JP3635360B2 - Electromagnet, movable core of electromagnet and method of manufacturing the same - Google Patents

Electromagnet, movable core of electromagnet and method of manufacturing the same Download PDF

Info

Publication number
JP3635360B2
JP3635360B2 JP05516496A JP5516496A JP3635360B2 JP 3635360 B2 JP3635360 B2 JP 3635360B2 JP 05516496 A JP05516496 A JP 05516496A JP 5516496 A JP5516496 A JP 5516496A JP 3635360 B2 JP3635360 B2 JP 3635360B2
Authority
JP
Japan
Prior art keywords
iron core
pin
electromagnet
core
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05516496A
Other languages
Japanese (ja)
Other versions
JPH09246038A (en
Inventor
雄亮 近藤
俊秋 沖田
Original Assignee
三明電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三明電機株式会社 filed Critical 三明電機株式会社
Priority to JP05516496A priority Critical patent/JP3635360B2/en
Publication of JPH09246038A publication Critical patent/JPH09246038A/en
Application granted granted Critical
Publication of JP3635360B2 publication Critical patent/JP3635360B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electromagnets (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電磁石及び電磁石内で直動する可動鉄心と可動鉄心の製造方法に関する。
【0002】
【従来の技術】
従来、電磁石においては、ヒステリシスを小さくするために各種の改良がなされている。特に、可動鉄心の直線的な移動時における、可動鉄心の振れが大きいとヒステリシスが大きくなるため、電磁石の性能を落としてしまう。可動鉄心は、通常、磁束が発生する鉄心本体部と磁束に影響されないピン部とを有して構成されているため、鉄心本体部とピン部との製作上における同心度が重要な課題として挙げられていた。例えば図6に示される電磁石の可動鉄心30は、鉄心本体部32と鉄心本体部32の前方(図中左方向)にピン34が配設固定されている。鉄心本体部32は機械加工によりピン穴33が形成され、そしてピン34がピン穴33に圧入される。
【0003】
【発明が解決しようとする課題】
しかし、上記の可動鉄心30に形成されるピン穴33の精度は、機械精度及び加工する工具に直接左右されるため、加工する機械の精度が悪かったり工具の摩耗が発生していると加工されるピン穴33の精度が悪くなる。そのため、機械や工具の保守に気を配ったり、また、もともと精度の高いものを加工するため、加工時間も長くコストが高くなっていた。さらに、鉄心本体部32には油穴35が別に加工されるため鉄心本体部32の加工コストは高くなるばかりであった。
【0004】
この発明は、上述の課題を解決するものであり、ヒステリシスを小さくするとともにコスト低減できる可動鉄心を提供することを目的とする。
【0005】
【課題を解決するための手段】
この発明にかかわる電磁石の可動鉄心は、鉄心本体部とピン部との同心度を機械加工によらず組みつけ治具により行なうものであり、
コイルの励磁によって左右方向に移動され、鉄心本体部と前記鉄心本体部の軸穴に貫通されるように配設されるピン部とを備えて構成される電磁石の可動鉄心であって、
前記ピン部が前記鉄心本体部の前記軸穴に遊嵌されるとともに、前記ピン部が前記鉄心本体部に対して同心上に配設され、前記鉄心本体部と前記ピン部とが固定手段により固定されることを特徴とするものである。
【0006】
また、この発明に係る可動鉄心の製造方法は、コイルの励磁によって左右方向に移動され、鉄心本体部と前記鉄心本体部の軸穴に貫通されるように配設されるピン部とを備えて構成される電磁石の可動鉄心の製造方法であって、
前記鉄心本体部と前記ピン部とが遊嵌される状態で、前記ピン部を前記鉄心本体部の同心上に配設する可動鉄心組立治具にセットされ、セットされた後、前記鉄心本体部と前記ピン部とが、固定手段によって固定されることを特徴とする電磁石の可動鉄心の製造方法である。
【0007】
また、前記固定手段が、前記鉄心本体部と前記ピン部とを連通するスプリングピンであることを特徴とするものであってもよい。
【0008】
また、この発明に係る電磁石は、コイルが巻回され中空状に形成されるコイル体に、鉄心本体部と前記鉄心本体部の軸穴に貫通されるピン部とを有する可動鉄心が摺動可能に配設される電磁石であって、
前記ピン部が、鉄心本体部に同心上に遊嵌状態で固定され、前記ピン部が前記鉄心本体部とともに前記コイル体に対して摺動可能に支持されて構成されることを特徴とするものである。
【0009】
【発明の実施の形態】
以下、この発明の一実施の形態を図面に基づいて説明する。
【0010】
図1は、本発明による電磁石の可動鉄心を示す図であり、可動鉄心10は、軸心部に貫通穴11が形成されている磁性体の鉄心部12と貫通穴11に遊嵌される非磁性体のピン部14とを有して構成されている。貫通穴11はドリル等の工具で機械加工され、穴径の精度は特に必要としない。貫通穴11とピン14との間には2〜3mm程度の隙間を有していて、鉄心部12には、その中央部に貫通穴11に直交する方向に2か所のスプリングピン穴13が形成されている。鉄心部12とピン14は、後述の製造方法により、鉄心部12とピン部14の同心度が所定範囲以内に決められた後で、スプリングピン穴13にスプリングピン16を鉄心部12側から打ち込むことによって固定される。
