JPS633627B2 - - Google Patents

Info

Publication number
JPS633627B2
JPS633627B2 JP57174480A JP17448082A JPS633627B2 JP S633627 B2 JPS633627 B2 JP S633627B2 JP 57174480 A JP57174480 A JP 57174480A JP 17448082 A JP17448082 A JP 17448082A JP S633627 B2 JPS633627 B2 JP S633627B2
Authority
JP
Japan
Prior art keywords
artificial organ
vitamin
glycerin
body fluid
artificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57174480A
Other languages
Japanese (ja)
Other versions
JPS5964058A (en
Inventor
Keinosuke Isono
Keiji Naoi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP57174480A priority Critical patent/JPS5964058A/en
Priority to EP83108834A priority patent/EP0103816B1/en
Priority to US06/530,023 priority patent/US4588407A/en
Priority to DE8383108834T priority patent/DE3378461D1/en
Publication of JPS5964058A publication Critical patent/JPS5964058A/en
Priority to US06/818,878 priority patent/US4634447A/en
Priority to US06/878,059 priority patent/US4643715A/en
Publication of JPS633627B2 publication Critical patent/JPS633627B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、人工臓器およびその製造方法に関す
るものである。詳しく述べると、一過性白血球減
少症が実質的に生じない人工腎蔵、人工肺、血漿
分離装置等の人工臓器およびその製造方法に関す
るものである。 (従来の技術) 従来、人工腎蔵、人工肝臓、人工肺、血漿分離
装置等の人工臓器が使用され、特にその透析等の
物質交換部位においては中空糸膜型、平膜型等の
透析膜として、その優れた透析性、機械的強度、
価格等の点から再生セルロース系のものが広く使
用されている。しかしながら、このような再生セ
ルロース系膜を使用した人工臓器、例えば再生セ
ルロース系の人工腎蔵は、透析操作開始直後に白
血球が一時的に急激に減少するという、いわゆる
一過性白血球減少症(hemodialysis
leukopenia)等の副作用を生体に与え、これが
患者に与える影響には無視し得ないものがある。 (発明が解決しようとする問題点) 一方、最近透過膜として提案されているポリメ
チルメタクリレート、ポリアクリロニトリル、エ
チレン−ビニルアルコール共重合体、ポリカーボ
ネート等の合成高分子膜は、一過性白血球減少症
の発現の程度が前記再生セルロース系のものに比
べると比較的弱いが、これらの合成高分子膜は加
工組立時または使用時の物性、すなわちその機械
的強度、耐熱性、限外濾過率(UFR)等と性能
とのバランスが悪く、使用患者が限定されるだけ
でなく、コスト高となり、使用時にピンホールが
多くなり、また滅菌法が限定される等の問題があ
る。 前記のごとき問題点を解消するために、再生セ
ルロース系膜の表面をヘパリン等を用いて改質す
ることが提案されているが、未だ満足すべき結果
は得られていない。 したがつて、本発明の目的は、改良された人工
臓器およびその製造方法を提供することにある。
本発明の他の目的は、生体に対して副作用の少な
い人工臓器およびその製造方法を提供することに
ある。本発明のさらに他の目的は、一過性白血球
減少症を実質的に生じさせない人工臓器およびそ
の製造方法を提供することにある。 (問題点を解決するための手段) これらの諸目的は、人工臓器内の再生セルロー
ス製中空糸型体液透過膜と、該中空糸型体液透過
膜の体液流通域側面に形成されたビタミンEおよ
びグリセリンの被覆と、該人工臓器内に充填され
た生体に無害な液体とよりなることを特徴とする
オートクレーブ滅菌された人工臓器により達成さ
れる。 また、これらの諸目的は、人工臓器内の体液透
過膜の再生セルロース製中空糸型体液流通域面を
ビタミンEおよびグリセリンの有機溶媒溶液で被
覆し、ついで前記有機溶媒を除去し、さらに生体
に無害な液体を前記流通域側面に接触させ、オー
トクレーブ滅菌処理を施してなる人工臓器の製造
方法によつても達成される。 また、本発明は、有機溶媒が低級アルコールで
ある人工臓器の製造方法である。さらに、本発明
は、有機溶媒中の脂溶性ビタミンの濃度が0.01〜
10w/v%である人工臓器の製造方法である。さ
らに、本発明は有機溶媒溶液中のグリセリンの濃
度が0.1〜10w/v%である人工臓器の製造方法
である。また、本発明は生体に無害な液体が、
水、生理食塩水またはグリセリン水溶液からなる
ものである滅菌された人工臓器およびその製造方
法である。 (作用) 本発明における人工臓器とは、人工腎蔵、人工
肝臓、人工肺、血漿分離装置等があり、好ましく
は人工腎臓である。 つぎに、図面を参照しながら、本発明の一実施
態様を説明する。第1図は、本発明による人工臓
器を人工腎蔵、すなわち中空糸型のダイアライザ
ーに使用した場合の一例を示すものである。この
ダイアライザー1は、両端部付近に透析液用の入
口管2および出口管3をそれぞれ設けてなる筒状
本体4に、多数の中空糸よりなる中空糸束5を挿
入したのち、その両端部をポリウレタン等のポツ
テイング剤6,7で前記筒状本体の両端部ととも
にそれぞれシールしてなる、例えば熱交換器にお
けるシエル・アンド・チユーブ式装置に類似した
構成のものであり、前記筒状本体の両端には血液
用の流入口8および排出口9をそれぞれ備えたヘ
ツダー10,11がそれぞれ当接され、キヤツプ
12,13によりヘツダー10,11と筒状本体
4とがそれぞれ固着されている。しかして、前記
流入口8および排出口9には、人体に接続するチ
ユーブ14,15が連結されている。 しかして、中空糸束5を構成する中空系は、透
析膜であつて、例えば再生セルロース膜であり、
好ましくは銅アンモニア法再生セルロース膜であ
る。 本発明によれば、前記のごとき人工腎蔵の体
液、例えば血液の流通域、すなわち、中空糸型膜
内、ヘツダー10とポツテイング剤6とにより形
成される空間、ヘツダー11とポツテイング剤7
とにより形成される空間に脂溶性ビタミンとグリ
セリンとの有機溶媒溶液を充填する。該溶液を中
空糸型膜内に充分なじませて塗布した後、該溶液
を排出させ、ついで乾燥して有機溶媒を除去し、
さらに、人体に無害な水溶液を流入させて、つい
でこの人工臓器をオートクレーブ滅菌法により滅
菌することにより前記人体に無害な水溶液を体液
透過膜の体液流通域側面に充填した透過膜が得ら
れる。したがつて、使用時には該溶液を排出さ
せ、必要により水洗すればよい。その結果、第2
図に示すように、中空糸膜16の内面に脂溶性ビ
タミンとグリセリンとの混成被膜17が形成され
る。 本発明で使用されるビタミンEとは、脂溶性で
あり、一例を挙げると、例えばα−トコフエロー
ル、β−トコフエロール、γ−トコフエロール、
δ−トコフエロール等のトコフエロール類、α−
トコトリエノール、β−トコトリエノール、γ−
トコトリエノール、δ−トコトリエノール等のト
コトリエノール類等がある。該ビタミンEの膜厚
は0.001〜0.1μm、好ましくは0.002〜0.05μmであ
る。 このようなビタミンEは、濃度0.01〜10w/v
%好ましくは0.05〜2.0w/v%の有機溶媒溶液と
して使用される。また、該溶液中のグリセリンの
濃度は0.1〜10w/v%、好ましくは1〜5w/v
%である。 前記溶液はその後排出除去されるが、排出除去
後10〜80℃、好ましくは15〜30℃の温度で前記ビ
タミンEに対して不活性なガス、例えば空気、窒
素、炭素ガス等を導入して有機溶媒を蒸発除去す
ることにより接触面にビタミンEとグリセリンの
被覆を形成させるものである。 本発明で使用される有機溶媒としては、メタノ
ール、エタノール、n−プロパノール、イソプロ
パノール、n−ブタノール、イソブタノール、
sec−ブタノール、2−エチルヘキサノール等の
アルコール、ジエチルエーテル、酢酸エチル、ア
セトン等があるが、好ましくは低級アルコールで
あり、特にエタノールである。 以上は、主としてダイアライザーである人工腎
臓について説明したが、その他に人工肝臓、人工
肺、血漿分離装置等の人工臓器についても使用で
きることはもちろんである。 (実施例) つぎに、実施例を挙げて本発明をさらに詳細に
説明する。 実施例 1 内径約200μm、外径約220μm、長さ14〜14.5cm
の銅アンモニア再生セルロース中空糸368本を用
い、第1図に示すように、筒状本体1内に挿入
し、両端をポリウレタン系ポツテイング剤6,7
で固定し、さらに両端にヘツダー10,11を取
付け、キヤツプ12,13により固着してダイア
ライザー(人工腎臓)1を作成した。このものの
膜内面積は300cm2であつた。 一方、ビタミンE(DL−α−トコフエロール)
1.0gおよびグリセリン2.0gをエタノール100ml
に溶解してビタミンEおよびグリセリンのエタノ
ール溶液を調製した。前記ダイアライザー1の一
端に50ml用シリンジを接続し、他端を前記ビタミ
ンEの溶液中に浸漬した。該シリンジのプランジ
ヤーを作動させてダイアライザー中にビタミンE
の溶液を充填した。充填後、室温で約5分間放置
した。ついで、前記ダイアライザーを引き上げて
ビタミンE溶液を排出したのちアスピレータを接
続し、25℃の温度で送風乾燥した。さらに乾燥の
完全を期すために60℃のオーブン内に一夜放置し
た。その後、蒸溜水を充填し、この状態のダイア
ライザーをオートクレーブに入れて115℃の温度
で30分間滅菌処理を施した。 実施例 2 実施例1の方法において、ビタミンEおよびグ
リセリンのエタノール溶液中のビタミンEの濃度
を0.1w/v%とした以外は実施例1と同様の方
法によりダイアライザーを製造した。 比較例 比較対照のためにビタミンEおよびグリセリン
のエタノール溶液処理をしない実施例1と同様な
ダイアライザーを単にオートクレーブ処理により
ウエツト化した。 実施例 3 ビタミンE(DL−α−トリコフエロール)をエ
タノール1w/v%およびグリセリン1w/v%の
濃度で溶解させ、得られた溶液中にポリスチレン
板を3分間浸漬し、ついで引上げて室温放置して
完全に乾燥して試料を得た。同様にビタミンEの
0.1w/v%エタノール溶液を用いて試料を得た。
これらの試料および無処理の試料について、血小
板拡張能試験による評価を行なつた。 血小板拡張能試験による評価は、つぎの方法に
よつて行なつた。すなわち、健常人の静脈血4.5
mlを、3.8%クエン酸ナトリウム0.5mlを収容した
ポリプロピレン製シリンジで採血し、これをポリ
プロピレン製試験管に移し、800r.p.m.で5分間
遠心し、得られたPRPに希釈液(生食:3.8%で
クエン酸ナトリウム=9:1)を加えて、血小板
浮遊液を作つた。この液を試料(厚さ0.4mmの板)
に滴下して、一定時間放置して血小板を付着、拡
張させた。これを2%グルタルアルデヒトで固定
し、エタノール系列で段階脱水し、乾燥後電子顕
微鏡で観察した。評価法は、0.11mm2に付着した血
小板数とその形態変化をみた。形態変化は、下記
の3種に分類した。 型:血小板正常形態である円盤形から球状化し
て3〜4本の偽足を出したもので、材料面との
粘着が比較的弱いと考えられるもの。 型:数本以上の偽足を伸ばして、偽足の半分ま
で胞体を拡げたもので、材料面に強く粘着した
と思われるもの。 型:偽足の長さの半分以上に薄い胞体を拡げた
ものが、ほぼ完全に胞体を拡張して類円系を呈
し材料面に完全に粘着したと思われるもの。 試験結果を第1表に示す。
(Industrial Application Field) The present invention relates to an artificial organ and a method for manufacturing the same. More specifically, the present invention relates to artificial organs such as artificial kidneys, artificial lungs, and plasma separation devices that do not substantially cause transient leukopenia, and to methods for producing the same. (Prior art) Artificial organs such as artificial kidneys, artificial livers, artificial lungs, and plasma separation devices have been used in the past, and dialysis membranes such as hollow fiber membrane types and flat membrane types have been used in material exchange sites such as dialysis. As its excellent dialysis properties, mechanical strength,
Regenerated cellulose-based materials are widely used due to their cost and other considerations. However, artificial organs using such regenerated cellulose-based membranes, such as regenerated cellulose-based artificial kidneys, suffer from so-called transient leukopenia (hemodialysis), in which the number of white blood cells decreases temporarily and rapidly immediately after the start of dialysis.
leukopenia) and other side effects on living organisms, and the impact this has on patients cannot be ignored. (Problems to be Solved by the Invention) On the other hand, synthetic polymer membranes such as polymethyl methacrylate, polyacrylonitrile, ethylene-vinyl alcohol copolymer, and polycarbonate, which have recently been proposed as permeable membranes, have been proposed to prevent transient leukopenia. Although the degree of expression of ) etc. and performance, which not only limits the number of patients who can use it, but also increases cost, causes many pinholes during use, and limits sterilization methods. In order to solve the above-mentioned problems, it has been proposed to modify the surface of the regenerated cellulose membrane using heparin or the like, but satisfactory results have not yet been obtained. Accordingly, an object of the present invention is to provide an improved artificial organ and a method for manufacturing the same.
Another object of the present invention is to provide an artificial organ and a method for producing the same that have fewer side effects on living organisms. Still another object of the present invention is to provide an artificial organ that does not substantially cause transient leukopenia, and a method for manufacturing the same. (Means for Solving the Problems) These objectives are to provide a hollow fiber body fluid permeable membrane made of regenerated cellulose in an artificial organ, and vitamin E and This is achieved by an autoclaved artificial organ characterized by being coated with glycerin and filled with a liquid harmless to living organisms. In addition, these purposes are achieved by coating the regenerated cellulose hollow fiber body fluid flow area surface of a body fluid permeable membrane in an artificial organ with an organic solvent solution of vitamin E and glycerin, then removing the organic solvent, and then applying it to a living body. This can also be achieved by a method for manufacturing an artificial organ, which involves bringing a harmless liquid into contact with the side surface of the flow area and subjecting it to autoclave sterilization. Further, the present invention is a method for producing an artificial organ in which the organic solvent is a lower alcohol. Furthermore, the present invention provides that the concentration of fat-soluble vitamins in the organic solvent is from 0.01 to
This is a method for manufacturing an artificial organ with a concentration of 10 w/v%. Furthermore, the present invention is a method for producing an artificial organ, in which the concentration of glycerin in the organic solvent solution is 0.1 to 10 w/v%. In addition, the present invention provides that the liquid that is harmless to living organisms is
A sterilized artificial organ made of water, physiological saline, or an aqueous glycerin solution, and a method for producing the same. (Function) The artificial organ in the present invention includes an artificial kidney, an artificial liver, an artificial lung, a plasma separation device, etc., and preferably an artificial kidney. Next, one embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an example in which the artificial organ according to the present invention is used in an artificial kidney storage device, that is, a hollow fiber type dialyzer. This dialyzer 1 is constructed by inserting a hollow fiber bundle 5 made of a large number of hollow fibers into a cylindrical body 4, which has an inlet pipe 2 and an outlet pipe 3 for dialysate near both ends. It has a structure similar to a shell-and-tube type device in a heat exchanger, for example, in which both ends of the cylindrical body are sealed with potting agents 6 and 7 such as polyurethane, and both ends of the cylindrical body are sealed. Headers 10 and 11 each having an inlet 8 and an outlet 9 for blood are brought into contact with the headers 10 and 11, respectively, and the headers 10 and 11 are fixed to the cylindrical body 4 by caps 12 and 13, respectively. Tubes 14 and 15 connected to the human body are connected to the inlet 8 and the outlet 9. Therefore, the hollow system constituting the hollow fiber bundle 5 is a dialysis membrane, for example, a regenerated cellulose membrane,
Preferably, it is a cuprammonium regenerated cellulose membrane. According to the present invention, the circulation area of body fluids such as blood in the artificial kidney storage, that is, the space formed by the header 10 and the potting agent 6, the space formed by the header 10 and the potting agent 7, the header 11 and the potting agent 7, etc.
The space formed by this is filled with an organic solvent solution of fat-soluble vitamins and glycerin. After applying the solution to the interior of the hollow fiber membrane, the solution is discharged, and then dried to remove the organic solvent.
Furthermore, by flowing an aqueous solution that is harmless to the human body and then sterilizing the artificial organ by autoclave sterilization, a permeable membrane in which the side surface of the body fluid flow region of the body fluid permeable membrane is filled with the aqueous solution that is harmless to the human body can be obtained. Therefore, during use, the solution may be drained and washed with water if necessary. As a result, the second
As shown in the figure, a mixed coating 17 of fat-soluble vitamins and glycerin is formed on the inner surface of the hollow fiber membrane 16. The vitamin E used in the present invention is fat-soluble, and examples include α-tocopherol, β-tocopherol, γ-tocopherol,
Tocopherols such as δ-tocopherol, α-
Tocotrienol, β-tocotrienol, γ-
There are tocotrienols such as tocotrienol and δ-tocotrienol. The thickness of the vitamin E film is 0.001 to 0.1 μm, preferably 0.002 to 0.05 μm. Such vitamin E has a concentration of 0.01 to 10w/v
%, preferably 0.05 to 2.0 w/v%, as a solution in an organic solvent. Further, the concentration of glycerin in the solution is 0.1 to 10 w/v%, preferably 1 to 5 w/v%.
%. The solution is then discharged and removed, and after the discharge and removal, a gas inert to the vitamin E, such as air, nitrogen, carbon gas, etc., is introduced at a temperature of 10 to 80°C, preferably 15 to 30°C. By evaporating and removing the organic solvent, a coating of vitamin E and glycerin is formed on the contact surface. Examples of organic solvents used in the present invention include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol,
Examples include alcohols such as sec-butanol and 2-ethylhexanol, diethyl ether, ethyl acetate, and acetone, but lower alcohols are preferred, and ethanol is particularly preferred. The above explanation has mainly been about an artificial kidney, which is a dialyzer, but it goes without saying that it can also be used for other artificial organs such as an artificial liver, an artificial lung, and a plasma separation device. (Example) Next, the present invention will be described in further detail by giving examples. Example 1 Inner diameter approximately 200 μm, outer diameter approximately 220 μm, length 14-14.5 cm
368 copper ammonia regenerated cellulose hollow fibers were inserted into the cylindrical body 1 as shown in FIG.
Then, headers 10 and 11 were attached to both ends, and the caps 12 and 13 were used to secure the dialyzer (artificial kidney) 1. The inner membrane area of this product was 300 cm 2 . On the other hand, vitamin E (DL-α-tocopherol)
1.0g and 2.0g of glycerin in 100ml of ethanol
An ethanol solution of vitamin E and glycerin was prepared by dissolving it in A 50 ml syringe was connected to one end of the dialyzer 1, and the other end was immersed in the vitamin E solution. Activate the plunger of the syringe to add vitamin E into the dialyzer.
It was filled with a solution of After filling, the container was left at room temperature for about 5 minutes. Next, the dialyzer was pulled up to discharge the vitamin E solution, an aspirator was connected, and the dialyzer was air-dried at a temperature of 25°C. Furthermore, in order to ensure complete drying, it was left in an oven at 60°C overnight. Thereafter, distilled water was filled, and the dialyzer in this state was placed in an autoclave and sterilized at a temperature of 115°C for 30 minutes. Example 2 A dialyzer was manufactured in the same manner as in Example 1 except that the concentration of vitamin E in the ethanol solution of vitamin E and glycerin was 0.1 w/v%. Comparative Example For comparison purposes, a dialyzer similar to Example 1 without treatment with an ethanol solution of vitamin E and glycerin was simply wetted by autoclaving. Example 3 Vitamin E (DL-α-trichopherol) was dissolved at a concentration of 1 w/v % ethanol and 1 w/v % glycerin, and a polystyrene plate was immersed in the resulting solution for 3 minutes, then taken out and left at room temperature. A sample was obtained by leaving it to dry completely. Similarly, vitamin E
Samples were obtained using a 0.1 w/v% ethanol solution.
These samples and untreated samples were evaluated by a platelet dilatation test. Evaluation by platelet dilatation test was performed by the following method. That is, the venous blood of a healthy person is 4.5
ml of blood was collected with a polypropylene syringe containing 0.5 ml of 3.8% sodium citrate, transferred to a polypropylene test tube, centrifuged at 800 rpm for 5 minutes, and diluted with diluent (saline saline: 3.8% saline). Sodium citrate = 9:1) was added to prepare a platelet suspension. Sample this liquid (0.4mm thick plate)
The solution was dropped into the solution and left for a certain period of time to allow platelets to adhere and expand. This was fixed with 2% glutaraldehyde, subjected to stepwise dehydration in an ethanol series, and observed under an electron microscope after drying. The evaluation method was to look at the number of platelets attached to 0.11 mm 2 and changes in their morphology. Morphological changes were classified into the following three types. Type: The platelet's normal platelet shape, which is a disc, has become spherical and has 3 to 4 pseudopodia, and is thought to have relatively weak adhesion to the material surface. Type: A type with several or more pseudopodia extended and the cell body expanded to half of the pseudopod, which seems to have strongly adhered to the material surface. Type: One with a thin cell expanded to more than half the length of the pseudopod; the cell has expanded almost completely, exhibiting a circular shape, and appears to have completely adhered to the material surface. The test results are shown in Table 1.

【表】 実施例 4 ウサギの体重を測定したのち、北島式固定台に
背位固定した。ついで、電動バリカンで術野の毛
を刈り、酒精綿で清拭した。ハサミで顎下から鎖
骨に入るまで正中線に沿つて切開し、さらに筋膜
を開き、神経、分枝血管および周囲の組織を損傷
しないように注意しながら右(左)総頚動脈を剥
離した。ついで、左(右)顔面静脈を同様に注意
深く剥離し、1IU/mlのヘパリン加生食水を満た
した混注用ゴムキヤツプを付けたテルモ株式会社
製サーフロー(テルモ株式会社の登録商標)留置
カテーテルを挿入し、結紮固定した。同様に、前
記動脈にもカテーテルを挿入し、結紮固定した。 このときの供試ウサギの体重は、第2表のとお
りであつた。 第 2 表 試 料 体重(Kg) VE1.0% 2.53 VE0.1% 5.66 無処理 2.58 このようにして準備したウサギ20について、
実施例1〜2および比較例のダイアライザー1を
用いて実験回路を準備した。すなわち、ウサギ2
0の動脈に連結されたカテーテル21をポンプ2
2に連結し、該カテーテル21にはバイパスカテ
ーテル23を連結し、該バイパスカテーテル23
はマノメータのアウト25側に連通したチヤンバ
ー24に連結し、さらにチヤンバー24とウサギ
20の静脈とをカテーテル26で連結した。ポン
プ22とダイアライザー1とはチユーブ27で連
結し、該チユーブ27はマノメータのイン28側
に連通している。さらに、ダイアライザー1とチ
ヤンバー24とはチユーブ29で連結した。一
方、ダイアライザー1の透析液出入口はチユーブ
30で連結し、該チユーブ30にはポンプ31を
設置するとともに37℃の水浴32中に浸漬した。
このようにして構成された回路は1IU/mlのヘパ
リン加生食水(100ml)でプライミング洗浄を行
なつた。 採血した血液を1.5%EDTA−3K生食水で2倍
に希釈し、ELT−8(Ortho Instrument)にて算
定した。その結果得られた白血球数(WBC)、血
小板数(PLT)およびヘマトクリツト値
(HCT)を第3〜5表に示す。なお、白血球数、
血小板数は、次式を用いてHCT値補正を行ない、
循環開始前のHCT値での値として表わした。 Cx=CoHCTx/HCTo ただし、式中の記号はつぎのとおりである。 Cx:補正値 Co:実測等低地 HCTx:補正基準Hct地=最初のHct値 HCTo:Co値を得たときのHct値
[Table] Example 4 After measuring the weight of the rabbit, it was fixed in the dorsal position on a Kitajima type fixation table. Next, the hair in the surgical field was trimmed with electric clippers and wiped with alcohol cotton. An incision was made along the midline from submandibular to the clavicle with scissors, the fascia was further opened, and the right (left) common carotid artery was dissected, being careful not to damage nerves, branch vessels, and surrounding tissues. Next, the left (right) facial vein was carefully dissected in the same way, and a Terumo Corporation Surflow (registered trademark of Terumo Corporation) indwelling catheter with a rubber cap for mixed injection filled with 1 IU/ml heparinized saline was inserted. , fixed with ligation. Similarly, a catheter was also inserted into the artery and ligated and fixed. The weights of the test rabbits at this time were as shown in Table 2. Table 2 Sample weight (Kg) VE1.0% 2.53 VE0.1% 5.66 No treatment 2.58 Regarding rabbit 20 prepared in this way,
Experimental circuits were prepared using dialyzers 1 of Examples 1 and 2 and Comparative Example. i.e. rabbit 2
The catheter 21 connected to the artery of
2, a bypass catheter 23 is connected to the catheter 21, and the bypass catheter 23 is connected to the catheter 21.
was connected to the chamber 24 communicating with the out 25 side of the manometer, and further the chamber 24 and the vein of the rabbit 20 were connected with a catheter 26. The pump 22 and the dialyzer 1 are connected through a tube 27, and the tube 27 communicates with the inlet 28 side of the manometer. Further, the dialyzer 1 and the chamber 24 were connected through a tube 29. On the other hand, the dialysate inlet and outlet of the dialyzer 1 were connected by a tube 30, a pump 31 was installed in the tube 30, and the dialyzer 1 was immersed in a water bath 32 at 37°C.
The thus constructed circuit was subjected to priming cleaning with 1 IU/ml heparinized saline (100 ml). The collected blood was diluted 2 times with 1.5% EDTA-3K saline and calculated using ELT-8 (Ortho Instrument). The white blood cell count (WBC), platelet count (PLT) and hematocrit value (HCT) obtained as a result are shown in Tables 3 to 5. In addition, white blood cell count,
The platelet count is calculated by correcting the HCT value using the following formula:
It was expressed as the HCT value before the start of circulation. Cx=CoHCTx/HCTo However, the symbols in the formula are as follows. Cx: Correction value Co: Actual measurement at low altitude HCTx: Correction reference Hct ground = initial Hct value HCTo: Hct value when Co value is obtained

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 以上の結果から得られる白血球数の経時変動を
示すと第4図のとおりである。同図において、曲
線AはビタミンE1.0%の場合、曲線Bはビタミン
E0.1%の場合および曲線CはビタミンE0%の場
合をそれぞれ示す。また、血小板数の経時変動を
示すと第5図のとおりである。同図において、曲
線DはビタミンE1.0%の場合、曲線Eはビタミン
E0.1%の場合および曲線FはビタミンE0%の場
合をそれぞれ示す。 (a)実施例1で得られたビタミンE1.0w/v%お
よびグリセリン2.0w/v%よりなるエタノール
溶液で被覆した透過膜、(b)実施例1においてグリ
セリン20w/v%を使用しなかつた以外は同様な
方法で被覆した透過膜および(c)ビタミンEおよび
グリセリンを被覆しなかつた透過膜をそれぞれ用
いて作成したダイアライザーについてUFR値を
測定したところ、第6表のとおりであつた。 第6表 被覆条件 UFR(ml/mmHg・hr) ビタミンEおよびグリ セリン同時被覆 4.2 ビタミンE単独被覆 3.8 被覆なし 4.2 第6表から明らかなように、脂溶性ビタミンと
グリセリンとを同時に被覆した場合は、脂溶性ビ
タミンを単独で被覆した時よりもUFR値を高く
維持でき、透析性能の低下が認められなかつた。
(a)実施例1で得られたダイアライザー(オートク
レーブ滅菌)および(e)蒸留水を充填せずかつオー
トクレーブ滅菌の代りにエチレンオキサイドガス
滅菌した以外は実施例1と同様の方法で作成した
ダイアライザーについて血液の体外循環試験を行
なつて白血球数を測定したところ、第7表の結果
が得られた。 第7表 白血球数(PIC値) 滅菌方法 :平均±ISD (d) オートクレーブ滅菌 71.2±6.4% (e) エチレンオキサイド滅菌 70.0±20.4% 第7表から明らかなように、脂溶性ビタミンを
被覆したものにオートクレーブ滅菌処理を施す
と、他の滅菌処理したものよりもはるかに白血球
数はバラツキが少なく安定性の優れたものとな
る。 (発明の効果) 以上述べたように、本発明による人工臓器は、
人工臓器内の再生セルロース製中空糸型体液透過
膜と、該体液透過膜の体液流通域側面に形成され
たビタミンEおよびグリセリンの被覆と、該人工
臓器内に充填された生体に無害な液体とよりなる
ことを特徴とするオートクレーブ滅菌された人工
臓器であるから、該溶液を除去するだけで、前記
透過膜の体液流通側表面に脂溶性ビタミンの被膜
が形成されるので、該透過膜に体液、特に血液が
接触したときに、血液中のアルブミンが該ビタミ
ンE層に付着して抗凝血性を生じるので、白血球
が透析膜を異物認識して減少する状態、いわゆる
一過性白血球減少症は大幅に軽減でき、またグリ
セリンを使用するので、その作用により透過性
膜、特に再生セルロース膜の親水性、透析性、機
械的強度等の物性を保つことができる。このた
め、従来使用初期に白血球の減少により大きかつ
た感染の危険性を低下させることができる。ま
た、特にビタミンEが前記一過性白血球減少症の
他に血小板拡張抑制に対して優れた効果を示す。 さらに、前記ビタミンEとともにグリセリンも
同時に被覆されているので、該グリセリンの作用
によりビタミンEの単独被覆の場合よりもUFR
値を高く維持でき、透析性能の低下が認められな
かつた。 したがつて、本発明による人工臓器を、特に人
工腎臓として使用した場合に優れた効果を示す。
また、本発明による人工臓器は、オートクレーブ
滅菌された状態でビタミンEおよびグリセリンが
被覆されているので、透析前に滅菌を行う手間が
はぶけ、また、ビタミンEが脂溶性であることよ
り、保存中にビタミンEが溶けださないだけでな
く、該滅菌はオートクレーブ滅菌であるので、他
の滅菌法と異なり白血球数に対するバラツキが極
めて少なく、得られる製品の安定性は大幅に向上
する。 また、本発明による人工臓器の製造方法は、人
工臓器内の再生セルロース製中空糸型体液透過膜
の体液流通域側面をビタミンEおよびグリセリン
の有機溶媒溶液で被覆し、ついで前記有機溶媒を
除去し、さらに生体に無害な液体を前記流通域側
面に接触させ、オートクレーブ滅菌処理を施して
なるものであるから、被覆処理が容易であり、こ
のため低コストとすることができ、また被覆時に
化学反応を必要としないため、被覆操作による人
工臓器の汚染の可能性が少ない。また、使用され
るビタミンEの作用により生体に対する副作用、
例えば一過性白血球減少症を軽減することがで
き、また血小板拡張能抑制に対しても優れた効果
を発揮できる。さらに滅菌をオートクレーブ滅菌
により行なうので、他の滅菌法と異なる白血球数
に耐するバラツキが極めて少なく、得られる製品
の安定性は大幅に向上する。
[Table] Figure 4 shows the changes over time in the number of white blood cells obtained from the above results. In the same figure, curve A is for vitamin E 1.0%, and curve B is for vitamin E.
Curve C shows the case of 0.1% E and the case of 0% vitamin E, respectively. Furthermore, the change in platelet count over time is shown in FIG. In the same figure, curve D is for vitamin E 1.0%, curve E is for vitamin E
Curve F shows the case of 0.1% E and the case of 0% vitamin E, respectively. (a) A permeable membrane coated with an ethanol solution containing 1.0 w/v% of vitamin E and 2.0 w/v% of glycerin obtained in Example 1, (b) 20 w/v% of glycerin was not used in Example 1; The UFR values were measured for dialyzers prepared using a permeable membrane coated in the same manner as above and a permeable membrane not coated with (c) vitamin E and glycerin, respectively, and the UFR values were as shown in Table 6. Table 6 Coating conditions UFR (ml/mmHg・hr) Simultaneous coating of vitamin E and glycerin 4.2 Coating of vitamin E alone 3.8 No coating 4.2 As is clear from Table 6, when fat-soluble vitamins and glycerin are coated at the same time, The UFR value was maintained higher than when the fat-soluble vitamin was coated alone, and no deterioration in dialysis performance was observed.
(a) Dialyzer obtained in Example 1 (autoclave sterilized) and (e) Dialyzer prepared in the same manner as Example 1 except that it was not filled with distilled water and sterilized with ethylene oxide gas instead of autoclave sterilization. When an extracorporeal blood circulation test was performed and the number of white blood cells was measured, the results shown in Table 7 were obtained. Table 7 White blood cell count (PIC value) Sterilization method : Average ± ISD (d) Autoclave sterilization 71.2 ± 6.4% (e) Ethylene oxide sterilization 70.0 ± 20.4% As is clear from Table 7, products coated with fat-soluble vitamins When sterilized by autoclaving, the white blood cell count becomes much more stable and has less variation than other sterilization treatments. (Effects of the invention) As described above, the artificial organ according to the present invention has
A hollow fiber body fluid permeable membrane made of regenerated cellulose in an artificial organ, a coating of vitamin E and glycerin formed on the side surface of the body fluid circulation area of the body fluid permeable membrane, and a liquid harmless to living organisms filled in the artificial organ. Since this is an autoclave-sterilized artificial organ characterized by In particular, when blood comes into contact with blood, albumin in the blood adheres to the vitamin E layer and produces anticoagulant properties, resulting in a condition in which white blood cells recognize the dialysis membrane as a foreign object and decrease, so-called transient leukopenia. Furthermore, since glycerin is used, the physical properties of the permeable membrane, especially the regenerated cellulose membrane, such as hydrophilicity, dialyzability, and mechanical strength, can be maintained by its action. Therefore, it is possible to reduce the risk of infection, which conventionally was high due to a decrease in white blood cells at the initial stage of use. In addition, vitamin E in particular shows an excellent effect on suppressing platelet expansion in addition to the above-mentioned transient leukopenia. Furthermore, since glycerin is also coated with the vitamin E, the UFR is higher than when vitamin E is coated alone due to the action of the glycerin.
The value could be maintained at a high level, and no deterioration in dialysis performance was observed. Therefore, the artificial organ according to the present invention exhibits excellent effects especially when used as an artificial kidney.
In addition, since the artificial organ according to the present invention is coated with vitamin E and glycerin after being sterilized in an autoclave, there is no need to sterilize it before dialysis. Not only does vitamin E not dissolve into the product, but since the sterilization is done by autoclaving, unlike other sterilization methods, there is extremely little variation in the number of white blood cells, and the stability of the resulting product is greatly improved. Furthermore, the method for manufacturing an artificial organ according to the present invention includes coating the side surface of the body fluid flow area of a hollow fiber body fluid permeable membrane made of regenerated cellulose in the artificial organ with an organic solvent solution of vitamin E and glycerin, and then removing the organic solvent. Furthermore, since it is made by contacting the side surface of the flow area with a liquid that is harmless to living organisms and performing autoclave sterilization, the coating process is easy, and therefore the cost can be reduced, and there is no chemical reaction during coating. Since this method does not require any coating, there is less possibility of contamination of the artificial organ due to the covering operation. In addition, side effects on living organisms due to the action of vitamin E used,
For example, it can alleviate transient leukopenia, and it can also exhibit excellent effects on platelet expansion inhibition. Furthermore, since sterilization is performed by autoclave sterilization, there is extremely little variation in white blood cell count, which is different from other sterilization methods, and the stability of the resulting product is greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による人工臓器の一実施態様を
示す一部切欠部を有する斜視図、第2図は中空糸
の縦断面図、第3図は本発明による人工臓器の性
能評価のための実験回路、第4図は白血球数の経
時変動を示すグラフであり、また第5図は血小板
数の経時変動を示すグラフである。 1……ダイアライザー、4……筒状本体、5…
…中空糸、6,7……ポツテイング剤、10,1
1……ヘツダー、12,13……キヤツプ。
FIG. 1 is a partially cutaway perspective view showing an embodiment of the artificial organ according to the present invention, FIG. 2 is a longitudinal cross-sectional view of a hollow fiber, and FIG. 3 is a perspective view showing an embodiment of the artificial organ according to the present invention. In the experimental circuit, FIG. 4 is a graph showing changes over time in the number of white blood cells, and FIG. 5 is a graph showing changes over time in the number of platelets. 1... dialyzer, 4... cylindrical body, 5...
...Hollow fiber, 6,7...Potting agent, 10,1
1... header, 12, 13... cap.

Claims (1)

【特許請求の範囲】 1 人工臓器内の再生セルロース製中空糸型体液
透過膜と、該体液透過膜の体液流通域側面に形成
されたビタミンEおよびグリセリンの被覆と、該
人工臓器内に充填された生体に無害な液体とより
なることを特徴とするオートクレーブ滅菌された
人工臓器。 2 生体に無害な液体が水、生理食塩水またはグ
リセリン水溶液である特許請求の範囲第1項に記
載の人工臓器。 3 人工臓器内の再生セルロース製中空糸型体液
透過膜の体液流通域側面をビタミンEおよびグリ
セリンの有機溶媒溶液で被覆し、ついで前記有機
溶媒を除去し、さらに生体に無害な液体を前記流
通域側面に接触させ、オートクレーブ滅菌処理を
施してなる人工臓器の製造方法。 4 有機溶媒が低級アルコールである特許請求の
範囲第3項に記載の人工臓器の製造方法。 5 有機溶媒液中の脂溶性ビタミンの濃度は0.01
〜10w/v%である特許請求の範囲第3項または
第4項に記載の人工臓器の製造方法。 6 有機溶媒溶液中のグリセリンの濃度は0.1〜
10w/v%である特許請求の範囲第3項ないし第
5項のいずれか一つに記載の人工臓器の製造方
法。 7 生体に無害な液体が水、生理食塩水またはグ
リセリン水溶液からなる特許請求の範囲第3項な
いし第6項のいずれか一つに記載の人工臓器の製
造方法。
[Scope of Claims] 1. A hollow fiber body fluid permeable membrane made of regenerated cellulose in an artificial organ, a coating of vitamin E and glycerin formed on the side surface of the body fluid flow area of the body fluid permeable membrane, and a coating of vitamin E and glycerin filled in the artificial organ. An autoclaved artificial organ characterized by being made of a liquid that is harmless to living organisms. 2. The artificial organ according to claim 1, wherein the liquid harmless to living organisms is water, physiological saline, or aqueous glycerin solution. 3. The sides of the body fluid flow area of a hollow fiber body fluid permeable membrane made of regenerated cellulose in an artificial organ are coated with an organic solvent solution of vitamin E and glycerin, and then the organic solvent is removed, and a liquid that is harmless to the living body is added to the body fluid flow area. A method for producing an artificial organ, which is made by contacting the sides and subjecting it to autoclave sterilization. 4. The method for manufacturing an artificial organ according to claim 3, wherein the organic solvent is a lower alcohol. 5 The concentration of fat-soluble vitamins in the organic solvent is 0.01
The method for manufacturing an artificial organ according to claim 3 or 4, wherein the content is ~10 w/v%. 6 The concentration of glycerin in the organic solvent solution is 0.1~
The method for manufacturing an artificial organ according to any one of claims 3 to 5, wherein the content is 10 w/v%. 7. The method for manufacturing an artificial organ according to any one of claims 3 to 6, wherein the liquid harmless to living bodies comprises water, physiological saline, or an aqueous glycerin solution.
JP57174480A 1982-09-09 1982-10-06 Pasturized artificial organ and production thereof Granted JPS5964058A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP57174480A JPS5964058A (en) 1982-10-06 1982-10-06 Pasturized artificial organ and production thereof
EP83108834A EP0103816B1 (en) 1982-09-09 1983-09-07 Artificial organ and method for manufacturing thereof
US06/530,023 US4588407A (en) 1982-09-09 1983-09-07 Artificial organ and method for manufacture thereof
DE8383108834T DE3378461D1 (en) 1982-09-09 1983-09-07 Artificial organ and method for manufacturing thereof
US06/818,878 US4634447A (en) 1982-09-09 1986-01-14 Method for manufacturing artificial organ
US06/878,059 US4643715A (en) 1982-09-09 1986-06-24 Artificial organ and method for manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57174480A JPS5964058A (en) 1982-10-06 1982-10-06 Pasturized artificial organ and production thereof

Publications (2)

Publication Number Publication Date
JPS5964058A JPS5964058A (en) 1984-04-11
JPS633627B2 true JPS633627B2 (en) 1988-01-25

Family

ID=15979211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57174480A Granted JPS5964058A (en) 1982-09-09 1982-10-06 Pasturized artificial organ and production thereof

Country Status (1)

Country Link
JP (1) JPS5964058A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5265884B2 (en) * 2007-05-25 2013-08-14 旭化成メディカル株式会社 Polysulfone-based permselective membrane and method for producing the same
TWI374038B (en) 2007-05-25 2012-10-11 Asahi Kasei Medical Co Ltd A polysulphone-based membrane for the blood treatment and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418476A (en) * 1977-07-12 1979-02-10 Teijin Ltd Separating unit for fluid by use if hollow fiber
JPS5623959A (en) * 1979-04-10 1981-03-06 Hoechst Ag Therapeutic device for liquid of extraaintestine
JPS5964054A (en) * 1982-09-09 1984-04-11 テルモ株式会社 Artificial organ and production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418476A (en) * 1977-07-12 1979-02-10 Teijin Ltd Separating unit for fluid by use if hollow fiber
JPS5623959A (en) * 1979-04-10 1981-03-06 Hoechst Ag Therapeutic device for liquid of extraaintestine
JPS5964054A (en) * 1982-09-09 1984-04-11 テルモ株式会社 Artificial organ and production thereof

Also Published As

Publication number Publication date
JPS5964058A (en) 1984-04-11

Similar Documents

Publication Publication Date Title
US4588407A (en) Artificial organ and method for manufacture thereof
US4402940A (en) Method for treating blood plasma employing a hollow fiber membrane
JP5110645B2 (en) Hollow fiber membrane blood purification device
JP4848663B2 (en) Method for coating surface modification agent on hollow fiber blood purification membrane, surface modification agent coated hollow fiber blood purification membrane, and surface modification agent coated hollow fiber blood purification device
JPS6241738B2 (en)
JP3193819B2 (en) Artificial organ
JP3357262B2 (en) Hollow fiber membrane type body fluid purifying device and method of manufacturing the same
JP4876431B2 (en) Method for coating surface modification agent on hollow fiber blood purification membrane, surface modification agent coated hollow fiber blood purification membrane, and surface modification agent coated hollow fiber blood purification device
JP3171896B2 (en) Permeable membrane with excellent biocompatibility
JPS633627B2 (en)
JPH0966225A (en) Production of hollow fiber membrane, hollow fiber membrane and dialyser
JPS633626B2 (en)
JP6383631B2 (en) Hollow fiber membrane blood purifier
JPS6246191B2 (en)
JP2717663B2 (en) Hollow fiber membrane dialysis machine
JPS6328625B2 (en)
JP4129393B2 (en) Extracorporeal treatment apparatus for blood or plasma containing wet semipermeable membrane and method for producing the same
JP4433821B2 (en) Modified substrate
JPS6465B2 (en)
JPS6213022B2 (en)
JPH1147567A (en) Separation membrane and its preparation
JPS61115569A (en) Artificial kidney and its production
JPH0429409B2 (en)
JPH11178919A (en) Production method of artificial organs
JPS6194662A (en) Asceptic water filled serum separator and its production