JPH0648648B2 - Electromagnetic actuator - Google Patents

Electromagnetic actuator

Info

Publication number
JPH0648648B2
JPH0648648B2 JP61180304A JP18030486A JPH0648648B2 JP H0648648 B2 JPH0648648 B2 JP H0648648B2 JP 61180304 A JP61180304 A JP 61180304A JP 18030486 A JP18030486 A JP 18030486A JP H0648648 B2 JPH0648648 B2 JP H0648648B2
Authority
JP
Japan
Prior art keywords
iron core
adjusting
magnetic
fixed
magnetic circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61180304A
Other languages
Japanese (ja)
Other versions
JPS6336502A (en
Inventor
正幸 岡本
徳良 大橋
義光 藤原
正樹 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61180304A priority Critical patent/JPH0648648B2/en
Publication of JPS6336502A publication Critical patent/JPS6336502A/en
Publication of JPH0648648B2 publication Critical patent/JPH0648648B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は永久磁石を磁気回路中に有し、作動すべき時に
外部からの電源から瞬時通電等により駆動させる電磁ア
クチェータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic actuator which has a permanent magnet in a magnetic circuit and is driven by instantaneous power supply from an external power source when it should be operated.

従来の技術 従来より電磁コイルの発熱をさけたり、駆動回路側の省
電力化をはかるため、永久磁石を使用し電磁コイルは瞬
間励磁だけに利用して、状態の保持は永久磁石により行
なう形式の電磁アクチェータが使われている。特に近
年、駆動電源としてAC電源からだけではなく、乾電池等
の使用が増えており、そのため電源となる電池の温度特
性や負荷抵抗特性等の影響により電磁アクチェータに印
加される電圧条件に制限がでてくる。したがって、自己
保持型ソレノイドの作動する電圧を電源に対応した一定
の範囲内に収める必要が発生してくる。これらに対して
従来より電磁アクチェータの構成部品の材料の磁気特性
の精度、部品の寸法精度を上げたりして、その作動する
に必要な電圧のバラツキをおさえたりしているが、それ
でも要望される一定の範囲内に収めるのが難しいため種
々の作動電圧調整方法が採用されている。
Conventional technology Conventionally, in order to avoid heat generation in the electromagnetic coil and to save power on the drive circuit side, a permanent magnet is used, the electromagnetic coil is used only for momentary excitation, and the state is maintained by the permanent magnet. An electromagnetic actuator is used. In recent years, in particular, not only AC power sources but also dry batteries have been increasingly used as driving power sources.Therefore, there are restrictions on the voltage conditions applied to the electromagnetic actuator due to the temperature characteristics and load resistance characteristics of the power source batteries. Come on. Therefore, it becomes necessary to keep the operating voltage of the self-holding solenoid within a certain range corresponding to the power supply. In contrast, the accuracy of the magnetic characteristics of the materials of the components of the electromagnetic actuator and the dimensional accuracy of the components have been increased to suppress variations in the voltage required for their operation, but they are still required. Since it is difficult to keep it within a certain range, various operating voltage adjusting methods have been adopted.

以下図面を参照しながら、前述した従来の電磁アクチェ
ータの一例について説明する。
An example of the above-mentioned conventional electromagnetic actuator will be described below with reference to the drawings.

第5図は従来例の構造の概略を示すものである。第5図
において、永久磁石1は厚み方向に着磁するとともにそ
の方向に貫通孔1aを設けている。その上には磁性材料
製の固定吸着体2を設けており、磁性材料製の可動鉄芯
3が吸着面4で吸着離脱動作できる様になっている。磁
性材料製の第1固定継鉄5a、第2固定継鉄5bと永久
磁石1、固定吸着体2、可動鉄芯3とで永久磁石1の磁
気回路6を形成し、可動鉄芯3を固定吸着体2に吸着面
4で吸着保持している。
FIG. 5 schematically shows the structure of the conventional example. In FIG. 5, the permanent magnet 1 is magnetized in the thickness direction and has a through hole 1a provided in that direction. A fixed adsorbent 2 made of a magnetic material is provided on the movable iron core 3 made of a magnetic material so that the movable iron core 3 can be adsorbed and desorbed on the adsorbing surface 4. A magnetic circuit 6 of the permanent magnet 1 is formed by the first fixed yoke 5a and the second fixed yoke 5b made of magnetic material, the permanent magnet 1, the fixed attracting body 2, and the movable iron core 3, and the movable iron core 3 is fixed. The adsorption surface 4 is adsorbed and held on the adsorbent 2.

駆動用の電磁コイル7はその中央部を可動鉄芯3が上下
に摺動する様案内するとともに、前記磁気回路6を励磁
する様になっている。第2固定継鉄5bの前記永久磁石
1の貫通孔1aに対応する位置にめすネジ部が設けられ
ておりその部分におすネジ部を有した磁性材料製の調整
鉄芯8が貫通孔1aを貫通する形でねじ込まれており、
前記固定吸着体2との隙間lが可変できる構造となって
いる。永久磁石1、第2固定継鉄5b、調整鉄芯8、固
定吸着体2の間で、可動鉄芯3を含まない調整磁気回路
9が形成されている。可動鉄芯3の先端にはバネ受け1
0が装着されており、第1固定継鉄5aとの間に圧縮バ
ネ11が設けられている。
The driving electromagnetic coil 7 guides the center of the movable iron core 3 so that the movable iron core 3 slides up and down, and excites the magnetic circuit 6. A female screw portion is provided at a position of the second fixed yoke 5b corresponding to the through hole 1a of the permanent magnet 1, and an adjusting iron core 8 made of a magnetic material and having a female screw portion at that portion is provided with a through hole 1a. It is screwed in to penetrate,
The structure is such that the gap l with the fixed adsorbent 2 can be changed. An adjusting magnetic circuit 9 that does not include the movable iron core 3 is formed between the permanent magnet 1, the second fixed yoke 5b, the adjusting iron core 8, and the fixed attracting body 2. A spring holder 1 is attached to the tip of the movable iron core 3.
0 is mounted, and a compression spring 11 is provided between the fixed spring 5 and the first fixed yoke 5a.

以上の様に構成された電磁アクチェータについて、以下
その動作を説明する。
The operation of the electromagnetic actuator configured as described above will be described below.

基本的な動作原理として、外部からの駆動電源により電
磁コイル7に、前記磁気回路6の磁界方向とは逆方向の
磁界が発生する様に電圧を瞬間的に印加することによ
り、吸着面4での可動鉄芯3と固定吸着体2との吸着保
持力が弱まり、この吸着保持力をうわまわる圧縮バネ1
1の反撥力により、吸着面4より離反し可動鉄芯3を押
し上げる様になっている。また逆に図には示していない
が可動鉄芯3が押し上げられた状態では、電磁コイル7
に永久磁石1と同方向の磁界を生じる電圧を印加するこ
とにより圧縮バネ11の反撥力に打勝って再び可動鉄芯
3を吸着保持位置に戻すことができる。
As a basic operation principle, a voltage is momentarily applied to the electromagnetic coil 7 by a driving power source from the outside so that a magnetic field in a direction opposite to the magnetic field direction of the magnetic circuit 6 is generated. The adsorbing and holding force between the movable iron core 3 and the fixed adsorbing body 2 is weakened, and the compression spring 1 is known for its adsorbing and holding force.
The repulsive force of 1 pushes the movable iron core 3 away from the suction surface 4. On the contrary, although not shown in the figure, when the movable iron core 3 is pushed up, the electromagnetic coil 7
By applying a voltage that generates a magnetic field in the same direction as that of the permanent magnet 1, it is possible to overcome the repulsive force of the compression spring 11 and return the movable iron core 3 to the adsorption holding position again.

ここで、前述の可動鉄芯3と固定吸着体2との間の吸着
保持状態での吸着保持力をF、圧縮バネ11の反撥力を
fとし、可動鉄芯3を押し上げる、すなわち作動させる
時に必要な電磁コイル7への印加電圧を作動電圧Vとす
ると、作動電圧Vの値は作動原理からも理解できる様に
Fとfとの差(F−f)値に依存し決定される。すなわ
ち、吸着保持力Fが大又は反撥力fが小の場合は作動電
圧Vが大に、逆にFが小又はfが大の場合はVが小とな
る。また、可動鉄芯3が吸着面4より離れている状態で
は圧縮バネ11の反撥力fが大きい程、再吸着するため
の作動電圧Vは大となる。従って、圧縮バネ11の強さ
は離反する時と吸着する時で作動電圧Vには逆に作用す
る。
Here, when the suction holding force in the suction holding state between the movable iron core 3 and the fixed suction body 2 is F and the repulsive force of the compression spring 11 is f, the movable iron core 3 is pushed up, that is, when it is operated. Assuming that the required voltage to be applied to the electromagnetic coil 7 is the operating voltage V, the value of the operating voltage V is determined depending on the difference (F−f) value between F and f, as can be understood from the operating principle. That is, when the suction holding force F is large or the repulsion force f is small, the operating voltage V is large, and conversely, when F is small or f is large, V is small. Further, when the movable iron core 3 is separated from the attraction surface 4, the larger the repulsive force f of the compression spring 11, the larger the operating voltage V for re-adsorption. Therefore, the strength of the compression spring 11 has an opposite effect on the operating voltage V when it is separated and when it is attracted.

ここで、磁気回路6を通る永久磁石1による磁束Φ
磁気回路6を構成する可動鉄芯3、第1固定継鉄5a、
第2固定継鉄5b、固定吸着体2等の透磁率すなわち磁
気特性や吸着面4の表面粗度及び永久磁石1そのものの
磁気特性のバラツキの影響を大きく受けるものである。
一方、吸着保持力Fは磁束Φ1に比例する様な形で決定
される。
Here, the magnetic flux Φ 1 due to the permanent magnet 1 passing through the magnetic circuit 6 is generated by the movable iron core 3, the first fixed yoke 5a, which constitute the magnetic circuit 6,
It is greatly affected by variations in magnetic permeability of the second fixed yoke 5b, fixed adsorbent 2 and the like, that is, magnetic characteristics, surface roughness of the adsorbing surface 4, and magnetic characteristics of the permanent magnet 1 itself.
On the other hand, the adsorption holding force F is determined in a form proportional to the magnetic flux Φ 1 .

このことは、電磁アクチェータを同じ構造で組み立て製
造しても個別の物ごとに吸着保持力Fが構成部品の磁性
材料の特性等のバラツキによって大きく変化することを
示しており、したがって圧縮バネ11の反撥力fが仮に
一定としても(F−f)の差力がバラつくことになるの
で結果として個別の物毎に作動電圧Vがバラつくことに
なる。
This means that even if the electromagnetic actuators are assembled and manufactured with the same structure, the suction holding force F varies greatly for each individual object due to variations in the characteristics of the magnetic materials of the constituent parts, and thus the compression spring 11 Even if the repulsion force f is constant, the differential force of (F−f) varies, and as a result, the operating voltage V varies for each individual object.

そこで、前述の様に外部からの駆動電源の電圧に制限が
あり、作動電圧Vを一定の範囲内に収める必要が生じる
場合、その対応方法して(F−f)を一定幅に収める様
に圧縮バネ11の反撥力fを調整するか、磁気回路6の
磁束Φを変化させ吸着保持力Fを調整する方法が採用
されている。
Therefore, as described above, when the voltage of the driving power source from the outside is limited and it becomes necessary to keep the operating voltage V within a certain range, the corresponding method is to keep (F−f) within a certain range. A method of adjusting the repulsive force f of the compression spring 11 or changing the magnetic flux Φ 1 of the magnetic circuit 6 to adjust the suction holding force F is adopted.

本従来例は、後者の吸着保持力Fを調整する方法を示し
ているが、その動作は以下の様になっている。
This conventional example shows the latter method of adjusting the suction holding force F, and its operation is as follows.

前述の構成により固定吸着体2と調整鉄芯8との隙間l
は、調整鉄芯8のネジ部を回転させることにより可変で
き、かつ隙間lは磁気ギャップとなるので調整磁気回路
9の磁気抵抗を可変できることを意味している。すなわ
ち、隙間lを小さくすると調整磁気回路9の磁気抵抗が
小さくなり、永久磁石1によるトータルの磁束Φが磁気
回路6と調整回路9に分散して流れる(両磁気回路以外
への漏れ磁束については理解しやすい様にゼロとして考
える)ことより、調整磁気回路9を流れる磁束Φ2が大
きくなり、逆に磁気回路6を流れる磁束Φ1が小さくな
り吸着保持力Fが小さくなる。一方、逆に隙間lを大に
すると調整磁気回路6の磁気抵抗が大きくなるのでΦ2
が小さくなり、逆にΦ1が大きくなるので、吸着保持力
Fが大きくなる。
With the above configuration, the gap l between the fixed adsorbent 2 and the adjusted iron core 8
Means that it can be changed by rotating the screw part of the adjusting iron core 8, and the gap 1 becomes a magnetic gap, so that the magnetic resistance of the adjusting magnetic circuit 9 can be changed. That is, when the gap 1 is made small, the magnetic resistance of the adjusting magnetic circuit 9 becomes small, and the total magnetic flux Φ of the permanent magnet 1 flows dispersedly in the magnetic circuit 6 and the adjusting circuit 9 (for leakage flux other than the two magnetic circuits, (Thinking as zero for easy understanding), the magnetic flux Φ 2 flowing in the adjusting magnetic circuit 9 becomes large, and conversely, the magnetic flux Φ 1 flowing in the magnetic circuit 6 becomes small and the adsorption holding force F becomes small. On the other hand, conversely, if the gap 1 is increased, the magnetic resistance of the adjusting magnetic circuit 6 increases, so Φ 2
Becomes smaller, and conversely, Φ 1 becomes larger, so that the suction holding force F becomes larger.

この様に、調整鉄芯8と固定吸着体2との隙間lを可変
できることにより、調整磁気回路9の磁気抵抗を変化さ
せその磁束Φを変えて、最終的に磁気回路6の磁束Φ
を変えることになる。すなわちこれは可動鉄芯3の固
定吸着体2への吸着保持力Fを変えることになり、圧縮
バネ11の反撥力fとの差(F−f)を一定幅に収める
様にして作動電圧Vのバラツキを一定範囲内に収められ
ることを意味している。
In this way, the gap l between the adjusting iron core 8 and the fixed adsorption body 2 can be varied, so that the magnetic resistance of the adjusting magnetic circuit 9 is changed to change the magnetic flux Φ 2 thereof, and finally the magnetic flux Φ of the magnetic circuit 6 is changed.
It will change 1 . That is, this changes the attraction holding force F of the movable iron core 3 to the fixed attraction body 2, so that the difference (F−f) from the repulsion force f of the compression spring 11 is kept within a certain width. It means that the variation of can be kept within a certain range.

発明が解決しようとする問題点 しかしながら上記のような構成では、以下に示す様な問
題点があった。
Problems to be Solved by the Invention However, the above-described configuration has the following problems.

第6図は、調整鉄芯8と固定吸着体2との隙間lを可変
していった時の図を示している。第6図(A)はl=o,
第6図(B)はl=l4,第6図(c)はl=lとした場合
である。l6は調整鉄芯3の先端が第2固定継鉄5bの
永久磁石1の下端面とほぼ同一位置になった状態を示
す。
FIG. 6 shows a view when the gap 1 between the adjusting iron core 8 and the fixed adsorbent 2 is being changed. In FIG. 6 (A), l = o,
FIG. 6 (B) shows the case of l = l 4 , and FIG. 6 (c) shows the case of l = l 6 . Reference numeral 16 indicates a state in which the tip of the adjusting iron core 3 is located at substantially the same position as the lower end surface of the permanent magnet 1 of the second fixed yoke 5b.

lの増加と作動電圧Vの関係を第7図に示す。第7図に
おいて、縦軸は作動電圧Vを、横軸は隙間lを示してい
るが隙間lが増えていく程作動電圧Vが高くなってい
る。しかしその相関関係は直線的ではなくl=o付近で
はlのわずかの変化でVは大きく変化するがl=l4
6近辺ではVの変化は非常に少なくなっている。これ
はl=o近辺ではlの変化で調整磁気回路9の磁気抵抗
が大きく変化するがlが大きくなると、寸法変化の割に
は、すでに磁気抵抗がかなり大きくて、磁束Φの変化
はほとんど発生しないためである。
The relationship between the increase of 1 and the operating voltage V is shown in FIG. In FIG. 7, the vertical axis shows the operating voltage V and the horizontal axis shows the gap 1, but the operating voltage V becomes higher as the gap 1 increases. However, the correlation is not linear, and in the vicinity of l = o, V changes greatly with a slight change of l, but l = l 4 ~
The change in V is very small near l 6 . This is because in the vicinity of l = o, the magnetic resistance of the adjusting magnetic circuit 9 greatly changes due to the change of l, but when l becomes large, the magnetic resistance is already considerably large for the dimensional change, and the change of the magnetic flux Φ 2 is almost constant. This is because it does not occur.

これらから分る様に、作動電圧Vの必要な調整が第7図
に示すVからV2程度と低い場合、わずかのlの寸法
幅に規制しなければならない。逆にVがV1〜V2と同じ
幅としてV3からV4程度と高い場合はかなりのlの許容
がある。このことは、調整作動電圧Vが低い時は、隙間
l寸法がわずかに変化するだけで作動電圧Vが大きく変
化することになるので、寸法精度を上げる必要があり非
常に調整しにくいということになる。しかも本従来例の
様に調整鉄芯8のおすネジと、第2固定継鉄5bのめす
ネジとのガタつき程度でも作動電圧Vが変わることにな
り、ガタつきのない様にして調整しなければならない。
As can be seen from these, when the necessary adjustment of the operating voltage V is as low as V 1 to V 2 shown in FIG. 7, it is necessary to restrict the dimension width to a slight l. On the contrary, when V has the same width as V 1 to V 2 and is as high as V 3 to V 4 , there is a considerable allowance of 1. This means that when the adjusted operating voltage V is low, the operating voltage V changes greatly even if the size of the gap l changes slightly, and therefore it is necessary to improve the dimensional accuracy and it is very difficult to adjust. Become. Moreover, as in this conventional example, the operating voltage V changes even if there is some play between the male screw of the adjusting iron core 8 and the female screw of the second fixed yoke 5b, and adjustment must be made without rattling. I won't.

一方、逆に調整作動電圧Vが高い場合は、同じ調整電圧
幅でもVが低い場合に比較し、隙間lの許容差が大きく
異なることになる。同じ作動電圧Vの調整幅でも高,低
により隙間lの許容幅が異なり、やはり調整作業がやり
にくくなる。
On the other hand, when the adjustment operating voltage V is high, on the other hand, the tolerance of the gap l is significantly different from the case where V is low even with the same adjustment voltage width. Even if the adjustment width of the operating voltage V is the same, the allowable width of the gap 1 differs depending on whether the adjustment voltage is high or low, which makes the adjustment work difficult.

以上、従来の調整方法は、非常に精度を要求される場合
と比較的許容度が大きい場合とが混在しており、調整作
業が非常に困難であるという問題点を有していた。
As described above, the conventional adjustment method has a problem that the adjustment work is extremely difficult because there are both cases where very high accuracy is required and cases where the tolerance is relatively large.

しかも、調整鉄芯8が第2固定継鉄5bより出張って固
定されることになるので、外部から応力が加わることに
より隙間lが変化し、作動電圧Vの特性がかわってしま
うという問題点を有していた。
In addition, since the adjusting iron core 8 is fixed by traveling from the second fixed yoke 5b, the gap 1 changes due to external stress, and the characteristic of the operating voltage V is changed. Had.

本発明は上記の問題点に対して、作動電圧Vと隙間lの
関係を直線的に近くして、作動電圧Vが低くても高くて
も調整がしやすい電磁アクチェータを提供するものであ
る。
In order to solve the above problems, the present invention provides an electromagnetic actuator in which the relationship between the operating voltage V and the gap 1 is linearly approximated so that the operating voltage V can be easily adjusted regardless of whether the operating voltage V is low or high.

問題点を解決するための手段 上記問題点を解決するために本発明は、永久磁石、調整
鉄芯を挿入した固定吸着対、可動鉄芯、固定継鉄間に形
成した磁気回路と、この磁気回路を励磁する電磁コイル
とを備え、前記磁気回路の前記固定吸着体を通る部分を
前記固定吸着体そのものを通る分流磁気回路と一端前記
固定吸着体から前記調整鉄芯を通り再び前記固定吸着体
を通る第1調整磁気回路に分けて形成するとともに、前
記可動鉄芯を含まない前記固定吸着体,前記調整鉄芯,
前記固定継鉄,前記永久磁石間に第2調整磁気回路を設
けるものである。
Means for Solving the Problems In order to solve the above problems, the present invention relates to a permanent magnet, a fixed attraction pair with an adjusting iron core inserted, a magnetic circuit formed between a movable iron core and a fixed yoke, and a magnetic circuit An electromagnetic coil that excites a circuit, and a part of the magnetic circuit that passes through the fixed adsorbent is a shunt magnetic circuit that passes through the fixed adsorbent itself and one end of the fixed adsorbent that passes through the adjusting iron core and the fixed adsorbent again. A first adjustment magnetic circuit passing through the first adjustment magnetic circuit, and the fixed adsorbent not including the movable iron core, the adjustment iron core,
A second adjusting magnetic circuit is provided between the fixed yoke and the permanent magnet.

作 用 本発明は、上記した構成によって第1調整磁気回路と第
2調整磁気回路の2つの調整磁気回路の磁気抵抗を、調
整鉄芯の固定吸着体への挿入量を変化させることにより
同時に調整し、結果として可動鉄芯と固定吸着体を通る
磁束を調整するものである。
Operation According to the present invention, the magnetic resistances of the two adjusting magnetic circuits, the first adjusting magnetic circuit and the second adjusting magnetic circuit, are adjusted at the same time by changing the insertion amount of the adjusting iron core into the fixed adsorbing body by the above-mentioned configuration. As a result, the magnetic flux passing through the movable iron core and the fixed adsorbent is adjusted.

しかも、挿入量と磁束の関係が直線的になる、すなわち
言いかえると挿入量と作動電圧の関係が直線的になるこ
とより、作動電圧調整が容易となるのである。
Moreover, since the relationship between the insertion amount and the magnetic flux becomes linear, in other words, the relationship between the insertion amount and the operating voltage becomes linear, the operating voltage adjustment becomes easy.

実施例 以下本発明の一実施例について、図面を参照しながら説
明する。
Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例における電磁アクチェータの断
面図を示すものである。
FIG. 1 is a sectional view of an electromagnetic actuator according to an embodiment of the present invention.

第1図において、永久磁石1は厚み方向に着磁するとと
もにその方向に貫通孔1aを設けている。その上には磁
性材料製の固定吸着体2を設けており、その永久磁石1
側の前記貫通孔1aに対応した位置にめすネジ部を有し
た挿入孔2aをあけており、磁性材料製の可動鉄芯3が
吸着面4で吸着離脱動作できる様になっている。また固
定吸着体2の挿入孔2aには、磁性材料製のおすネジ部
を持った調整鉄芯8が前記永久磁石1の貫通孔1aを貫
通する形で挿入されるネジ止めしているとともにその挿
入量Lを可変できる様にしている。
In FIG. 1, the permanent magnet 1 is magnetized in the thickness direction and has a through hole 1a provided in that direction. A fixed adsorbent 2 made of a magnetic material is provided on the permanent magnet 1.
An insertion hole 2a having a female screw portion is formed at a position corresponding to the through hole 1a on the side, so that the movable iron core 3 made of a magnetic material can be adsorbed and detached by the adsorption surface 4. Further, an adjusting iron core 8 having a male screw portion made of a magnetic material is screwed into the insertion hole 2a of the fixed attracting body 2 so as to pass through the through hole 1a of the permanent magnet 1 and screwed. The insertion amount L is variable.

磁性材料製の第1固定継鉄5a、第2固定継鉄5bと永
久磁石1、調整鉄芯8を挿入した固定吸着体2、可動鉄
芯3とで永久磁石1の磁気回路6を形成し可動鉄芯3を
固定吸着体2に吸着面4で吸着保持している。駆動用の
電磁コイル7はその中央部を可動鉄芯3が上下に摺動す
る様案内するとともに、前記磁気回路6を励磁する様に
なっている。第2固定継鉄5bの永久磁石1の貫通孔1
aに対応する位置には、貫通孔1aと同程度の大きさの
孔12が設けられ、外部より調整鉄芯8を回転できる様
にしている。
A magnetic circuit 6 of the permanent magnet 1 is formed by the first fixed yoke 5a and the second fixed yoke 5b made of magnetic material, the permanent magnet 1, the fixed attracting body 2 into which the adjusting iron core 8 is inserted, and the movable iron core 3. The movable iron core 3 is adsorbed and held on the fixed adsorbent 2 by the adsorbing surface 4. The driving electromagnetic coil 7 guides the center of the movable iron core 3 so that the movable iron core 3 slides up and down, and excites the magnetic circuit 6. Through hole 1 of permanent magnet 1 of second fixed yoke 5b
A hole 12 having the same size as the through hole 1a is provided at a position corresponding to a so that the adjusting iron core 8 can be rotated from the outside.

ここで、磁気回路6は、固定吸着体2を通る部分では固
定吸着体2そのものを通る分流磁気回路12と、固定吸
着体2から一端調整鉄芯8を通り再び固定吸着体2を通
過する第1調整磁気回路13とに分かれている。
Here, the magnetic circuit 6 includes a shunt magnetic circuit 12 that passes through the fixed adsorbent 2 itself in a portion that passes through the fixed adsorbent 2, and a magnetic flux that passes through the fixed adsorbent 2 from the fixed adsorbent 2 through the one-end adjusting iron core 8 again. 1 adjustment magnetic circuit 13.

一方、更に永久磁石1、第2固定継鉄5b、調整鉄芯
8、固定吸着体2の間で可動鉄芯3を含まない第2調整
磁気回路9が形成されている。可動鉄芯3の先端にはバ
ネ受け10が装着されており、第1固定継鉄5aとの間
に圧縮バネ11が設けられている。
On the other hand, a second adjusting magnetic circuit 9 which does not include the movable iron core 3 is further formed between the permanent magnet 1, the second fixed yoke 5b, the adjusting iron core 8 and the fixed attracting body 2. A spring receiver 10 is attached to the tip of the movable iron core 3, and a compression spring 11 is provided between the movable iron core 3 and the first fixed yoke 5a.

さて以上の様な構成において、その作動原理は基本的に
は従来例で述べたと同一であるので省略するが従来例と
は異なるのは磁気回路6を通る磁束Φが、固定吸着体
2を通る時、固定吸着体2そのものを通る分流磁気回路
12の磁束Φaと一端調整鉄芯3を流れてから再び固
定吸着体2を流れる第1調整磁気回路13のΦbに分
かれることである。しかもこの磁束Φbが調整鉄芯8
の挿入量Lによって変化、すなわち可変できる点であ
る。
In the configuration described above, the operating principle is basically the same as that described in the conventional example, and therefore the description thereof is omitted. However, the difference from the conventional example is that the magnetic flux Φ 1 passing through the magnetic circuit 6 causes the fixed adsorbent 2 to move. when, it divides into [Phi 1 b of the first adjustment magnetic circuit 13 through the magnetic flux [Phi 1 a and one adjustment fixed adsorbent 2 again iron core 3 from flowing shunt magnetic circuit 12 through the fixed adsorbent 2 itself is through is there. Moreover, this magnetic flux Φ 1 b adjustment iron core 8
This is a point that can be changed, that is, changed according to the insertion amount L of.

このことは、磁気回路6を流れる磁束Φが、調整鉄芯
8の挿入量Lの可変により、従来例と同様な第2調整磁
気回路9の磁束Φの変化の影響を受けるだけでなく、
更に磁束Φbの変化により直接Φ自身も変化を受け
ることを意味している。
This means that the magnetic flux Φ 1 flowing through the magnetic circuit 6 is not only affected by the change in the magnetic flux Φ 2 of the second adjusting magnetic circuit 9 similar to the conventional example due to the change in the insertion amount L of the adjusting iron core 8. ,
Further, it means that Φ 1 itself is directly changed by the change of the magnetic flux Φ 1 b.

以下その動作について図面を参照しながら説明する。第
2図は本実施例の調整鉄芯8と固定吸着体2に設けた挿
入孔2aの先端部との距離すなわち挿入量Lを変化して
いった時の図を示している。第2図において(A)は挿入
量L=Lo≒0の状態であり、(B)はL=L1、(C)はL=
2とした時を示している。各々第2調整磁気回路9を
通る磁束をΦ2、磁気回路6を通る磁束をΦ1、第1調整
磁気回路13を通る磁束をΦ1b、分流磁気回路12を
通る磁束をΦ1aとすると、Φ1=Φ1a+Φ2bとなる。
一方、永久磁石1によるトータルの磁束をΦとすると、
Φ=Φ1+Φ2となる。但し分かりやすいようにこれらの
磁気回路以外への漏れ磁束は無視するものとする。
The operation will be described below with reference to the drawings. FIG. 2 shows a diagram when the distance between the adjusted iron core 8 of this embodiment and the tip of the insertion hole 2a provided in the fixed adsorption body 2, that is, the insertion amount L is changed. In FIG. 2, (A) shows a state of insertion amount L = L o ≈0, (B) shows L = L 1 , and (C) shows L =.
It is shown when L 2 is set. The magnetic flux passing through the second adjusting magnetic circuit 9 is Φ 2 , the magnetic flux passing through the magnetic circuit 6 is Φ 1 , the magnetic flux passing through the first adjusting magnetic circuit 13 is Φ 1 b, and the magnetic flux passing through the shunt magnetic circuit 12 is Φ 1 a. Then, Φ 1 = Φ 1 a + Φ 2 b.
On the other hand, if the total magnetic flux from the permanent magnet 1 is Φ,
Φ = Φ 1 + Φ 2 . However, for the sake of clarity, the leakage magnetic flux to other than these magnetic circuits will be ignored.

ここで詳細に各々の条件で磁束がどう変化するかをみる
と、第2図(A)の状態すなわちL=L0=Oでは、第2調
整磁気回路9での調整鉄芯8と第2固定継鉄5bとの間
の磁気ギャップが非常に大きく磁気抵抗が大きいため、
磁束Φ2は非常に小さな値となる。一方逆に、第1調整
磁気回路13を流れる磁束Φ1bは固定吸着体2の挿入
孔2aの最奥部と調整鉄芯8の先端部との距離はゼロの
ため磁気ギャップもゼロに等しくなり、磁気抵抗が非常
に少なくなり、Φ1bも最大の値となる。分流磁気回路
12を通る磁束Φ1aは固定吸着体2の断面積から、挿
入孔2aの断面積を引いた面積で決定される磁束量とな
っている。
Looking in detail at how the magnetic flux changes under each condition, in the state of FIG. 2 (A), that is, L = L 0 = 0 , the adjustment iron core 8 and the second adjustment iron core 8 in the second adjustment magnetic circuit 9 are changed. Since the magnetic gap between the fixed yoke 5b is very large and the magnetic resistance is large,
The magnetic flux Φ 2 has a very small value. Meanwhile Conversely, the distance between the deepest portion and the distal end portion of the adjusting iron core 8 of the first magnetic flux [Phi 1 b through the adjustment magnetic circuit 13 is fixed adsorbent 2 of the insertion hole 2a is equal to zero is also a magnetic gap for zero Therefore, the magnetic resistance becomes very small, and Φ 1 b becomes the maximum value. Flux [Phi 1 a through the shunt magnetic circuit 12 from the cross-sectional area of the fixed adsorbent 2, and has a magnetic flux amount determined by the area obtained by subtracting the cross-sectional area of the insertion hole 2a.

次に第2図(B)状態、すなわちL=Lでは、調整鉄芯
8と第2固定継鉄5bとが近づき両者間の磁気ギャップ
がL=Oの場合より小さくなり、第2調整磁気回路9の
磁気抵抗が小さくなって磁束が通りやすくなりΦ2は増
加する。一方、Φ1bは、固定吸着体2の挿入孔2aの
最奥部と調整鉄芯8の先端との距離が増加するため第1
調整磁気回路13の磁気抵抗が増えて、L=L0≒Oの
場合に比べて磁気抵抗増加分に応じた値に小さくなる。
逆にその減少分は磁束Φ2にプラスした形で、第2調整
磁気回路9を流れることになる。一方Φ1aは、第2調
整磁気回路9の影響を受けるまでに到らず、L=L0
Oの場合とあまり変らない。
Next, in the state shown in FIG. 2 (B), that is, L = L 1 , the adjusting iron core 8 and the second fixed yoke 5b approach each other, and the magnetic gap between them becomes smaller than in the case of L = O. The magnetic resistance of the circuit 9 becomes small and the magnetic flux easily passes, and Φ 2 increases. Meanwhile, [Phi 1 b includes a first order distance increases the deepest portion of the insertion hole 2a of the fixed adsorbent 2 and the tip of the adjusting iron core 8
The magnetic resistance of the adjusting magnetic circuit 13 increases, and becomes smaller than the case of L = L 0 ≈O to a value corresponding to the increase in magnetic resistance.
On the contrary, the reduced amount flows through the second adjusting magnetic circuit 9 in the form of being added to the magnetic flux Φ 2 . On the other hand, Φ 1 a is not affected by the second adjusting magnetic circuit 9 and L = L 0
Not much different from the case of O.

更に第2図(C)の状態すなわちL=Lでは、調整鉄芯
8と第2固定継鉄5bとの磁気ギャップが最小となり、
第2調整磁気回路9の磁気抵抗が非常に小さくなり、磁
束が通りやすくなる。すなわちL=L0≒O,L=L1
に比較してΦ2は最大となる。一方Φ1bは固定吸着体2
と調整鉄芯8との距離が非常に大きくなり、第1調整磁
気回路13の磁気抵抗が大きくなって、最小となりΦ1
bはゼロ近くなる。そしてその減少分はΦ2にプラスさ
れ、第2調整磁気回路9を流れることになる。更に分流
磁気回路12を流れる磁束Φ1aの一部は、第2調整磁
気回路9の磁気抵抗が非常に小さくなり磁束を通しやす
くなった影響を受け、Φにプラスする形で流れてしま
い、Φ1aはL=L≒O,L=L時よりも小さくな
る。
Further, in the state of FIG. 2 (C), that is, L = L 2 , the magnetic gap between the adjusting iron core 8 and the second fixed yoke 5b becomes the minimum,
The magnetic resistance of the second adjusting magnetic circuit 9 becomes very small, and the magnetic flux easily passes through. That is, Φ 2 is maximum compared to when L = L 0 ≈O and L = L 1 . On the other hand, Φ 1 b is the fixed adsorbent 2
And the adjusting iron core 8 become very large, the magnetic resistance of the first adjusting magnetic circuit 13 becomes large, and becomes the minimum Φ 1
b becomes close to zero. Then, the reduced amount is added to Φ 2 and flows through the second adjusting magnetic circuit 9. Further, a part of the magnetic flux Φ 1 a flowing through the shunt magnetic circuit 12 is affected by the fact that the magnetic resistance of the second adjusting magnetic circuit 9 becomes extremely small and the magnetic flux easily passes, and flows in a form that adds to Φ 2. , [Phi 1 a is L = L 0 ≒ O, smaller than at L = L 1.

なお、この様な動作を保障するためには、固定吸着体2
の磁路断面積は挿入孔2aを設けることにより、挿入孔
2aが無い場合と比較して、固定吸着体2を通る磁束が
変化すなわち減少するだけの挿入孔2aの断面積との関
係が成立していないければならない。
In order to guarantee such operation, the fixed adsorbent 2
By providing the insertion hole 2a, the magnetic path cross-sectional area of 1 has a relationship with the cross-sectional area of the insertion hole 2a where the magnetic flux passing through the fixed adsorbent 2 changes or decreases as compared with the case where the insertion hole 2a is not provided. I have to do it.

ここで上述の磁束変化の詳細を以下図を用いて説明す
る。なお、各条件での磁束は例えば、L=L1の時のΦ1
b(L1)と表記するものとする。
Here, details of the above-mentioned change in magnetic flux will be described with reference to the drawings. Incidentally, the magnetic flux in each condition, for example, [Phi 1 at the time of L = L 1
It shall be denoted as b (L 1 ).

第3図(A)〜(D)において縦軸は各条件の磁束量を、横軸
は調整鉄芯8の固定吸着体2への挿入量Lを示してい
る。
In FIGS. 3A to 3D, the vertical axis represents the amount of magnetic flux under each condition, and the horizontal axis represents the amount L of the adjusting iron core 8 inserted into the fixed adsorbent 2.

第3図(A)の実線18は、分流磁気回路12の磁束Φ1
の変化を示しており、Lの増加とともに、L0〜L1では
Φ1aはほとんど変らないが、L1〜L2で大きく減少し
ていく。Φ1a(L0)からΦ1a(L2)までの減少量
は、後述の第3図(C)中の一点鎖線20のように磁束Φ2
の一部として流れることになり、Φ2を増加させること
となる。
The solid line 18 in FIG. 3 (A) indicates the magnetic flux Φ 1 a of the shunt magnetic circuit 12.
Φ 1 a hardly changes in L 0 to L 1 as L increases, but decreases greatly in L 1 to L 2 . The amount of decrease from Φ 1 a (L 0 ) to Φ 1 a (L 2 ) is the magnetic flux Φ 2 as shown by the alternate long and short dash line 20 in FIG.
Flow as a part of, and increase Φ 2 .

次に第3図(B)の実線19は、第1調整磁気回路13の
磁束Φ1bの変化を示しており、L=L0≒Oの時最大と
なり以降Lの増加とともに減少している。Φ1b(L0)か
らΦ1b(L2)までの減少量は、前述と同様第3図(C)の
点線21に示す様にΦ2の一部となってくる。
Next, the solid line 19 in FIG. 3 (B) shows the change of the magnetic flux Φ 1 b of the first adjusting magnetic circuit 13, which becomes the maximum when L = L 0 ≈O and thereafter decreases with the increase of L. . The reduction amount from Φ 1 b (L 0 ) to Φ 1 b (L 2 ) becomes a part of Φ 2 as shown by the dotted line 21 in FIG.

第3図(C)の実線22は第2調整磁気回路9の時束Φ2
変化を示しており、これは前述のΦ1aの減少分を示す
一点鎖線20とΦ1bの減少分を示す点線21を加えた
量となってくる。
The solid line 22 in FIG. 3 (C) shows the change of the time flux Φ 2 of the second adjusting magnetic circuit 9, which is the one-dot chain line 20 showing the decrease of Φ 1 a and the decrease of Φ 1 b. It becomes the amount to which the dotted line 21 indicating is added.

更に第3図(D)における実線23は磁気回路6を通る時
束Φ1の変化を示しており、Φ1=Φ1a+Φ1bの関係よ
り、Φ1aを示す点線24とΦ1bを示す一点鎖線25を
加えたものとなる。
Further, the solid line 23 in FIG. 3 (D) shows the change of the flux Φ 1 when passing through the magnetic circuit 6, and from the relationship of Φ 1 = Φ 1 a + Φ 1 b, the dotted line 24 and Φ 1 b indicating Φ 1 a Is added with the alternate long and short dash line 25.

なおここで、Φ1とΦ2とを加えたものが永久磁石1によ
るトータルのΦとなるが第3図(C),(D)からも理解でき
る様にΦ1とΦ2は、その他への漏れ磁束がないものと仮
定しているので、Φ=Φ1+Φ2は一定となってくる。
Here, the sum of Φ 1 and Φ 2 is the total Φ by the permanent magnet 1, but as can be understood from FIGS. 3C and 3D, Φ 1 and Φ 2 Since it is assumed that there is no leakage flux of, Φ = Φ 1 + Φ 2 becomes constant.

さて、以上の様に本実施例は可動鉄芯3と固定吸着体2
間の吸着保持力Fを決定する磁気回路6の磁束Φ1を、
第3図(D)に示す様な形で調整鉄芯8の挿入量Lを変化
させることで調節できることを示している。しかも、L
とΦ1の関係はほぼ直線的な関係となってくる。すなわ
ち、挿入量Lと吸着保持力Fの変化の関係がほぼ直線的
になることになるので、作動電圧Vとの関係もほぼ直線
的になることを意味している。
As described above, the movable iron core 3 and the fixed adsorbent 2 are used in this embodiment.
The magnetic flux Φ 1 of the magnetic circuit 6 that determines the attraction holding force F between
It shows that the adjustment can be made by changing the insertion amount L of the adjusting iron core 8 in the form as shown in FIG. 3 (D). Moreover, L
The relation between and Φ 1 is almost linear. That is, it means that the relationship between the insertion amount L and the change in the suction holding force F is substantially linear, and thus the relationship with the operating voltage V is also substantially linear.

第4図において、横軸に挿入量Lを、縦軸を作動電圧V
にして、本実施例の挿入量Lと作動電圧Vの関係を示し
ている。図から理解できる様に、本実施例では作動電圧
Vの必要な調整がV1からV2程度と低い場合でも、逆に
1からV2と同じ幅としてVがV3からV4のように高い
場合でも、挿入量Lの規制量はほとんど変らない。しか
も従来例の様に、L寸法がわずかに変化するだけで作動
電圧Vが大幅に変化する様なこともないので、調整鉄芯
8のネジ部のガタつきがあっても作動電圧Vの変化はほ
とんど見られないことになる。
In FIG. 4, the horizontal axis represents the insertion amount L and the vertical axis represents the operating voltage V.
Thus, the relationship between the insertion amount L and the operating voltage V in this embodiment is shown. As can be seen, as even if necessary adjustment of the operating voltage V in the present embodiment is low and V 2 degrees from V 1, V as the same width from V 1 and V 2 in the opposite from V 3 of V 4 Even when it is extremely high, the regulation amount of the insertion amount L is almost unchanged. Moreover, unlike the conventional example, the operating voltage V does not change significantly even if the L dimension slightly changes, so that the operating voltage V changes even if the screw portion of the adjusting iron core 8 is loose. Will be rarely seen.

なお、調整鉄芯8の下端部が第2固定継鉄5bの端面か
ら飛び出す、すなわちL=L2以上に挿入量を変化させ
ることは可能だが、この場合第2固定継鉄5bと調整鉄
芯8との磁気ギャップはほとんど変化しないので作動電
圧Vの調整範囲も狭くなり、調整効果が少なくなる。そ
こで通常、挿入量Lは作動電圧Vとの直線関係が維持で
きるL=L0≒O〜L=L2程度で使用している。逆に通
常は構成部品のバラツキを含めてもこの範囲で充分なこ
とが多い。このことは、従来例の様に調整鉄芯8が第2
固定継鉄5bから外部へ出す必要がないことであり、外
力によって調整鉄芯8の調整位置が変化し作動電圧Vの
特性が変化することを防げることにもなる。
It should be noted that the lower end of the adjusting iron core 8 projects from the end face of the second fixed yoke 5b, that is, the insertion amount can be changed to L = L 2 or more, but in this case, the second fixed yoke 5b and the adjusting iron core 5b. Since the magnetic gap with 8 hardly changes, the adjustment range of the operating voltage V is narrowed, and the adjustment effect is reduced. Therefore, the insertion amount L is usually used in the range of L = L 0 ≈O to L = L 2 where the linear relationship with the operating voltage V can be maintained. On the other hand, this range is usually sufficient even if variations in components are included. This is because the adjusting iron core 8 is the second
Since it is not necessary to take the fixed yoke 5b out to the outside, it is possible to prevent the adjustment position of the adjustment iron core 8 from changing due to an external force and the characteristic of the operating voltage V from changing.

なお、上記の調整範囲での調整ができない場合は、圧縮
バネ11の反撥力fを変更する方法との組み合わせで対
応できる。
In addition, when the adjustment within the above-mentioned adjustment range is not possible, it can be dealt with in combination with the method of changing the repulsive force f of the compression spring 11.

発明の効果 以上の様に本発明は、調整鉄芯の固定吸着体への挿入量
を変化させることにより、第1調整磁気回路、第2調整
磁気回路の磁気抵抗を同時に変化させ、結果として可動
鉄芯と固定吸着体とを通る磁束を変化調整できる様にす
るとともに、その磁束と挿入量との相関関係を直線的に
なる様にするものである。これは、挿入量と自己保持型
ソレノイドの作動電圧との相関関係を直線的なものにす
ることであり、挿入量調整により作動電圧の調整が非常
に容易になるという効果となる。
As described above, according to the present invention, the magnetic resistances of the first adjusting magnetic circuit and the second adjusting magnetic circuit are changed at the same time by changing the insertion amount of the adjusting iron core into the fixed adsorbing body, and as a result, the movable magnetic circuit is movable. The magnetic flux passing through the iron core and the fixed adsorbent can be changed and adjusted, and the correlation between the magnetic flux and the insertion amount is made linear. This is to make the correlation between the insertion amount and the operating voltage of the self-holding solenoid linear, and has the effect that the adjustment of the operating voltage becomes very easy by adjusting the insertion amount.

更に、挿入量と作動電圧の関係が急激に変化する様な範
囲を解消することになり、調整鉄芯のガタつき程度で作
動電圧の特性が変わることを防ぐことが可能となる。
Further, the range in which the relationship between the insertion amount and the operating voltage changes abruptly is eliminated, and it is possible to prevent the characteristic of the operating voltage from changing due to the looseness of the adjusting iron core.

また、調整鉄芯に対する外力の印加も防ぐことができ作
動電圧特性の信頼性を高めることができる。
Further, it is possible to prevent the external force from being applied to the adjusted iron core, and it is possible to improve the reliability of the operating voltage characteristic.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の電磁アクチェータの概略構
造を示す断面図、第2図は第1図の固定吸着体付近の断
面図、第3図は同調整鉄芯の挿入量と各々の磁束の関係
を示す図、第4図は同作動電圧と調整鉄芯の挿入量を示
す図、第5図は従来の電磁アクチェータの概略構造を示
す断面図、第6図は、第5図の固定吸着体付近を示した
断面図、第7図は同調整鉄芯と固定吸着体との隙間lと
作動電圧との関係を示す図である。 1……永久磁石、2……固定吸着体、3……可動鉄芯、
6……磁気回路、8……調整鉄芯、9……第2調整磁気
回路、13……第1調整磁気回路。
FIG. 1 is a cross-sectional view showing a schematic structure of an electromagnetic actuator of one embodiment of the present invention, FIG. 2 is a cross-sectional view of the vicinity of the fixed adsorbent of FIG. 1, and FIG. Showing the relationship between the magnetic fluxes, FIG. 4 is a diagram showing the operating voltage and the amount of adjustment iron core inserted, FIG. 5 is a sectional view showing the schematic structure of a conventional electromagnetic actuator, and FIG. 6 is FIG. FIG. 7 is a cross-sectional view showing the vicinity of the fixed adsorbent, and FIG. 7 is a view showing the relationship between the gap l between the adjusted iron core and the fixed adsorbent and the operating voltage. 1 ... Permanent magnet, 2 ... Fixed adsorbent, 3 ... Movable iron core,
6 ... Magnetic circuit, 8 ... Adjusting iron core, 9 ... Second adjusting magnetic circuit, 13 ... First adjusting magnetic circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】永久磁石,調整鉄芯を挿入した固定吸着
体、可動鉄芯、固定継鉄間に形成した磁気回路と、この
磁気回路を励磁する電磁コイルとを備え、前記磁気回路
の固定吸着体を通る部分を前記固定吸着体そのものを通
る分流磁気回路と一端前記固定吸着体から前記調整鉄芯
を通り再び前記固定吸着体を通る第1調整磁気回路に分
けて形成するとともに、前記可動鉄芯を含まない前記固
定吸着体、前記調整鉄芯、前記固定継鉄、前記永久磁石
間に第2調整磁気回路を設けた電磁アクチェータ。
1. A magnetic circuit formed between a permanent magnet, a fixed attracting body having an adjusting iron core inserted therein, a movable iron core, and a fixed yoke, and an electromagnetic coil for exciting the magnetic circuit, the magnetic circuit being fixed. The part passing through the adsorbent is divided into a shunt magnetic circuit passing through the fixed adsorbent itself and a first adjusting magnetic circuit passing from the fixed adsorbent through the adjusting iron core and again passing through the fixed adsorbing body. An electromagnetic actuator in which a second adjusting magnetic circuit is provided between the fixed adsorbent that does not include an iron core, the adjusting iron core, the fixed yoke, and the permanent magnet.
JP61180304A 1986-07-31 1986-07-31 Electromagnetic actuator Expired - Fee Related JPH0648648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61180304A JPH0648648B2 (en) 1986-07-31 1986-07-31 Electromagnetic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61180304A JPH0648648B2 (en) 1986-07-31 1986-07-31 Electromagnetic actuator

Publications (2)

Publication Number Publication Date
JPS6336502A JPS6336502A (en) 1988-02-17
JPH0648648B2 true JPH0648648B2 (en) 1994-06-22

Family

ID=16080865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61180304A Expired - Fee Related JPH0648648B2 (en) 1986-07-31 1986-07-31 Electromagnetic actuator

Country Status (1)

Country Link
JP (1) JPH0648648B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19733193B4 (en) * 1997-08-01 2005-09-08 Carl Zeiss Jena Gmbh Microscope with adaptive optics
DE102009032367B4 (en) * 2009-07-08 2011-04-28 Pierburg Gmbh Electromagnetic actuator for a valve
DE102009032365B4 (en) * 2009-07-08 2011-04-28 Pierburg Gmbh Electromagnetic actuator for a valve

Also Published As

Publication number Publication date
JPS6336502A (en) 1988-02-17

Similar Documents

Publication Publication Date Title
JPH0461305A (en) Bistable solenoid and knitting machine using the same
US6956453B2 (en) Bi-stable magnetic latch
JP3240351B2 (en) Rotary solenoid
US6870285B2 (en) Long stroke linear voice coil actuator with the proportional solenoid type characteristic
JPH0648648B2 (en) Electromagnetic actuator
US4164721A (en) Magnetic actuator for a shutter mechanism
JP3280536B2 (en) Actuator
JP4273249B1 (en) Magnetic flux amount control method, excitation device, and magnetic adsorption device using magnetic flux amount control method
WO2014168109A1 (en) Magnetic spring device
JP3035864B2 (en) Magnetic adsorption device
JP3035863B2 (en) Magnetic fixing device
JPS6348085Y2 (en)
CN112967857B (en) Permanent magnet device
US3177384A (en) Electromagnetic actuator with translatory armature movement
JPH02172206A (en) Solenoid
JPH04286103A (en) Permanent magnet movable type electro-magnet
JPS61290702A (en) Self-holding type solenoid
JPH0246707A (en) Electromagnet
JPH06302428A (en) Variable magnetic field generation set using permanent magnet
JPS61127105A (en) Electromagnet device
JPH04170007A (en) Solenoid actuator
JPS61109910A (en) Magnetic supporting device
JP2005176591A (en) Hybrid motor
KR100283475B1 (en) Propotional solenoid
JPH0343682Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees