作動電圧Vがバラつくこ
とになる。
This shows that even if electromagnetic actuators are assembled and manufactured with the same structure, the attraction and holding force F of each individual object varies greatly due to variations in the magnetic properties of the magnetic materials of the component parts. Even if the repulsive force f of 11 is constant, the differential force (F-f) will vary, and as a result, the operating voltage V will vary for each individual object.

そこで、前述の様に外部からの駆動電源の電圧に制限が
あシ、作動電圧Vを一定の範囲内に収める必要が生じる
場合、その対応方法として(F−f)を一定幅に収める
様に圧縮バネ11の反撥力fを調整するか、磁気回路6
の磁束Φ1を変化させ吸着保持力Fを調整する方法が採
用されている。
Therefore, as mentioned above, if there is a limit to the voltage of the external drive power supply and it is necessary to keep the operating voltage V within a certain range, the solution is to keep (F-f) within a certain range. Either adjust the repulsive force f of the compression spring 11 or
A method is adopted in which the attraction and holding force F is adjusted by changing the magnetic flux Φ1.

本従来例は、後者の吸着保持力Fを調整する方法を示し
ているが、その動作は以下の様になっている。
This conventional example shows the latter method of adjusting the attraction and holding force F, and its operation is as follows.

前述の構成よシ固定吸着体2と調整鉄芯8との隙間lは
、調整鉄芯8のネジ部を回転させることによシ可変でき
、かつ隙間Eは磁気ギャップとなるので調整磁気回路9
の磁気抵抗を可変できることを意味している。すなわち
、隙間gを小さくすると調整磁気回路9の磁気抵抗が小
さくなり、永久磁石1によるトータルの磁束Φが磁気回
路6と調整回路9に分散して流れる(両磁気回路以外へ
の漏れ磁束につ込ては理解しやすい様にゼロとして考え
る)ことより、調整磁気回路9を流れる磁束Φ2が大き
くなり、逆に磁気回路6を流れる磁束Φ1が小さくなり
吸着保持力Fが小さくなる。
According to the above-mentioned structure, the gap l between the fixed adsorption body 2 and the adjusting iron core 8 can be changed by rotating the threaded part of the adjusting iron core 8, and since the gap E becomes a magnetic gap, the adjusting magnetic circuit 9
This means that the magnetic resistance can be varied. In other words, when the gap g is made smaller, the magnetic resistance of the adjusting magnetic circuit 9 becomes smaller, and the total magnetic flux Φ caused by the permanent magnet 1 flows in a distributed manner between the magnetic circuit 6 and the adjusting circuit 9 (leakage flux to other than both magnetic circuits is reduced). For ease of understanding, the magnetic flux Φ2 flowing through the adjusting magnetic circuit 9 increases, and conversely, the magnetic flux Φ1 flowing through the magnetic circuit 6 decreases, and the attracting and holding force F decreases.

一方、逆に隙間lを大にすると調整磁気回路6の磁気抵
、抗が大きくなるのでΦ2が小さくなシ、逆にΦ1が犬
きくなるので、吸着保持力Fが大きくなる。
On the other hand, if the gap 1 is increased, the magnetic resistance of the adjusting magnetic circuit 6 increases, so Φ2 becomes smaller, and conversely, Φ1 becomes sharper, so the attraction and holding force F increases.

この様に、調整鉄芯8と固定吸着体2との隙間lを可変
できることにより、調整磁気回路9の磁気抵抗を変化さ
せその磁束Φ2を変えて、最終的に磁気回路6の磁束Φ
、を変えることになる。すなわちこれは可動鉄芯3の固
定吸着体2への吸着保持力Fを変えることになシ、圧縮
バネ11の反撥力fとの差(F−f)を一定幅に収める
様にして作動電圧Vのバラツキを一定範囲内に収められ
ることを意味している。
In this way, by being able to vary the gap l between the adjusting iron core 8 and the fixed adsorption body 2, the magnetic resistance of the adjusting magnetic circuit 9 is changed and its magnetic flux Φ2 is changed, and finally the magnetic flux Φ of the magnetic circuit 6 is changed.
, will change. In other words, this does not mean changing the adsorption/holding force F of the movable iron core 3 to the fixed adsorption body 2, but the operating voltage is adjusted so that the difference (F-f) between the movable iron core 3 and the repulsive force f of the compression spring 11 is kept within a certain range. This means that the variation in V can be kept within a certain range.

発明が解決しようとする問題点 しかしながら上記のような構成では、以下に示す様な問
題点があった。
Problems to be Solved by the Invention However, the above configuration has the following problems.

第6図は、調整鉄芯8と固定吸着体2との隙間、71!
を可変していった時の図を示している。第6図(A)は
l=o、第6図(B)は1=14.第6図(C)はβ=
A6  とした場合である。E6は調整鉄芯3の先端が
第2固定継鉄5bの永久磁石1の下端面とほぼ同一位置
になった状態を示す。
FIG. 6 shows the gap between the adjusting iron core 8 and the fixed adsorbent 2, 71!
The figure shows the situation when the is varied. In FIG. 6(A), l=o, and in FIG. 6(B), 1=14. Figure 6(C) shows β=
This is the case of A6. E6 shows a state in which the tip of the adjusting iron core 3 is at approximately the same position as the lower end surface of the permanent magnet 1 of the second fixed yoke 5b.

βの増加と作動電圧Vの関係を第7図に示す。The relationship between the increase in β and the operating voltage V is shown in FIG.

第7図において、縦軸は作動電圧Vを、横軸は隙間Eを
示しているが隙間Eが増えていく程作動電圧Vが高くな
っている。しかしその相関関係は直線的ではなくE=0
付近ではeのわずかの変化でVは大きく変化するが1=
14〜16近辺ではVの変化は非常に少なくなっている
。これはl = 。
In FIG. 7, the vertical axis shows the operating voltage V, and the horizontal axis shows the gap E, and as the gap E increases, the operating voltage V becomes higher. However, the correlation is not linear and E=0
In the vicinity, a slight change in e causes a large change in V, but 1=
In the vicinity of 14 to 16, the change in V is very small. This is l = .

近辺ではEの変化で調整磁気回路9の磁気抵抗が大きく
変化するがlが大きくなると、寸法変化の割には、すで
に磁気抵抗がかなシ大きくて、磁束Φ2の変化はほとん
ど発生しないためである。
In the vicinity, the magnetic resistance of the adjustment magnetic circuit 9 changes greatly with a change in E, but as l becomes large, the magnetic resistance is already quite large compared to the dimensional change, and almost no change in magnetic flux Φ2 occurs. .

これらから分る様に、作動電圧Vの必要な調整が第7図
に示すV、からv2程度と低い場合、わずかのβの寸法
幅に規制しなければならない。逆VCVがV、〜v2と
同じ幅としてv3からv4程度と高い場合はかなシの2
の許容がある。このことは、調整作動電圧Vが低い時は
、隙間β寸法がわずかに変化するだけで作動電圧Vが犬
きく変化することになるので、寸法精度を上げる必要が
あり非常に調整しにくいということになる。しかも本従
来例の様に調整鉄芯8のおすネジと、第2固定継鉄5b
のめすネジとのガタつき程度でも作動電圧Vが変わるこ
とになり、ガタつきのない様にして調整しなければなら
ない。
As can be seen from these, when the necessary adjustment of the operating voltage V is as low as V2 shown in FIG. Assuming that the reverse VCV is the same width as V, ~v2, if it is as high as v3 to v4, then Kana 2
There is an allowance for This means that when the adjustment operating voltage V is low, even a slight change in the gap β dimension will cause a sharp change in the operating voltage V, so it is necessary to increase the dimensional accuracy and it is extremely difficult to make adjustments. become. Moreover, as in this conventional example, the male screw of the adjusting iron core 8 and the second fixed yoke 5b
The operating voltage V will change even if there is some looseness with the female screw, so it must be adjusted to avoid any looseness.

一方、逆に調整作動電圧Vが高い場合は、同じ調整電圧
幅でもVが低い場合に比較し、隙間βの許容差が大きく
異なることになる。同じ作動電圧Vの調整幅でも高、低
により隙間βの許容幅が異なり、やはシ調整作業がやシ
にくくなる。
On the other hand, when the adjustment operating voltage V is high, the tolerance of the gap β will be significantly different than when V is low even with the same adjustment voltage width. Even if the operating voltage V is adjusted within the same range, the allowable width of the gap β differs depending on whether it is high or low, which makes the adjustment work somewhat difficult.

以上、従来の調整方法は、非常に精度を要求される場合
と比較的許容度が大きい場合とが混在しており、調整作
業が非常に困難であるという問題点を有していた。
As described above, the conventional adjustment method has a problem in that the adjustment work is extremely difficult because there are cases where very high precision is required and cases where there is a relatively large tolerance.

しかも、調整鉄芯8が第2固定継鉄5bより出張って固
定されることになるので、外部から応力が加わることに
より隙間βが変化し、作動電圧Vの特性がかわってしま
うという問題点を有していた。
Moreover, since the adjusting iron core 8 is fixed by protruding from the second fixed yoke 5b, the gap β changes due to stress applied from the outside, and the characteristics of the operating voltage V change. had.

本発明は上記の問題点に対して、作動電圧Vと隙間Eの
関係を直線的に近くして、作動電圧Vが低くても高くて
も調整がしやすい電磁アクチエータを提供するものであ
る。
The present invention solves the above-mentioned problems by providing an electromagnetic actuator that makes the relationship between the operating voltage V and the gap E close to linear, and allows easy adjustment whether the operating voltage V is low or high.

問題点を解決するだめの手段 上記問題点を解決するために本発明は、永久磁石、調整
鉄芯を挿入した固定吸着体、可動鉄芯、固定継鉄間に形
成した磁気回路と、この磁気回路を励磁する電磁コイル
とを備え、前記磁気回路の前記固定吸着体全通る部分を
前記固定吸着体そのものを通る分流磁気回路と一端前記
固定吸着体から前記調整鉄芯を通り再び前記固定吸着体
を通る第1調整磁気回路に分けて形成するとともに、前
記可動鉄芯を含まない前記固定吸着体、前記調整鉄芯、
前記固定継鉄、前記永久磁石間に第2調整磁気回路を設
けるものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a magnetic circuit formed between a permanent magnet, a fixed adsorption body into which an adjustment iron core is inserted, a movable iron core, and a fixed yoke, and an electromagnetic coil that excites a circuit, and a part of the magnetic circuit that passes entirely through the fixed attracting member is connected to a branch magnetic circuit that passes through the fixed attracting member itself, and one end passes from the fixed attracting member to the adjusting iron core and returns to the fixed attracting member. The fixed adsorption body which does not include the movable iron core, the adjustment iron core,
A second adjustment magnetic circuit is provided between the fixed yoke and the permanent magnet.