【0011】
可動鉄心10の組み付けによる製造方法は図2乃至図3に示されるように、上治具20と下治具25を使用して組み付けされる。上治具20は矩形に形成され下面側20aの両側に半円柱状のピン上穴21と、下面側20aの中央部でピン上穴21、21との間に半円柱状の鉄心上穴22とが形成され、上面側20bに鉄心上穴22に貫通するように2か所の矩形の開口穴23が形成されている。また上治具20の4隅には上面側20bから下面側20a方向に貫通するように、それぞれボルト貫通穴24が形成されている。そして、ピン上穴21と鉄心上穴22との同心度は極めて精度よく製作されている。
【0012】
下治具25も上治具20と同様に、矩形に形成され上面側25aの両側に半円柱状のピン下穴26と、上面側25aの中央部でピン下穴26、26との間に半円柱状の鉄心下穴27が形成されている。また、下治具25の4隅には上面側25aから下面側25b方向に貫通するように、上治具20のボルト穴24に対応する位置にタップ穴28が形成されている。そして、ピン下穴26と鉄心下穴27との同心度は極めて精度よく製作されている。そして上治具20の下面側20aと下治具25の上面側25aを当接すると、当接面を中心に可動鉄心10と同様のの形状にできるように構成される。この合成される可動鉄心10と同様の形状は鉄心部12に相当する部分とピン部14に相当する部分の真円度と同心度が精度よく形成されることになる。
【0013】
この上治具20と下治具21で可動鉄心10を組み付けるには、まず下治具25に可動鉄心10の鉄心部12を下治具25の鉄心下穴27に挿入した後、ピン部14を鉄心部12の貫通穴11に挿通する。この場合、鉄心部12の貫通穴11にピン部14を予め挿通させた後、ピン穴26及び鉄心下穴27に挿入させてもよい。鉄心部12とピン部14が下治具25にセットされた後、上治具20の鉄心上穴22とピン上穴21を鉄心部12とピン部14に合わせて、下治具25の上面側25aと上治具の下面側20aどうしを当接させる。そして上治具20の4隅に形成されるボルト穴24に図示しない4本のボルトを挿入し、下治具25の4隅に形成されるタップ穴28にそれぞれ螺着して固定する。そして、上治具20に形成された2か所の開口穴23から可動鉄心12の鉄心部12に形成されるスプリングピン穴13にスプリングピン16を打ち込んで鉄心部12とピン部14を固定すると図3のようになる。
【0014】
そして、上治具20と下治具25を固定しているボルトを外し上治具20を取り外して可動鉄心10を取り出すと、図1に示される状態の可動鉄心10が鉄心部12とピン部14の所定範囲内の同心度を維持して完成される。
【0015】
次に上記の可動鉄心10を電磁石、特に電磁比例ソレノイドに組み込んだ形態の説明をする。
【0016】
図4は、電磁比例ソレノイドの実施の形態を示す断面図であり、電磁比例ソレノイドSは、本体ケース1と、本体ケース1内に配設されるコイル体3と、コイル体3内に配設される固定鉄心4、パイプ5と、固定磁極4とパイプ5間に配設される磁気遮断部材6と、パイプ5内に摺動可能に配設される可動鉄心10と、を備えて構成される。
【0017】
本体ケース1は、一方が開口される筒状に形成され、外周回路体を構成する磁性体のヨーク2a、2b、2cと、外周部の一部に形成される樹脂部1aと、が一体的に形成され、前記樹脂部1aには後述のコイルに接続されるリード線を保護するブッシングが配設される。本体ケース1の右端は突起状部を有する閉口部1bが形成される。また、また内部に形成される中空部には、ヨーク2a、2cに挟まれる中空状のボビン3aと、ボビン3aに巻回されるコイル3bと、を備えて構成されるコイル体3が配設されている。
【0018】
ボビン3aの内周には、図4中、左側に固定鉄心4が配設され、固定鉄心4の左端外周には雄ねじ4aが形成され、例えば、電磁比例ソレノイドSが取り付けられる油圧回路体に接続されるようになっている。固定鉄心4の右端には凹部4bが形成され、前記可動鉄心10の鉄心部12が摺動可能に嵌合されるように形成され、凹部4bの外周部先端にテーパ状の水平特性形成部4cが形成される。特に、この水平特性形成部4cを形成することにより、電流と吸引力との関係を直線的に表すことのできる比例ソレノイドとしての役割を果たすことになる。 また、固定鉄心4の内部中心部には軸心方向に可動鉄心10のピン部14が貫通する可動鉄心支持穴4dが形成され、ピン部14を軸受7を介して摺動可能に支持している。さらに、可動鉄心支持穴4dと平行に油穴4eが1か所形成され、可動鉄心10の摺動部を長期間保持するために、外部からの潤滑経路を構成している。
【0019】
また、ボビン3aの内周には、固定鉄心4の右方向に固定配置されるパイプ5と、ボビン3aの内周の中央部で固定鉄心4とパイプ5との間に配置され磁気を遮断する非磁性材の磁気遮断部材6と、前記固定鉄心4と、が一体的に形成されて配設されている。そして、パイプ5内に、可動鉄心10がパイプ5内に摺動可能に嵌合されるとともに、固定鉄心4に吸引されることによって左右方向に移動可能に配設される。
【0020】
本体ケース1の右端の閉口部1bの内部は可動鉄心10のピン部14が挿入されるようにパイプ5の内周より小径の可動鉄心支持穴1cが形成されている。そしてピン部14が可動鉄心支持穴1cに軸受け7を介して摺動可能に支持される。可動鉄心10の左右移動をスムーズに行なうためには、可動鉄心10の鉄心部12の外周面とパイプ5の内周面は約0.2〜0.3mm程度の隙間を有することが望ましい。
【0021】
さらに、固定鉄心4の凹部4bの内側端面に、可動鉄心10のピン部12の外周回りに非磁性材料で形成されるスぺーサ8が配設され、コイル3bが励磁解除された時、残留磁気が鉄心部12に流れるのを防止している。スペーサ8は図5に示されるように、厚みの薄い円筒状に形成され内部には、油が通過する半円状の通路部8aが4か所形成されている。
【0022】
電磁比例ソレノイドSの外部から、可動鉄心に供給される潤滑油は、固定鉄心4の油穴4e及び可動鉄心支持穴4dを通って、スペーサ8の通路部8aを通りパイプ5内に流入され、さらに、鉄心部12の貫通穴11を通って本体ケース1の可動鉄心支持穴1c内に流入される。そして、軸受7と可動鉄心10のピン部14間との摺動部、及びパイプ5(磁気遮断部材6及び固定鉄心4の凹部4bを含む)と鉄心部12間との摺動部を潤滑する。また、本体ケース1の閉口部1bの内周面とパイプ5の外周面にOリング9が配設され可動鉄心10内に潤滑される油が外部に洩れるのを防いでいる。
【0023】
このように構成される電磁比例ソレノイドSは、コイル3bに通電され、励磁されると、ヨーク2a、2b、2cと、固定鉄心4、可動鉄心10の鉄心部12に磁束が流れ、可動鉄心10は固定鉄心4に吸引されるため、図4中、左方向に移動される。また、コイルが非通電され励磁解除されると、磁束が消滅し、電磁比例ソレノイドSが組み込まれた回路体内の図示しないコイルばね等により可動鉄心10は右方向に移動され復帰される。
【0024】
この移動時、可動鉄心10の鉄心部12とピン部との同心度は、すでに精度よく組み立てられている。そして、可動鉄心10の移動に対するガイドは軸受7と可動鉄心10のピン部14との間で行われるため、鉄心部12とパイプ5(磁気遮断部材6及び固定鉄心4の凹部4b内を含む)との間の隙間の状態は、特に負荷を受けることなく安定している。そのためヒステリシスは小さくなる。
【0025】
また潤滑油の流入経路は上述の通りであり、可動鉄心10に形成される貫通穴11が油穴として兼用できるようになっている。特に、油穴が鉄心部12の中央部に設けられていることは、油穴が貫通穴11を挟んで両側に設けられているタイプと比べて、磁束の流れをより安定させるため、ヒステリシスを小さくすることに大きく影響する。
【0026】
なお、本発明の可動鉄心は、鉄心部とピン部との同心度出しを機械加工によるものではなく、組み付け時により行なうようにしているため、組み付け時における同心度出しの方法は、上記の方法に限られるものではない。例えば、鉄心部12の両側に鉄心部12の外周を基準とするガイドブッシュをあてがい、該ガイドブッシュにピン部14を挿通した後、スプリングピン16で固定するようにし、その後、該ガイドブッシュを取り外すようにしてもよい。
【0027】
また、鉄心部12とピン部14との固定方法はスプリングピン16でなく、両側からボルトで止めて固定するようにしてもよい。
【0028】
さらに、この可動鉄心を使用する電磁石が、上記の形態の電磁比例ソレノイドでなくても、一般的な電磁石でもよいことはもちろんである。
【0029】
【発明の効果】
本発明によれば、本発明の電磁石の可動鉄心は、
鉄心本体部と前記鉄心本体部の軸穴に貫通されるように配設されるピン部とを備えて構成され、前記ピン部が前記鉄心本体部の前記軸穴に遊嵌されるとともに、前記ピン部が前記鉄心本体部に対して同心上に配設され、前記鉄心本体部と前記ピン部とが固定手段により固定されているので、可動鉄心に形成される軸穴は特に穴形の加工精度を必要としない。また、前記軸穴が油穴を兼用できるため、ヒステリシスを小さくするとともに、可動鉄心の製造コストを極めて低減することができる。
【0030】
また、本発明の可動鉄心の製造方法によれば、鉄心本体部と前記鉄心本体部の軸穴に貫通されるように配設されるピン部とを備えて構成され、前記鉄心本体部と前記ピン部とが遊嵌される状態で、組みつけ治具により前記鉄心本体部と前記ピン部の同心度を所定範囲以内で組み付けることができる。そのため、ヒステリシスを小さくするとともに、機械加工によるコストの高い可動鉄心を製造することなく、コスト低減が図れる。
【0031】
さらに、本発明の電磁石は、摺動可能に配設される可動鉄心が、鉄心本体部と前記鉄心本体部の軸穴に貫通されるピン部とを有し、前記ピン部が、鉄心本体部に同心上に遊嵌されて固定され、前記ピン部が摺動可能に支持されている。そのため、鉄心本体部の摺動部分には特に負荷がかかることなく安定した移動ができ、ヒステリシスを小さくすることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態を示す可動鉄心の断面図
【図2】図1における可動鉄心の製造方法を示す斜視図
【図3】図2における組み付け断面図
【図4】図1における可動鉄心を使用する電磁比例ソレノイドの断面図
【図5】図4におけるスペーサを示す図
【図6】従来の可動鉄心を示す断面図
【符号の説明】
1…本体ケース
3…コイル体
3b…コイル
4…固定鉄心
7…軸受
10…可動鉄心
11…貫通穴(軸穴)
12…鉄心部(鉄心本体部)
14…ピン部
16…スプリングピン(固定手段)
20…上治具
25…下治具
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnet, a movable iron core that moves linearly in the electromagnet, and a method for manufacturing the movable iron core.
[0002]
[Prior art]
Conventionally, various improvements have been made in electromagnets in order to reduce hysteresis. In particular, when the movable iron core has a large runout during linear movement, the hysteresis becomes large, which degrades the performance of the electromagnet. Since the movable iron core is usually configured to have an iron core body that generates magnetic flux and a pin that is not affected by the magnetic flux, concentricity in manufacturing the iron core main body and the pin is an important issue. It was done. For example, the movable core 30 of the electromagnet shown in FIG. 6 has a pin 34 disposed and fixed in front of the core body 32 and the iron core body 32 (leftward in the figure). The core body 32 is formed with a pin hole 33 by machining, and the pin 34 is press-fitted into the pin hole 33.
[0003]
[Problems to be solved by the invention]
However, since the accuracy of the pin hole 33 formed in the movable iron core 30 is directly affected by the machine accuracy and the tool to be machined, the pin hole 33 is machined if the machine machine is inaccurate or the tool is worn. The accuracy of the pin hole 33 is deteriorated. For this reason, attention has been paid to the maintenance of machines and tools, and since high-precision products are originally processed, the processing time is long and the cost is high. Furthermore, since the oil hole 35 is separately processed in the core body 32, the processing cost of the core body 32 has only increased.
[0004]
This invention solves the above-mentioned subject, and aims at providing the movable iron core which can reduce cost while reducing hysteresis.
[0005]
[Means for Solving the Problems]
The movable iron core of the electromagnet according to the present invention is to perform the concentricity between the core body portion and the pin portion by an assembly jig without machining.
A movable iron core of an electromagnet configured to be moved in the left-right direction by excitation of a coil and configured to include an iron core main body and a pin portion disposed so as to penetrate the shaft hole of the iron core main body,
The pin portion is loosely fitted in the shaft hole of the iron core main body portion, the pin portion is disposed concentrically with the iron core main body portion, and the iron core main body portion and the pin portion are fixed by fixing means. It is characterized by being fixed.
[0006]
The method for manufacturing a movable iron core according to the present invention includes an iron core main body portion and a pin portion disposed so as to be penetrated through the shaft hole of the iron core main body portion by exciting the coil. A method of manufacturing a movable iron core of an electromagnet comprising:
In a state where the core body portion and the pin portion are loosely fitted, the pin portion is set on a movable core assembly jig that is disposed concentrically with the core body portion , and after being set, the core body portion and said pin portion is a method of manufacturing a movable core of the electromagnet, characterized in that it is fixed by fixing means.
[0007]
Further, the fixing means may be a spring pin that communicates the core body portion and the pin portion.
[0008]
The electromagnet according to the present invention is capable of sliding a movable iron core having an iron core main body and a pin portion penetrating through the shaft hole of the iron core main body in a coil body formed by winding a coil into a hollow shape. An electromagnet disposed in
The pin portion is concentrically fixed to the iron core main body in a loosely fitted state, and the pin portion is configured to be slidably supported on the coil body together with the iron core main body. It is.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0010]
FIG. 1 is a view showing a movable iron core of an electromagnet according to the present invention. A movable iron core 10 is loosely fitted in a through hole 11 and a magnetic iron core portion 12 having a through hole 11 formed in an axial center portion. And a magnetic pin part 14. The through hole 11 is machined with a tool such as a drill, and the accuracy of the hole diameter is not particularly required. There is a gap of about 2 to 3 mm between the through hole 11 and the pin 14, and the iron core portion 12 has two spring pin holes 13 in the direction perpendicular to the through hole 11 at the center thereof. Is formed. The iron core portion 12 and the pin 14 are driven into the spring pin hole 13 from the iron core portion 12 side after the concentricity of the iron core portion 12 and the pin portion 14 is determined within a predetermined range by a manufacturing method described later. Fixed by.
[0011]
The manufacturing method by assembling the movable iron core 10 is assembled using an upper jig 20 and a lower jig 25 as shown in FIGS. The upper jig 20 is formed in a rectangular shape and has a semi-cylindrical pin upper hole 21 on both sides of the lower surface side 20a and a semi-cylindrical iron core upper hole 22 between the pin upper holes 21 and 21 at the center of the lower surface side 20a. Are formed, and two rectangular opening holes 23 are formed on the upper surface side 20b so as to penetrate the upper core hole 22. In addition, bolt through holes 24 are formed at the four corners of the upper jig 20 so as to penetrate from the upper surface side 20b to the lower surface side 20a. The concentricity between the pin upper hole 21 and the iron core upper hole 22 is manufactured with extremely high accuracy.
[0012]
Similarly to the upper jig 20, the lower jig 25 is also formed in a rectangular shape and has a semi-cylindrical pin pilot hole 26 on both sides of the upper surface side 25a, and between the pin lower holes 26, 26 at the center of the upper surface side 25a. A semi-cylindrical iron core prepared hole 27 is formed. Further, tap holes 28 are formed at positions corresponding to the bolt holes 24 of the upper jig 20 at the four corners of the lower jig 25 so as to penetrate from the upper surface side 25a to the lower surface side 25b. The concentricity between the pin pilot hole 26 and the iron core pilot hole 27 is manufactured with extremely high accuracy. When the lower surface side 20a of the upper jig 20 and the upper surface side 25a of the lower jig 25 are brought into contact with each other, the same shape as that of the movable iron core 10 can be formed around the contact surface. In the same shape as the synthesized movable core 10, the roundness and concentricity of the portion corresponding to the core portion 12 and the portion corresponding to the pin portion 14 are formed with high accuracy.
[0013]
In order to assemble the movable iron core 10 with the upper jig 20 and the lower jig 21, first, the iron core portion 12 of the movable iron core 10 is inserted into the lower jig 25 into the iron core lower hole 27 of the lower jig 25, and then the pin portion 14. Is inserted into the through hole 11 of the iron core portion 12. In this case, the pin portion 14 may be inserted into the through hole 11 of the iron core portion 12 in advance and then inserted into the pin hole 26 and the iron core lower hole 27. After the iron core portion 12 and the pin portion 14 are set in the lower jig 25, the upper surface of the lower jig 25 is aligned with the iron core upper hole 22 and the pin upper hole 21 of the upper jig 20 aligned with the iron core portion 12 and the pin portion 14. The side 25a and the lower surface side 20a of the upper jig are brought into contact with each other. Then, four bolts (not shown) are inserted into the bolt holes 24 formed at the four corners of the upper jig 20, and are respectively screwed and fixed to the tap holes 28 formed at the four corners of the lower jig 25. Then, when the spring pin 16 is driven into the spring pin hole 13 formed in the iron core portion 12 of the movable iron core 12 from the two opening holes 23 formed in the upper jig 20 to fix the iron core portion 12 and the pin portion 14. As shown in FIG.
[0014]
When the bolts fixing the upper jig 20 and the lower jig 25 are removed, the upper jig 20 is removed and the movable iron core 10 is taken out, the movable iron core 10 in the state shown in FIG. It is completed while maintaining the concentricity within 14 predetermined ranges.
[0015]
Next, an embodiment in which the movable iron core 10 is incorporated in an electromagnet, particularly an electromagnetic proportional solenoid will be described.
[0016]
FIG. 4 is a cross-sectional view showing an embodiment of an electromagnetic proportional solenoid. The electromagnetic proportional solenoid S includes a main body case 1, a coil body 3 disposed in the main body case 1, and a coil body 3. A fixed iron core 4, a pipe 5, a magnetic shielding member 6 disposed between the fixed magnetic pole 4 and the pipe 5, and a movable iron core 10 slidably disposed in the pipe 5. The
[0017]
The main body case 1 is formed in a cylindrical shape with one opening, and a magnetic yoke 2a, 2b, 2c constituting an outer peripheral circuit body and a resin portion 1a formed in a part of the outer peripheral portion are integrated. The resin portion 1a is provided with a bushing for protecting a lead wire connected to a coil described later. The right end of the main body case 1 is formed with a closed portion 1b having a protruding portion. In addition, a coil body 3 including a hollow bobbin 3a sandwiched between the yokes 2a and 2c and a coil 3b wound around the bobbin 3a is disposed in the hollow portion formed inside. Has been.
[0018]
In the inner periphery of the bobbin 3a, a fixed iron core 4 is disposed on the left side in FIG. 4, and a male screw 4a is formed on the outer periphery of the left end of the fixed iron core 4. For example, it is connected to a hydraulic circuit body to which an electromagnetic proportional solenoid S is attached. It has come to be. A concave portion 4b is formed at the right end of the fixed iron core 4 so that the iron core portion 12 of the movable iron core 10 is slidably fitted, and a tapered horizontal characteristic forming portion 4c is formed at the outer peripheral end of the concave portion 4b. Is formed. In particular, by forming the horizontal characteristic forming portion 4c, the horizontal characteristic forming portion 4c serves as a proportional solenoid capable of linearly expressing the relationship between current and attractive force. Also, a movable core support hole 4d through which the pin portion 14 of the movable core 10 passes in the axial direction is formed in the inner central portion of the fixed core 4, and the pin portion 14 is slidably supported via the bearing 7. Yes. Furthermore, one oil hole 4e is formed in parallel with the movable iron core support hole 4d, and an external lubrication path is configured to hold the sliding portion of the movable iron core 10 for a long period of time.
[0019]
Further, the inner periphery of the bobbin 3a is arranged between the fixed iron core 4 and the pipe 5 at the central portion of the inner periphery of the bobbin 3a and the pipe 5 fixedly arranged in the right direction of the fixed iron core 4. A nonmagnetic magnetic shielding member 6 and the fixed iron core 4 are integrally formed and disposed. The movable iron core 10 is slidably fitted in the pipe 5 and is movably disposed in the left-right direction by being sucked by the fixed iron core 4.
[0020]
A movable core support hole 1c having a smaller diameter than the inner periphery of the pipe 5 is formed inside the closed portion 1b at the right end of the main body case 1 so that the pin portion 14 of the movable core 10 is inserted. The pin portion 14 is slidably supported through the bearing 7 in the movable iron core support hole 1c. In order to smoothly move the movable core 10 from side to side, it is desirable that the outer peripheral surface of the core portion 12 of the movable core 10 and the inner peripheral surface of the pipe 5 have a gap of about 0.2 to 0.3 mm.
[0021]
Furthermore, a spacer 8 formed of a nonmagnetic material is disposed around the outer periphery of the pin portion 12 of the movable iron core 10 on the inner end face of the concave portion 4b of the fixed iron core 4, and when the coil 3b is de-energized, it remains. The magnetism is prevented from flowing to the iron core portion 12. As shown in FIG. 5, the spacer 8 is formed in a thin cylindrical shape, and four semicircular passage portions 8a through which oil passes are formed.
[0022]
Lubricating oil supplied to the movable iron core from the outside of the electromagnetic proportional solenoid S passes through the oil hole 4e and the movable iron core support hole 4d of the fixed iron core 4 and flows into the pipe 5 through the passage portion 8a of the spacer 8, Furthermore, it flows into the movable core support hole 1 c of the main body case 1 through the through hole 11 of the core portion 12. The sliding portion between the bearing 7 and the pin portion 14 of the movable iron core 10 and the sliding portion between the pipe 5 (including the magnetic shielding member 6 and the recessed portion 4b of the fixed iron core 4) and the iron core portion 12 are lubricated. . Further, an O-ring 9 is provided on the inner peripheral surface of the closed portion 1b of the main body case 1 and the outer peripheral surface of the pipe 5 to prevent the oil lubricated in the movable iron core 10 from leaking to the outside.
[0023]
When the electromagnetic proportional solenoid S configured as described above is energized and energized to the coil 3 b, magnetic flux flows through the yokes 2 a, 2 b, 2 c, the fixed iron core 4, and the iron core portion 12 of the movable iron core 10, Is attracted to the fixed iron core 4 and is moved to the left in FIG. When the coil is de-energized and de-energized, the magnetic flux disappears, and the movable iron core 10 is moved to the right and returned by a coil spring (not shown) in the circuit body in which the electromagnetic proportional solenoid S is incorporated.
[0024]
At the time of this movement, the concentricity between the iron core portion 12 and the pin portion of the movable iron core 10 is already assembled with high accuracy. Since the guide for the movement of the movable core 10 is performed between the bearing 7 and the pin portion 14 of the movable core 10, the core portion 12 and the pipe 5 (including the inside of the magnetic shielding member 6 and the recessed portion 4b of the fixed core 4). The state of the gap between the two is stable without any particular load. Therefore, the hysteresis becomes small.
[0025]
The inflow path of the lubricating oil is as described above, and the through hole 11 formed in the movable iron core 10 can be used as an oil hole. In particular, the fact that the oil hole is provided in the central portion of the iron core portion 12 is more stable than the type in which the oil hole is provided on both sides of the through hole 11 so that the flow of magnetic flux is more stable. It has a big influence on making it smaller.
[0026]
Note that the movable iron core of the present invention is designed so that the concentricity between the iron core portion and the pin portion is not machined but is assembled at the time of assembly. It is not limited to. For example, a guide bush based on the outer periphery of the iron core portion 12 is applied to both sides of the iron core portion 12, the pin portion 14 is inserted into the guide bush, and then fixed with a spring pin 16, and then the guide bush is removed. You may do it.
[0027]
Further, the iron core portion 12 and the pin portion 14 may be fixed by using bolts from both sides instead of the spring pin 16.
[0028]
Furthermore, it is needless to say that the electromagnet using the movable iron core may be a general electromagnet instead of the electromagnetic proportional solenoid of the above-described form.
[0029]
【The invention's effect】
According to the present invention, the movable iron core of the electromagnet of the present invention is
An iron core main body and a pin portion disposed so as to penetrate through the shaft hole of the iron core main body portion, and the pin portion is loosely fitted in the shaft hole of the iron core main body portion, and Since the pin portion is disposed concentrically with respect to the core body portion, and the core body portion and the pin portion are fixed by a fixing means, the shaft hole formed in the movable core is particularly a hole-shaped machining Does not require accuracy. Further, since the shaft hole can also serve as an oil hole, the hysteresis can be reduced and the manufacturing cost of the movable iron core can be greatly reduced.
[0030]
Further, according to the method for manufacturing a movable core of the present invention, the core includes a core body and a pin portion disposed so as to penetrate through the shaft hole of the core body, and the core body and the core With the pin part loosely fitted, the concentricity of the iron core body part and the pin part can be assembled within a predetermined range by an assembling jig. For this reason, the hysteresis can be reduced and the cost can be reduced without manufacturing a high-cost movable iron core by machining.
[0031]
Furthermore, the electromagnet of the present invention has a movable iron core slidably disposed having an iron core main body portion and a pin portion penetrating through the shaft hole of the iron core main body portion, and the pin portion is an iron core main body portion. The pin portion is supported so as to be slidable. Therefore, the sliding portion of the iron core main body can move stably without any particular load, and the hysteresis can be reduced.
[Brief description of the drawings]
1 is a cross-sectional view of a movable iron core showing an embodiment of the present invention. FIG. 2 is a perspective view showing a method for manufacturing the movable iron core in FIG. 1. FIG. 3 is an assembled cross-sectional view in FIG. FIG. 5 is a sectional view of an electromagnetic proportional solenoid using a movable iron core in FIG. 5 is a diagram showing a spacer in FIG. 4. FIG. 6 is a sectional view showing a conventional movable iron core.
DESCRIPTION OF SYMBOLS 1 ... Main body case 3 ... Coil body 3b ... Coil 4 ... Fixed iron core 7 ... Bearing 10 ... Movable iron core 11 ... Through-hole (shaft hole)
12 ... Iron core (core body)
14 ... pin portion 16 ... spring pin (fixing means)
20 ... Upper jig 25 ... Lower jig

Claims (5)

コイルの励磁によって左右方向に移動され、鉄心本体部と前記鉄心本体部の軸穴に貫通されるように配設されるピン部とを備えて構成される電磁石の可動鉄心であって、
前記ピン部が前記鉄心本体部の前記軸穴に遊嵌されるとともに、前記ピン部が前記鉄心本体部に対して同心上に配設され、前記鉄心本体部と前記ピン部とが固定手段により固定されることを特徴とする電磁石の可動鉄心。
A movable iron core of an electromagnet configured to be moved in the left-right direction by excitation of a coil and configured to include an iron core main body and a pin portion disposed so as to penetrate the shaft hole of the iron core main body ,
The pin portion is loosely fitted in the shaft hole of the iron core main body portion, the pin portion is disposed concentrically with the iron core main body portion, and the iron core main body portion and the pin portion are fixed by fixing means. Electromagnet movable iron core characterized by being fixed.
コイルの励磁によって左右方向に移動され、鉄心本体部と前記鉄心本体部の軸穴に貫通されるように配設されるピン部とを備えて構成される電磁石の可動鉄心の製造方法であって、
前記鉄心本体部と前記ピン部とが遊嵌される状態で、前記ピン部を前記鉄心本体部の同心上に配設する可動鉄心組立治具にセットされ、セットされた後、前記鉄心本体部と前記ピン部とが、固定手段によって固定されることを特徴とする電磁石の可動鉄心の製造方法。
A method of manufacturing a movable iron core of an electromagnet configured to include a pin body portion that is moved in the left-right direction by excitation of a coil and disposed so as to penetrate through a shaft hole of the core body portion. ,
In a state where the core body portion and the pin portion are loosely fitted, the pin portion is set on a movable core assembly jig that is disposed concentrically with the core body portion , and after being set, the core body portion A method for manufacturing a movable iron core of an electromagnet, wherein the pin portion is fixed by a fixing means.
前記固定手段が、前記鉄心本体部と前記ピン部とを連通するスプリングピンであることを特徴とする請求項1記載の電磁石の可動鉄心。  2. The movable iron core according to claim 1, wherein the fixing means is a spring pin that allows the iron core body and the pin to communicate with each other. 前記固定手段が、前記鉄心本体部と前記ピン部とを連通するスプリングピンであることを特徴とする請求項2記載の電磁石の可動鉄心の製造方法。  The method for manufacturing a movable iron core of an electromagnet according to claim 2, wherein the fixing means is a spring pin that allows the iron core body and the pin to communicate with each other. コイルが巻回され中空状に形成されるコイル体に、鉄心本体部と前記鉄心本体部の軸穴に貫通されるピン部とを有する可動鉄心が摺動可能に配設される電磁石であって、
前記ピン部が、鉄心本体部に同心上に遊嵌状態で固定され、前記ピン部が前記鉄心本体部とともに前記コイル体に対して摺動可能に支持されて構成されることを特徴とする電磁石。
An electromagnet in which a movable iron core having a core body portion and a pin portion penetrating through a shaft hole of the iron core main body portion is slidably disposed in a coil body that is wound and formed in a hollow shape. ,
An electromagnet characterized in that the pin portion is concentrically fixed to the iron core main body in a loosely fitted state, and the pin portion is supported so as to be slidable with the coil body together with the iron core main body. .
JP05516496A 1996-03-12 1996-03-12 Electromagnet, movable core of electromagnet and method of manufacturing the same Expired - Lifetime JP3635360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05516496A JP3635360B2 (en) 1996-03-12 1996-03-12 Electromagnet, movable core of electromagnet and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05516496A JP3635360B2 (en) 1996-03-12 1996-03-12 Electromagnet, movable core of electromagnet and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09246038A JPH09246038A (en) 1997-09-19
JP3635360B2 true JP3635360B2 (en) 2005-04-06

Family

ID=12991109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05516496A Expired - Lifetime JP3635360B2 (en) 1996-03-12 1996-03-12 Electromagnet, movable core of electromagnet and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3635360B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6977377B2 (en) * 2017-07-31 2021-12-08 日本電産トーソク株式会社 Solenoid device and control valve
CN110428950A (en) * 2019-08-29 2019-11-08 宁波精益飞达轴业有限公司 A kind of electric-hydraulic proportion electromagnet
CN113889365B (en) * 2020-07-02 2024-05-14 陕西新通智能科技有限公司 Lost motion iron core in electromagnetic switch anti-impact and manufacturing method thereof

Also Published As

Publication number Publication date
JPH09246038A (en) 1997-09-19

Similar Documents

Publication Publication Date Title
US7564332B2 (en) Variable force solenoid
US4533890A (en) Permanent magnet bistable solenoid actuator
US6313553B1 (en) Rotating electromagnetic actuator comprising at least one magnet embedded in ferromagnetic material
US5208570A (en) Solenoid construction and method for making same
JP5494681B2 (en) solenoid valve
JP3635360B2 (en) Electromagnet, movable core of electromagnet and method of manufacturing the same
JPS5926835B2 (en) solenoid control valve
US4480202A (en) Magnetic linear drive
US4694270A (en) Electromagnetic proportional actuator
JP4237114B2 (en) solenoid valve
JP4712144B2 (en) 2-way proportional solenoid
EP4242503A1 (en) Solenoid valve
EP3817012B1 (en) Solenoid having a permanent magnet
WO2015046033A1 (en) Linear motor actuator with ball spline and method for manufacturing same
JP3731171B2 (en) Movable iron core in solenoid
US6175291B1 (en) Electromagnet
JP4048754B2 (en) Linear solenoid valve
JP3503236B2 (en) Electromagnetic device
JPH0231769Y2 (en)
JPH09289117A (en) Electromagnet
JP4458282B2 (en) solenoid valve
JP2003314731A (en) Solenoid valve
JP4199711B2 (en) solenoid valve
JP2530268Y2 (en) Electromagnetic device
JPS6116664Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041214

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term