作用 本発明は、上記した構成によって第1調整磁気回路と第
2調整磁気回路の2つの調整磁気回路の磁気抵抗を、調
整鉄芯の固定吸着体への挿入量を変化させることにより
同時に調整し、結果として可動鉄芯と固定吸着体を通る
磁束を調整するものである。
Effect The present invention uses the above-described configuration to simultaneously adjust the magnetic resistance of two adjusting magnetic circuits, the first adjusting magnetic circuit and the second adjusting magnetic circuit, by changing the insertion amount of the adjusting iron core into the fixed adsorption body. As a result, the magnetic flux passing through the movable iron core and the fixed adsorbent is adjusted.

しかも、挿入量と磁束の関係が直線的になる、すなわち
言いかえると挿入量と作動電圧の関係が直線的になるこ
とより一作動電圧調整が容易となるのである。
Moreover, since the relationship between the insertion amount and the magnetic flux becomes linear, or in other words, the relationship between the insertion amount and the operating voltage becomes linear, it becomes easier to adjust the operating voltage.

実施例 以下本発明の一実施例について、図面を参照しながら説
明する。
EXAMPLE An example of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例における電磁アクチエータの断
面図を示すものである。
FIG. 1 shows a sectional view of an electromagnetic actuator in an embodiment of the present invention.

第1図において、永久磁石1は厚み方向に着磁するとと
もにその方向に貫通孔1aを設けている。
In FIG. 1, a permanent magnet 1 is magnetized in the thickness direction and has a through hole 1a in that direction.

その上には磁性材料製の固定吸着体2を設けており、そ
の永久磁石1側の前記貫通孔1aに対応した位置にめす
ネジ部を有した挿入孔2aをあけており、磁性材料製の
可動鉄芯3が吸着面4で吸着離脱動作できる様になって
いる。また固定吸着体2の挿入孔2乙には、磁性材料製
のおすイ・ジ部を持った調整鉄芯8が前記永久磁石1の
貫通孔1aを貫通する形で挿入されネジ止めしていると
ともにその挿入量りを可変できる様にしている。
A fixed adsorption body 2 made of a magnetic material is provided thereon, and an insertion hole 2a having a female threaded portion is bored at a position corresponding to the through hole 1a on the side of the permanent magnet 1. The movable iron core 3 is capable of attracting and detaching from the attracting surface 4. Further, an adjustment iron core 8 having a male diagonal portion made of a magnetic material is inserted into the insertion hole 2B of the fixed adsorption body 2 so as to pass through the through hole 1a of the permanent magnet 1, and is screwed. At the same time, the amount of insertion can be varied.

磁性材料製の第1固定継鉄51L、第2固定継鉄6bと
永久磁石1、調整鉄芯8を挿入した固定吸着体2、可動
鉄芯3とで永久磁石1の磁気回路6を形成し可動鉄芯3
を固定吸着体2に吸着面4で吸着保持している。駆動用
の電磁コイル7ばその中央部を可動鉄芯3が上下に摺動
する様案内するとともに、前記磁気回路6を励磁する様
になっている。第2固定継鉄6bの永久磁石10貫通孔
1aに対応する位置には、貫通孔1aと同程度の太きさ
の孔12が設けられ、外部より調整鉄芯8を回転できる
様にしている。
The magnetic circuit 6 of the permanent magnet 1 is formed by the first fixed yoke 51L and the second fixed yoke 6b made of magnetic material, the permanent magnet 1, the fixed adsorption body 2 into which the adjustment iron core 8 is inserted, and the movable iron core 3. Movable iron core 3
is held by suction on a fixed suction body 2 with a suction surface 4. The driving electromagnetic coil 7 guides the movable iron core 3 to slide up and down through the center thereof, and also excites the magnetic circuit 6. A hole 12 having the same thickness as the through hole 1a is provided at a position corresponding to the through hole 1a of the permanent magnet 10 of the second fixed yoke 6b, so that the adjusting iron core 8 can be rotated from the outside. .

ここで、磁気回路6は、固定吸着体2を通る部分では固
定吸着体2そのものを通る分流磁気回路12と、固定吸
着体2から一端調整鉄芯8を通り再び固定吸着体2を通
過する第1調整磁気回路13とに分かれている。
Here, the magnetic circuit 6 includes a branch magnetic circuit 12 that passes through the fixed adsorbent 2 itself, and a branch magnetic circuit 12 that passes through the fixed adsorbent 2 itself, and a branch magnetic circuit 12 that passes through the fixed adsorbent 2 at one end, passes through the adjustment iron core 8, and then passes through the fixed adsorbent 2 again. 1 adjustment magnetic circuit 13.

一方、更に永久磁石1、第2固定継鉄6b、調整鉄芯8
、固定吸着体2の間で可動鉄芯3を含まない第2調整磁
気回路9が形成されている。可動鉄芯3の先端にはバネ
受け10が装着されており、第1固定継鉄6aとの間に
圧縮バネ11が設けられている。
On the other hand, the permanent magnet 1, the second fixed yoke 6b, and the adjustable iron core 8
, a second adjustment magnetic circuit 9 that does not include the movable iron core 3 is formed between the fixed adsorption bodies 2. A spring receiver 10 is attached to the tip of the movable iron core 3, and a compression spring 11 is provided between it and the first fixed yoke 6a.

さて以上の様な構成において、その作動原理は基本的に
は従来例で述べたと同一であるので省略するが従来例と
は異なるのは磁気回路6を通る磁束の、が、固定吸着体
2を通る時、固定吸着体2そのものを通る分流磁気回路
12の磁束Φ1aと一端調整鉄芯3を流れてから再び固
定吸着体2を流れる第1調整磁気回路13のΦ、bに分
かれることである。しかもこの磁束Φ1bが調整鉄芯8
の挿入量りによって変化、すなわち可変できる点である
Now, in the above configuration, the operating principle is basically the same as that described in the conventional example, so the explanation will be omitted, but the difference from the conventional example is that the magnetic flux passing through the magnetic circuit 6 is different from the fixed adsorbent 2. When passing through, the magnetic flux Φ1a of the shunt magnetic circuit 12 passes through the fixed attracting body 2 itself, and the magnetic flux Φ, b of the first adjusting magnetic circuit 13 flows through the adjusting iron core 3 and then again through the fixed attracting body 2. Moreover, this magnetic flux Φ1b is the adjusting iron core 8
This is a point that can be changed depending on the amount of insertion.

このことは、磁気回路6を流れる磁束Φ1が、調整鉄芯
8の挿入量りの可変により、従来例と同様、な第2調整
磁気回路9の磁束Φ2の変化の影晋を受けるだけでなく
、更に磁束Φ1bの変化により直接Φ1自身も変化を受
けることを意味している。
This means that the magnetic flux Φ1 flowing through the magnetic circuit 6 is not only influenced by changes in the magnetic flux Φ2 of the second adjusting magnetic circuit 9, as in the conventional example, due to the variable insertion amount of the adjusting iron core 8. Furthermore, this means that Φ1 itself is directly affected by a change in magnetic flux Φ1b.

以下その動作について図面を参照しながら説明する。第
2図は本実施例の調整鉄芯8と固定吸着体2に設けた挿
入孔2Nの先端部との距離すなわち挿入量りを変化して
いった時の図を示している。
The operation will be explained below with reference to the drawings. FIG. 2 shows a diagram when the distance between the adjusting iron core 8 and the tip of the insertion hole 2N provided in the fixed adsorption body 2 of this embodiment, that is, the insertion amount is changed.

第2図において(A)は挿入量L:L□#Oの状態であ
り、申)はL==L、、(C)はL=I、2とした時を
示している。各々第2調整砒気回路9を通る磁束をΦ2
、磁気回路6を通る磁束をΦ4、第1調整磁気回路13
を通る磁束をΦ1b、分流磁気回路12を通る磁束をΦ
1aとすると、Φ1=Φ、a+Φ2bとなる。
In FIG. 2, (A) shows the state where the insertion amount is L:L□#O, (mon) shows the state when L==L, and (C) shows the state when L=I, 2. The magnetic flux passing through the second adjusting arsenic circuit 9 is Φ2
, the magnetic flux passing through the magnetic circuit 6 is Φ4, the first adjustment magnetic circuit 13
The magnetic flux passing through is Φ1b, and the magnetic flux passing through the shunt magnetic circuit 12 is Φ
1a, Φ1=Φ, a+Φ2b.

一方、永久磁石1によるトータルの磁束をΦとすると、
Φ=Φ1+Φ2となる。但し分かりやすいようにこれら
の磁気回路以外への漏れ磁束は無視するものとする。
On the other hand, if the total magnetic flux due to the permanent magnet 1 is Φ,
Φ=Φ1+Φ2. However, for the sake of clarity, leakage magnetic flux to areas other than these magnetic circuits will be ignored.

ここで詳細に各々の条件で磁束がどう変化するかをみる
と、第2図(ム)の状態すなわちI、:Lo:0では、
第2調整磁気回路9での調整鉄芯8と第2固定継鉄5b
との間の磁気ギャップが非常に犬きく磁気抵抗が大きい
ため、磁束Φ2は非常に小さな値となる。一方逆に、第
1調整磁気回路13を流れる磁束Φ1bは固定吸着体2
の挿入孔2&の最奥部と調整鉄芯8の先端部との距離は
ゼロのため磁気ギャップもゼロに等しくなり、磁気抵抗
が非常に少なくなり、Φ1bも最大の値となる。分流磁
気回路12を通る磁束Φ1aは固定吸着体2の断面積か
ら、挿入孔2aの断面積を引いた面積で決定される磁束
量となっている。
Now, if we look at how the magnetic flux changes in detail under each condition, in the state shown in Figure 2 (mu), that is, I, :Lo:0,
Adjustment iron core 8 and second fixed yoke 5b in second adjustment magnetic circuit 9
Since the magnetic gap between them is very large and the magnetic resistance is large, the magnetic flux Φ2 has a very small value. On the other hand, the magnetic flux Φ1b flowing through the first adjustment magnetic circuit 13 is
Since the distance between the innermost part of the insertion hole 2 & and the tip of the adjusting iron core 8 is zero, the magnetic gap is also equal to zero, the magnetic resistance is extremely small, and Φ1b is also at its maximum value. The magnetic flux Φ1a passing through the shunt magnetic circuit 12 is determined by the area obtained by subtracting the cross-sectional area of the insertion hole 2a from the cross-sectional area of the fixed attracting member 2.

次に第2図(B)状態、すなわちL==L1では、調整
鉄芯8と@2固定継鉄6bとが近づき両者間の磁気ギャ
ップがL二〇の場合より小さくなり、第2調整磁気回路
9の磁気抵抗が小さくなって磁束が通りやすくなりΦ2
は増加する。一方、Φ1bは、固定吸着体2の挿入孔2
&の最奥部と調整鉄芯8の先端との距離が増加するため
第1調整磁気回路13の磁気抵抗が増えて、L == 
LO−0の場合に比べて磁気抵抗増加分に応じた値に小
さくなる。
Next, in the state shown in FIG. 2 (B), that is, L==L1, the adjusting iron core 8 and @2 fixed yoke 6b approach each other, and the magnetic gap between them becomes smaller than in the case of L20, and the second adjusting magnetic The magnetic resistance of the circuit 9 becomes smaller, allowing the magnetic flux to pass through more easily, and Φ2
increases. On the other hand, Φ1b is the insertion hole 2 of the fixed adsorption body 2.
Since the distance between the innermost part of & and the tip of the adjusting iron core 8 increases, the magnetic resistance of the first adjusting magnetic circuit 13 increases, and L ==
Compared to the case of LO-0, the value becomes smaller according to the increase in magnetic resistance.

逆にその減少分は磁束Φ2にプラスした形で、第2調整
磁気回路9を流れることになる。一方Φ、aは、第2調
整磁気回路9の影響を受けるまでに到らず、L ” L
 o′=、Oの場合とあまり変らない。
Conversely, the decreased amount flows through the second adjustment magnetic circuit 9 in the form of an addition to the magnetic flux Φ2. On the other hand, Φ and a are not affected by the second adjusting magnetic circuit 9, and L ” L
It is not much different from the case where o′=,O.

更に第2図(C)の状態すなわちL:L2では、調整鉄
芯8と第2固定継鉄6bとの磁気ギャップが最小とな)
、第2調整磁気回路9の磁気抵抗が非常に小さくなり、
磁束が通りやすくなる。すなわちL : L、=、O、
L==L、時に比較してΦ2は最大となる。一方Φ1b
は固定吸着体2と調整鉄芯8との距離が非常に犬きくな
り、第1調整磁気回路13の磁気抵抗が犬きくなって、
最小となりΦ1bはゼロ近くなる。そしてその減少分は
Φ2にプラスされ、第2調整磁気回路9を流れることに
なる。
Furthermore, in the state of FIG. 2(C), that is, L:L2, the magnetic gap between the adjusting iron core 8 and the second fixed yoke 6b is minimum.)
, the magnetic resistance of the second adjustment magnetic circuit 9 becomes very small,
It becomes easier for magnetic flux to pass through. That is, L: L,=,O,
When L==L, Φ2 becomes maximum compared to when L==L. On the other hand, Φ1b
In this case, the distance between the fixed adsorption body 2 and the adjusting iron core 8 becomes very narrow, and the magnetic resistance of the first adjusting magnetic circuit 13 becomes very narrow.
becomes the minimum, and Φ1b becomes close to zero. Then, the decreased amount is added to Φ2 and flows through the second adjustment magnetic circuit 9.

更に分流磁気回路12を流れる磁束Φ1aの一部は、第
2調整磁気回路9の磁気抵抗が非常に小さくなり磁束を
通しやすくなった影響を受け、Φ2にプラスする形で流
れてしまい、Φ1aはL:LO!−io 、 L:L、
  時よシも小さくなる。
Furthermore, a part of the magnetic flux Φ1a flowing through the shunt magnetic circuit 12 is affected by the fact that the magnetic resistance of the second adjusting magnetic circuit 9 has become very small, making it easier for the magnetic flux to pass through, and flows in a form that is in addition to Φ2, so that Φ1a becomes L:LO! -io, L:L,
Time and space also become smaller.

なお、この様な動作を保障するためには、固定吸着体2
の磁路断面積は挿入孔2aを設けることにより、挿入孔
2aが無い場合と比較して、固定吸着体2を通る磁束が
変化すなわち減少するだけの挿入孔2aの断面積との関
係が成立していなければならない。
In addition, in order to ensure this kind of operation, the fixed adsorbent 2
By providing the insertion hole 2a, the magnetic path cross-sectional area establishes a relationship with the cross-sectional area of the insertion hole 2a such that the magnetic flux passing through the fixed adsorption body 2 changes or decreases compared to the case without the insertion hole 2a. Must be.

ここで上述の磁束変化の詳細を以下図を用いて説明する
。なお、各条件での磁束は例えば、L=L1の時のΦ、
b(L、)と表記するものとする。
Here, details of the above-mentioned magnetic flux change will be explained below using the drawings. The magnetic flux under each condition is, for example, Φ when L=L1,
It shall be written as b(L,).

第3図(A)〜(D) において縦軸は各条件の磁束骨
を、横軸は調整鉄芯8の固定吸着体2への挿入量りを示
している。
In FIGS. 3(A) to 3(D), the vertical axis represents the magnetic flux under each condition, and the horizontal axis represents the amount of insertion of the adjusting iron core 8 into the fixed adsorption body 2.

第3図(A)の実線18は、分流磁気回路12の磁束の
1aの変化を示しており、Lの増加とともに、LD%L
、ではΦ1aはほとんど変らないが、L1〜L2で犬き
く減少していく。Φ+ ?L(La )からΦ、a(L
2)までの減少量は、後述の第3図(C)中の一点鎖線
2oのように磁束Φ2の一部として流れることになり、
Φ2を増加させることとなる。
A solid line 18 in FIG. 3(A) shows a change in magnetic flux 1a of the shunt magnetic circuit 12, and as L increases, LD%
, Φ1a hardly changes, but it decreases sharply between L1 and L2. Φ+? From L(La) to Φ, a(L
The amount of decrease up to 2) will flow as part of the magnetic flux Φ2 as shown by a dashed-dotted line 2o in FIG. 3(C), which will be described later.
This results in an increase in Φ2.

次に第3図(B)の実線19は、第1調整磁気回路13
の磁束Φ1bの変化を示しており、L+ : LO#0
の時最大となり以降りの増加とともに減少している。Φ
、b(Lo)からΦ1b(L2)までの減少量は。
Next, the solid line 19 in FIG. 3(B) indicates the first adjustment magnetic circuit 13.
It shows the change in magnetic flux Φ1b of L+: LO#0
It reaches its maximum at , and decreases as the value increases thereafter. Φ
, the amount of decrease from b(Lo) to Φ1b(L2) is.

前述と同様第3図(C)の点線21に示す様にΦ2の一
部となってくる。
As before, it becomes a part of Φ2 as shown by the dotted line 21 in FIG. 3(C).

第3図(C)の実線22は第2調整磁気回路9の磁束Φ
2の変化を示しており、これは前述のΦ1aの減少分を
示す一点鎖線2QとΦ、bの減少分を示す点線21を加
えた量となってくる。
The solid line 22 in FIG. 3(C) indicates the magnetic flux Φ of the second adjustment magnetic circuit 9.
2, which is the sum of the above-described one-dot chain line 2Q indicating the decrease in Φ1a and the dotted line 21 indicating the decrease in Φ,b.

更に第3図中)における実線23は磁気回路6を通る磁
束Φ1の変化を示しており、Φ1=Φ1八十Φ1bの関
係より、Φ、aを示す点線24とΦ1bを示す一点鎖線
25を加えたものとなる。
Furthermore, the solid line 23 in FIG. It becomes something.

なおここで、Φ1とΦ2とを加えたものが永久磁石1に
よるトータルのΦとなるが第3図(C:) 、 (D)
からも理解できる様にΦ1とΦ2は、その他への漏れ磁
束がないものと仮定しているので、Φ=Φ1+Φ2は一
定となってくる。
Note that the sum of Φ1 and Φ2 is the total Φ due to the permanent magnet 1, as shown in Figure 3 (C:) and (D).
As can be understood from the above, it is assumed that Φ1 and Φ2 have no leakage magnetic flux to other parts, so Φ=Φ1+Φ2 becomes constant.

さて、以上の様に本実施例は可動鉄芯3と固定吸着体2
間の吸着保持力Fを決定する磁気回路6の磁束Φ1を、
第3図(D)に示す様な形で調整鉄芯8の挿入iLを変
化させることで調節できることを示している。しかも、
LとΦ1の関係はほぼ直線的な関係となってくる。すな
わち、挿入量りと吸着保持力Fの変化の関係がほぼ直線
的になることになるので、作動電圧Vとの関係もほぼ直
線的になることを意味している。
Now, as described above, this embodiment has a movable iron core 3 and a fixed adsorption body 2.
The magnetic flux Φ1 of the magnetic circuit 6 that determines the attraction and holding force F between
It is shown that the adjustment can be made by changing the insertion iL of the adjusting iron core 8 in a manner as shown in FIG. 3(D). Moreover,
The relationship between L and Φ1 becomes almost linear. In other words, since the relationship between the insertion amount and the change in the adsorption/holding force F is approximately linear, this means that the relationship with the operating voltage V is also approximately linear.

第4図において、横軸に挿入ILを、縦軸を作動電圧V
にして、本実施例の挿入量りと作動電圧Vの関係を示し
ている。図から理解できる様に、本実施例では作動電圧
Vの必要な調整がvlからv2程度と低い場合でも、逆
にvlからv2と同じ幅としてVがv5からvlのよう
に高い場合でも、挿入量りの規制景はほとんど変らない
。しかも従来例の様に、5寸法がわずかに変化するだけ
で作動電圧Vが大幅に変化する様なこともないので、調
整鉄芯8のネジ部のガタつきがあっても作動電圧Vの変
化はほとんど見られないことになる。
In Fig. 4, the horizontal axis represents the insertion IL, and the vertical axis represents the operating voltage V.
, which shows the relationship between the insertion gauge and the operating voltage V in this embodiment. As can be understood from the figure, in this embodiment, even if the required adjustment of the operating voltage V is as low as from vl to v2, or conversely, even if the necessary adjustment of the operating voltage V is as high as from v5 to vl, with the same width as vl to v2, the insertion The regulatory landscape for weighing has hardly changed. Moreover, unlike the conventional example, the operating voltage V does not change significantly even if the 5 dimensions change slightly, so even if there is play in the threaded part of the adjusting iron core 8, the operating voltage V will change. will almost never be seen.

なお、調整鉄芯8の下端部が第2固定継鉄5bの端面か
ら飛び出す、すなわちL:L2以上に挿入量を変化させ
ることは可能だが、この場合第2固定継鉄6bと調整鉄
芯8との磁気ギャップはほとんど変化しないので作動電
圧Vの調整範囲も狭くなり、調整効果が少なくなる。そ
こで通常、挿入量りは作動電圧Vとの直線関係が維持で
きるL ” L o ”; O〜L=L2程度で使用し
ている。逆に通常は構成部品のバラツキを含めてもこの
範囲で充分なことが多い。このことは、従来例の様に調
整鉄芯8が第2固定継鉄5bから外部へ出す必要がない
ことであシ、外力によって調整鉄芯8の調整位置が変化
し作動電圧Vの特性が変化することを防げることにもな
る。
Note that it is possible for the lower end of the adjusting iron core 8 to protrude from the end surface of the second fixed yoke 5b, that is, to change the insertion amount to more than L:L2, but in this case, the second fixed yoke 6b and the adjusting iron core 8 Since the magnetic gap between the two and the same does not change much, the adjustment range of the operating voltage V becomes narrower, and the adjustment effect decreases. Therefore, the insertion scale is usually used at a value of about L ``Lo''; O~L=L2, which can maintain a linear relationship with the operating voltage V. On the other hand, this range is usually sufficient even if variations in component parts are included. This means that there is no need for the adjustment iron core 8 to be brought out from the second fixed yoke 5b as in the conventional example, and the adjustment position of the adjustment iron core 8 changes due to external force, causing the characteristics of the operating voltage V to change. It also prevents change.

なお、上記の調整範囲での調整ができない場合は、圧縮
バネ11の反撥力fを変更する方法との組み合わせで対
応ができる。
In addition, if adjustment within the above adjustment range is not possible, it can be handled in combination with a method of changing the repulsive force f of the compression spring 11.

発明の効果 以上の様に本発明は、調整鉄芯の固定吸着体への挿入量
を変化させることにより、第1調整磁気回路、第2調整
磁気回路の磁気抵抗を同時に変化させ、結果として可動
鉄芯と固定吸着体とを通る磁束を変化調整でさる様にす
るとともに、その磁束と挿入量との相関関係を直線的に
なる様にするものである。これは、挿入量と自己保持型
ンレノイドの作動電圧との相関関係を直線的なものにす
ることであり、挿入量調整により作動電圧の調整が非常
に容易になるという効果となる。
Effects of the Invention As described above, the present invention changes the magnetic resistance of the first adjustment magnetic circuit and the second adjustment magnetic circuit simultaneously by changing the insertion amount of the adjustment iron core into the fixed adsorption body, and as a result, the magnetic resistance of the first adjustment magnetic circuit and the second adjustment magnetic circuit are changed. The magnetic flux passing through the iron core and the fixed adsorption body is adjusted to change, and the correlation between the magnetic flux and the insertion amount is made linear. This is to make the correlation between the insertion amount and the operating voltage of the self-holding type Renoid linear, and has the effect that adjusting the insertion amount makes it very easy to adjust the operating voltage.

更に、挿入量と作動電圧の関係が急激に変化する様な範
囲を解消することになり、調整鉄芯のガタつき程度で作
動電圧の特性が変わることを防ぐことが可能となる。
Furthermore, the range in which the relationship between the insertion amount and the operating voltage changes rapidly is eliminated, and it becomes possible to prevent the operating voltage characteristics from changing due to rattling of the adjusting iron core.

また、調整鉄芯に対する外力の印加も防ぐことができ作
動電圧特性の信頼性を高めることができ 。
It also prevents the application of external force to the adjustment iron core, increasing the reliability of the operating voltage characteristics.

る。Ru.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の電磁アクチエータの概略構
造を示す断面(2)、第2図は第1図の固定吸着体付近
の断面図、第3図は同調整鉄芯の挿入量と各々の磁束の
関係を示す図、第4図は同作動電圧と調整鉄芯の挿入量
を示す図、寸寺場モ第5図は従来の電磁アクチエータの
概略構造を示す断面図、第6図は、第5図の固定吸着体
付近を示した断面図、第7図は同調整鉄芯と固定吸着体
との隙間eと作動電圧との関係を示す図である。 1・・・・・・永久磁石、2・・・・・・固定吸着体、
3・・・・・・可動鉄芯、e・・・・・・磁気回路、8
・・・・・・調整鉄芯、9・・・・・・第2調整磁気回
路、13・・・・・・第1調整磁気回路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名ノ 
−1≦q≧≧ρ5 ?−歌覗1体 第 1 図             3−可v5欽モ
、54−%Tm 5−一第2圓友束酷\ 6 −Jk%[ll (/I)                (Bン  
             (C〕第 3 図 一−→−り 第 3 区 一−−L 第 4 図 Lメ2L3LどLノ 挿入tL→ ノー−ね砥
Fig. 1 is a cross section (2) showing the schematic structure of an electromagnetic actuator according to an embodiment of the present invention, Fig. 2 is a sectional view of the vicinity of the fixed adsorption body in Fig. 1, and Fig. 3 is the insertion amount of the adjusted iron core. Figure 4 is a diagram showing the operating voltage and the insertion amount of the adjusting iron core, Figure 5 is a sectional view showing the schematic structure of a conventional electromagnetic actuator, Figure 6 This figure is a sectional view showing the vicinity of the fixed adsorbent in FIG. 5, and FIG. 7 is a diagram showing the relationship between the gap e between the adjustable iron core and the fixed adsorbent and the operating voltage. 1... Permanent magnet, 2... Fixed adsorption body,
3...Movable iron core, e...Magnetic circuit, 8
...Adjustment iron core, 9...Second adjustment magnetic circuit, 13...First adjustment magnetic circuit. Name of agent: Patent attorney Toshio Nakao and one other person
−1≦q≧≧ρ5? - Utazo 1 body 1st Figure 3 - Possible v5 Kinmo, 54-% Tm 5-1 2nd Enyu Tsukuku\ 6 - Jk% [ll (/I) (B N
(C) 3rd figure 1-→-ri 3rd ward 1--L 4th figure

Claims (1)

【特許請求の範囲】[Claims]  永久磁石、調整鉄芯を挿入した固定吸着体、可動鉄芯
、固定継鉄間に形成した磁気回路と、この磁気回路を励
磁する電磁コイルとを備え、前記磁気回路の固定吸着体
を通る部分を前記固定吸着体そのものを通る分流磁気回
路と一端前記固定吸着体から前記調整鉄芯を通り再び前
記固定吸着体を通る第1調整磁気回路に分けて形成する
とともに、前記可動鉄芯を含まない前記固定吸着体、前
記調整鉄芯、前記固定継鉄、前記永久磁石間に第2調整
磁気回路を設けた電磁アクチエータ。
A magnetic circuit formed between a permanent magnet, a fixed adsorption body into which an adjustment iron core is inserted, a movable iron core, and a fixed yoke, and an electromagnetic coil that excites this magnetic circuit, and a portion of the magnetic circuit that passes through the fixed adsorption body. is divided into a branch magnetic circuit that passes through the fixed adsorbent itself and a first adjusting magnetic circuit that passes from the fixed adsorbent at one end through the adjusting iron core and back through the fixed adsorbent, and does not include the movable iron core. An electromagnetic actuator in which a second adjusting magnetic circuit is provided between the fixed adsorption body, the adjusting iron core, the fixed yoke, and the permanent magnet.
JP61180304A 1986-07-31 1986-07-31 Electromagnetic actuator Expired - Fee Related JPH0648648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61180304A JPH0648648B2 (en) 1986-07-31 1986-07-31 Electromagnetic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61180304A JPH0648648B2 (en) 1986-07-31 1986-07-31 Electromagnetic actuator

Publications (2)

Publication Number Publication Date
JPS6336502A true JPS6336502A (en) 1988-02-17
JPH0648648B2 JPH0648648B2 (en) 1994-06-22

Family

ID=16080865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61180304A Expired - Fee Related JPH0648648B2 (en) 1986-07-31 1986-07-31 Electromagnetic actuator

Country Status (1)

Country Link
JP (1) JPH0648648B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101942A (en) * 1997-08-01 1999-04-13 Carl Zeiss Jena Gmbh Adaptive optical device for microscope
DE102009032367A1 (en) * 2009-07-08 2011-01-13 Pierburg Gmbh Electromagnetic actuator for a valve
DE102009032365A1 (en) * 2009-07-08 2011-02-24 Pierburg Gmbh Electromagnetic actuator for a valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101942A (en) * 1997-08-01 1999-04-13 Carl Zeiss Jena Gmbh Adaptive optical device for microscope
DE102009032367A1 (en) * 2009-07-08 2011-01-13 Pierburg Gmbh Electromagnetic actuator for a valve
DE102009032365A1 (en) * 2009-07-08 2011-02-24 Pierburg Gmbh Electromagnetic actuator for a valve
DE102009032365B4 (en) * 2009-07-08 2011-04-28 Pierburg Gmbh Electromagnetic actuator for a valve
DE102009032367B4 (en) * 2009-07-08 2011-04-28 Pierburg Gmbh Electromagnetic actuator for a valve

Also Published As

Publication number Publication date
JPH0648648B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
US5268662A (en) Plunger type electromagnet
US20020008603A1 (en) Solenoid for efficient pull-in and quick landing
WO1998056097A1 (en) Single coil bistable, bidirectional micromechanical actuator
US7078833B2 (en) Force motor with increased proportional stroke
US4327345A (en) Solenoid having a multi-piece armature
EP0380693A1 (en) Plunger type electromagnet
JPS5926835B2 (en) solenoid control valve
JPS6336502A (en) Electromagnetic actuator
EP0025382A1 (en) Electromagnetic solenoid actuator
US6870285B2 (en) Long stroke linear voice coil actuator with the proportional solenoid type characteristic
US4164721A (en) Magnetic actuator for a shutter mechanism
US20230323915A1 (en) Magnetic bearing device and positioning system
US6556114B1 (en) Electromagnetic actuator equipped with means for adjusting its mobile polar element
JP6178604B2 (en) Magnetic spring device
Joyce et al. Micro-step motor
JP2699252B2 (en) Permanent magnet variable magnetic field generator
JP3635360B2 (en) Electromagnet, movable core of electromagnet and method of manufacturing the same
JPH0614513A (en) Linear actuator
JPH0121534Y2 (en)
JP2003045715A (en) Position-fixing unit taking advantage of functional fluid
JPH073602Y2 (en) Electromagnetic actuator
KR100472829B1 (en) Voice coil motor and design method
JP2780455B2 (en) Actuator
JPH02172206A (en) Solenoid
JP3035864B2 (en) Magnetic adsorption device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees