JPS6241738B2 - - Google Patents

Info

Publication number
JPS6241738B2
JPS6241738B2 JP57155842A JP15584282A JPS6241738B2 JP S6241738 B2 JPS6241738 B2 JP S6241738B2 JP 57155842 A JP57155842 A JP 57155842A JP 15584282 A JP15584282 A JP 15584282A JP S6241738 B2 JPS6241738 B2 JP S6241738B2
Authority
JP
Japan
Prior art keywords
artificial
body fluid
vitamin
artificial organ
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57155842A
Other languages
Japanese (ja)
Other versions
JPS5964054A (en
Inventor
Keinosuke Isono
Keiji Naoi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP57155842A priority Critical patent/JPS5964054A/en
Priority to DE8383108834T priority patent/DE3378461D1/en
Priority to EP83108834A priority patent/EP0103816B1/en
Priority to US06/530,023 priority patent/US4588407A/en
Publication of JPS5964054A publication Critical patent/JPS5964054A/en
Priority to US06/818,878 priority patent/US4634447A/en
Priority to US06/878,059 priority patent/US4643715A/en
Publication of JPS6241738B2 publication Critical patent/JPS6241738B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、人工臓器およびその製造方法に関す
るものである。詳しく述べると、一過性白血球減
少症が実質的に生じない人工腎蔵、人工肺、血液
分離装置等の人工臓器およびその製造方法に関す
るものである。 (従来の技術) 従来、人工腎蔵、人工肝臓、人工肺、血液分離
装置等の人工臓器が使用され、等にその透析部位
においては中空糸膜型、平膜型等の透析膜とし
て、その優れた透析性、機械的強度、価格等の点
から再生セルロース系のものが広く使用されてい
る。しかしながら、このような再生セルロース系
膜を使用した人工臓器、例えば再生セルロース系
の人工腎蔵は、透析操作開始直後に白血球が一時
的に急激に減少するという、いわゆる一過性白血
球減少症(hemodialysis leukopenia)等の副作
用を生体に与え、これが患者に与える影響には無
視し得ないものがある。 (発明が解決しようとする問題点) 一方、最近透過膜として提案されているポリメ
チルメタクリレート、ポリアクリロニトリル、エ
チレン−ビニルアルコール共重合体、ポリカーボ
ネート等の合成高分子膜は、一過性白血球減少症
の発現の程度が前記再生セルロース系のものに比
べると比較的弱いが、これらの合成高分子膜は加
工組立時または使用時の物性、すなわちその機械
的強度、耐熱性、限外濾過率(UFR)等と性能
とのバランスが悪く、使用患者が限定されるだけ
でなく、コスト高となり、使用時にピンホールが
多くなり、また滅菌法が限定される等の問題があ
る。 前記のごとき問題点を解消するために、再生セ
ルロース系膜の表面をヘパリン等を用いて改質す
ることが提案されているが、末だ満足すべき結果
は得られていない。 したがつて、本発明の目的は、改良された人工
臓器およびその製造方法を提供することにある。
本発明の他の目的は、生体に対して副作用の少な
い人工臓器およびその製造方法を提供することに
ある。本発明のさらに他の目的は、一過性白血球
減少症を実質的に生じさせない人工臓器およびそ
の製造方法を提供することにある。 (問題点を解決するための手段) これらの諸目的は、人工臓器内の体液流通域の
該体液と接触し得る部位の表面にビタミンEの被
膜を被覆してなる人工臓器により達成される。ま
た、本発明は、体液流通域がその少なくとも一部
分が体液透過膜である人工臓器である。本発明
は、再生セルロース膜が中空糸型膜である人工臓
器である。さらに、本発明による人工臓器は、例
えば人工腎蔵、人工肝臓、人工肺または血液分離
装置である。 また、前記諸目的は、人工臓器内の体液流通域
に有機溶媒溶液中のビタミンEの濃度が0.01〜10
w/v%であるビタミンEの有機溶媒溶液を流入さ
せて該溶液との接触部位に該溶液を充分なじませ
たのち、該溶液を排出させ、ついで乾燥して前記
有機溶媒を除去することを特徴とする人工臓器内
の体液流通域の該体液と接触し得る部位の表面に
ビタミンEの被膜を被覆してなる人工臓器の製造
方法により達成される。また、本発明は、体液流
通域が少なくともその一部分は体液透過膜である
人工臓器の製造方法である。本発明は、体液透過
膜が再生セルロース膜である人工臓器の製造方法
である。また、本発明は、再生セルロース膜が中
空糸型膜である人工臓器の製造方法である。さら
に、本発明は、有機溶媒が低級アルコールである
人工臓器の製造方法である。さらに、本発明は、
乾燥が前記体液流通域に10〜80℃の温度で前記ビ
タミンEに対して不活性なガスを流通させて行な
われる人工臓器の製造方法である。 (作用) 本発明における人工臓器とは、人工腎蔵、人工
肝臓、人工肺、血漿分離装置、血液回路、人工血
管等のように人工臓器内に血液等の体液を流通す
る流通域を有するもので、この体液流通域は、少
なくともその一部分が体液透過膜であることが望
ましい。なお、この人工臓器としては、生体から
該人工臓器までを接続するチユーブやコネクタ等
はもちろんのこと、その他血液回路等も含まれ
る。 つぎに、図面を参照しながら、本発明の一実施
態様を説明する。第1図は、人工腎蔵、すなわち
中空糸型のダイアライザーの一例を示すものであ
る。このダイアライザー1は、両端部付近に透析
液用の入口管2および出口管3をそれぞれ設けて
なる筒状本体4に、多数の中空糸よりなる中空糸
束5を挿入したのち、その両端部をポリウレタン
等のポツテイング剤6,7で前記筒状本体の両端
部とともにそれぞれシールしてなる。例えば熱交
換器におけるシエル・アンド・チユーブ式装置に
類似した構成のものであり、前記筒状本体の両端
には血液用の流入口8および排出口9をそれぞれ
備えたヘツダー10,11がそれぞれ当接され、
キヤツプ12,13によりヘツダー10,11と
筒状本体4とがそれぞれ固着されている。しかし
て、前記流入口8および排出口9には、人体に接
続するチユーブ14,15が連結されている。 しかして、中空糸束5を構成する中空糸は、透
析膜であつて、例えば再生セルロース、ポリメチ
ルメタクリレート、ポリアクリロニトリル、エチ
レン−ビニルアルコール共重合体、ポリカーボネ
ート等の膜あり、好ましくは再生セルロース膜で
あり、特に好ましくは銅アンモニア法再生セルロ
ース膜である。 本発明によれば、前記のごとき人工腎蔵の体
液、例えば血液の流通域の該血液との接触部位、
例えば中空糸膜内面、ヘツダー10とポツテイン
グ剤6とにより形成される空間の内面、ヘツダー
11とポツテイング剤7とにより形成される空間
の内面、血液流入口8内面、血液排出口9内面、
チユーブ14,15の内面、特に中空糸膜内面に
ビタミンEの被膜を被覆してなるものである。例
えば、中空糸膜を例にすると、第2図に示すよう
に、中空糸膜16の内面にビタミンEの被膜17
を被覆してなるものである。 本発明で使用されるビタミンEは、脂溶性であ
り、一例挙げると、例えばα−トコフエロール、
β−トコフエロール、γ−トコフエロール、δ−
トコフエロール等のトコフエロール類、α−トコ
トリエノール、β−トコトリエノール、γ−トコ
トリエノール、δ−トコトリエノール等のトコト
リエノール類等がある。該ビタミンEの被膜の膜
厚は0.0001〜0.1μm、好ましくは0.002〜0.5μm
である。 このようなビタミンEは、濃度0.01〜10w/v
%、好ましくは0.05〜2.0w/v%の有機溶媒溶液と
して、人工臓器の体液流通域(第1〜2図に示す
人工腎臓の場合には血液流通域)、に流入させ、
所定の時間、例えば30秒〜60分間、好ましくは1
〜10分間接触させることにより、該域の内面、例
えばチユーブ14、ヘツダー10とポツテイング
剤6との間に形成される空間、中空糸、ヘツダー
11とポツテイング剤7との間に形成される空間
およびチユーブ15の内面に前記ビタミンEを充
分なじませる。ついで、前記溶液を排出させたの
ち、10〜80℃、好ましくは15〜30℃の温度で前記
ビタミンEに対して不活性なガス、例えば空気、
窒素、炭酸ガス等を導入して有機溶媒を蒸発除去
することにより接触面にビタミンEの被膜を形成
させるもので、必要よりさらに水洗する。この場
合、チユーブ14,15を連結せずに被覆操作を
行なつて主要部分特に透過膜部分にビタミンEの
被膜を形成させてもよいことはもちろんである。
特に一過性白血球減少症を起しやすい再生セルロ
ース膜を使用した人工臓器においては、該透過膜
部分を主としてビタミンEで被覆することにより
著しい効果が得られる。また、透過膜として再生
セルロース、特に銅アンモニア法再生セルロース
の場合には、前記ビタミンEの有機溶媒溶液中に
グリセリンを含有させておくこともでき、これに
より透過膜に親水性を与えることができる。した
がつて、人工腎臓、人工肝臓等のように親水性透
過膜を使用する人工臓器においては効果的であ
る。なお、前記グリセリンの溶液中の濃度は0.1
〜10w/v%、好ましくは1〜5w/vである。本発
明で使用される有機溶媒としては、メタノール、
エタノール、n−プロパノール、イソプロパノー
ル、n−ブタノール、イソブタノール、sec−ブ
タノール、2−エチルヘキサノール等のアルコー
ル、ジエチルエーテル等があるが、好ましくは低
級アルコールであり、特にエタノールである。以
上は、主としてダイアライザーである人工腎臓に
ついて説明したが、その他に人工肝臓、人工肺、
人工血管、血液回路、血液分離装置等にも使用で
きることはもちろんであり、そのうちで体液、特
に血液に対する透過膜を有する部位に前記ビタミ
ンE被膜を形成させれば著しい効果が得られる。 つぎに、実施例を挙げて本発明をさらに詳細に
説明する。 (実施例) 実施例 1 内径約200μm、外径約220μm、長さ14〜14.5
cmの銅アンモニア再生セルロース中空糸368本を
用い、第1図に示すように、筒状本体1内に挿入
し、両端をポリウレタン系ポツテイング剤6,7
で固定し、さらに両端にヘツダー10,11を取
付け、キヤツプ12,13により固着してダイア
ライザー(人工腎臓)1を作成した。このものの
膜内面積は300cm2であつた。 一方、ビタミンE(DL−α−トコフエロー
ル)1.0gをエタノール100mlに溶解してビタミン
Eのエタノール溶液を調製した。前記ダイアライ
ザー1の一端に50ml用シリンジを接続し、他端を
前記ビタミンEの溶液中に浸漬した。該シリンジ
のプランジヤーを作動させてダイアライザー中に
ビタミンEの溶液を充填した。この状態で室温に
約5分間放置した。ついで、前記ダイアライザー
を引上げてビタミンEの溶液を排出させたのち、
アスピレータを接続し、25℃の温度で送風乾燥し
た。さらに乾燥の完全を期するため、60℃のオー
ブン内に一夜放置した。このようにして得られた
ダイアライザー内のビタミンE被膜の理論的な膜
厚は約0.05μmと推定された。 実施例 2 実施例1の方法において、ビタミンEのエタノ
ール溶液中のビタミンEの濃度を0.1w/v%とし
た以外は実施例1と同様の方法によりダイアライ
ザーを製造した。このダイアライザー内のビタミ
ンE被膜の理論的な膜厚は0.005μmと推定され
た。 比較例 比較対照のためにビタミンEのエタノール溶液
処理をしない実施例1と同様なダイアライザー
を、単にオートクレーブ処理によりウエツト化し
た。 実施例 3 ビタミンE(DL−α−トコフエロール)をエ
タノールに1w/v%の濃度で溶解させ、得られた
溶液中にポリスチレン板を3分間浸漬し、ついで
引上げて室温放置して完全に乾燥して試料を得
た。同様にビタミンEの0.1w/v%エタノール溶
液を用いて試料を得た。これらの試料および無処
理の試料について、血小板拡張能試験による評価
を行なつた。 血小板拡張能の評価は、つぎの方法によつて行
なつた。すなわち、健常人の静脈血4.5mlを、3.8
%クエン酸ナトリウム0.5mlを収容したポリプロ
ピレン性シリンジで採血し、これをポリプロピレ
ン製試験管に移し、800r.p.m.で5分間遠心し、
得られたPRPに希釈液(生食:3.8%クエン酸ナ
トリウム=9:1)を加えて、血小板浮遊液を作
つた。この液を試料(厚さ0.4mmの板)に滴下し
て、一定時間放置して血小板を付着、拡張させ
た。これを2%グルタルアルデヒトで固定し、エ
タノール系列で段階脱水し、乾燥後電子顕微鏡で
観察した。評価法は、0.11mm2に付着した血小板数
とその形態変化をみた。形態変化は、下記の3種
に分類した。 型:血小板正常形態である円盤形から球状化
して3〜4本の偽足を出したもので、材
料面との粘着が比較的弱いと考えられる
もの。 型:数本以上の偽足を伸ばして、偽足の半分
まで胞体を拡げたもので、材料面に強く
粘着したと思われるもの。 型:偽足の長さの半分以上に薄い法体を拡げ
たものが、ほぼ還元に胞体を拡張して類
円系を呈し材料面に完全粘着したと思わ
れるもの。
(Industrial Application Field) The present invention relates to an artificial organ and a method for manufacturing the same. More specifically, the present invention relates to artificial organs such as artificial kidneys, artificial lungs, and blood separation devices that do not substantially cause transient leukopenia, and methods for manufacturing the same. (Prior art) Artificial organs such as artificial kidneys, artificial livers, artificial lungs, and blood separation devices have been used in the past, and in the dialysis site, dialysis membranes such as hollow fiber membrane type and flat membrane type are used. Regenerated cellulose-based materials are widely used because of their excellent dialysis properties, mechanical strength, cost, etc. However, artificial organs using such regenerated cellulose-based membranes, such as regenerated cellulose-based artificial kidneys, suffer from so-called transient leukopenia (hemodialysis), in which the number of white blood cells decreases temporarily and rapidly immediately after the start of dialysis. leukopenia) and other side effects on living organisms, and the impact this has on patients cannot be ignored. (Problems to be Solved by the Invention) On the other hand, synthetic polymer membranes such as polymethyl methacrylate, polyacrylonitrile, ethylene-vinyl alcohol copolymer, and polycarbonate, which have recently been proposed as permeable membranes, have been proposed to prevent transient leukopenia. Although the degree of expression of ) etc. and performance, which not only limits the number of patients who can use it, but also increases cost, causes many pinholes during use, and limits sterilization methods. In order to solve the above-mentioned problems, it has been proposed to modify the surface of the regenerated cellulose membrane using heparin or the like, but no satisfactory results have been obtained. Accordingly, an object of the present invention is to provide an improved artificial organ and a method for manufacturing the same.
Another object of the present invention is to provide an artificial organ and a method for producing the same that have fewer side effects on living organisms. Still another object of the present invention is to provide an artificial organ that does not substantially cause transient leukopenia, and a method for manufacturing the same. (Means for Solving the Problems) These objects are achieved by an artificial organ in which a vitamin E coating is coated on the surface of a region of the artificial organ that can come into contact with the body fluid. The present invention also provides an artificial organ in which at least a portion of the body fluid circulation area is a body fluid permeable membrane. The present invention is an artificial organ in which the regenerated cellulose membrane is a hollow fiber type membrane. Furthermore, the artificial organ according to the invention is, for example, an artificial kidney, an artificial liver, an artificial lung or a blood separation device. In addition, the above objectives are such that the concentration of vitamin E in the organic solvent solution is 0.01 to 10 in the body fluid circulation area in the artificial organ.
After flowing an organic solvent solution of vitamin E in w/v% and thoroughly blending the solution into the contact area, the solution is discharged, and then the organic solvent is removed by drying. This is achieved by a method for producing an artificial organ, characterized in that the surface of a portion of the artificial organ that can come into contact with the body fluid in the body fluid circulation area is coated with a vitamin E coating. The present invention also provides a method for manufacturing an artificial organ in which at least a portion of the body fluid circulation area is a body fluid permeable membrane. The present invention is a method for producing an artificial organ in which the body fluid permeable membrane is a regenerated cellulose membrane. Further, the present invention is a method for producing an artificial organ, in which the regenerated cellulose membrane is a hollow fiber membrane. Furthermore, the present invention is a method for producing an artificial organ, in which the organic solvent is a lower alcohol. Furthermore, the present invention
This is a method for manufacturing an artificial organ, in which drying is performed by passing a gas inert to the vitamin E through the body fluid circulation area at a temperature of 10 to 80°C. (Function) The artificial organ in the present invention is one that has a circulation area for body fluids such as blood, such as an artificial kidney, an artificial liver, an artificial lung, a plasma separation device, a blood circuit, and an artificial blood vessel. It is desirable that at least a portion of this body fluid circulation area is a body fluid permeable membrane. Note that this artificial organ includes not only tubes and connectors that connect the living body to the artificial organ, but also other blood circuits and the like. Next, one embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an example of an artificial kidney cell, that is, a hollow fiber type dialyzer. This dialyzer 1 is constructed by inserting a hollow fiber bundle 5 made of a large number of hollow fibers into a cylindrical body 4, which has an inlet pipe 2 and an outlet pipe 3 for dialysate near both ends. Both ends of the cylindrical body are sealed with potting agents 6 and 7 such as polyurethane. For example, it has a structure similar to a shell-and-tube type device in a heat exchanger, and headers 10 and 11 each having an inlet 8 and an outlet 9 for blood are provided at both ends of the cylindrical body. touched,
Headers 10 and 11 and cylindrical body 4 are fixed by caps 12 and 13, respectively. Tubes 14 and 15 connected to the human body are connected to the inlet 8 and the outlet 9. The hollow fibers constituting the hollow fiber bundle 5 are dialysis membranes, such as membranes made of regenerated cellulose, polymethyl methacrylate, polyacrylonitrile, ethylene-vinyl alcohol copolymer, polycarbonate, etc., preferably regenerated cellulose membranes. Especially preferred is a cuprammonium regenerated cellulose membrane. According to the present invention, a body fluid of the artificial kidney as described above, for example, a contact site with the blood in the blood circulation area,
For example, the inner surface of the hollow fiber membrane, the inner surface of the space formed by the header 10 and the potting agent 6, the inner surface of the space formed by the header 11 and the potting agent 7, the inner surface of the blood inlet 8, the inner surface of the blood outlet 9,
The inner surfaces of the tubes 14 and 15, particularly the inner surfaces of the hollow fiber membranes, are coated with a vitamin E coating. For example, taking a hollow fiber membrane as an example, as shown in FIG.
It is made by coating. The vitamin E used in the present invention is fat-soluble, and examples include α-tocopherol,
β-tocopherol, γ-tocopherol, δ-
Examples include tocopherols such as tocopherol, tocotrienols such as α-tocotrienol, β-tocotrienol, γ-tocotrienol, and δ-tocotrienol. The thickness of the vitamin E coating is 0.0001 to 0.1 μm, preferably 0.002 to 0.5 μm.
It is. Such vitamin E has a concentration of 0.01 to 10w/v
%, preferably 0.05 to 2.0 w/v%, as an organic solvent solution, flowing into the body fluid circulation area of the artificial organ (in the case of the artificial kidney shown in Figs. 1 and 2, the blood circulation area),
for a predetermined period of time, e.g. 30 seconds to 60 minutes, preferably 1
By contacting for ~10 minutes, the inner surface of the region, such as the tube 14, the space formed between the header 10 and the potting agent 6, the hollow fiber, the space formed between the header 11 and the potting agent 7, and The vitamin E is sufficiently applied to the inner surface of the tube 15. After discharging the solution, a gas inert to the vitamin E, such as air, is then added at a temperature of 10 to 80°C, preferably 15 to 30°C.
A coating of vitamin E is formed on the contact surface by introducing nitrogen, carbon dioxide gas, etc. and evaporating the organic solvent, and washing with water is further performed as necessary. In this case, it goes without saying that the coating operation may be performed without connecting the tubes 14 and 15 to form a vitamin E coating on the main parts, especially the permeable membrane parts.
Particularly in artificial organs using regenerated cellulose membranes that are prone to transient leukopenia, significant effects can be obtained by coating the permeable membrane portion primarily with vitamin E. In addition, in the case of regenerated cellulose, especially cellulose regenerated by cuprammonium method, as the permeable membrane, glycerin can be added to the organic solvent solution of vitamin E, thereby imparting hydrophilicity to the permeable membrane. . Therefore, it is effective in artificial organs that use hydrophilic permeable membranes, such as artificial kidneys and artificial livers. Note that the concentration of the glycerin in the solution is 0.1
-10 w/v%, preferably 1-5 w/v. The organic solvent used in the present invention includes methanol,
Examples include alcohols such as ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, and 2-ethylhexanol, and diethyl ether, but lower alcohols are preferred, and ethanol is particularly preferred. The above has mainly explained the artificial kidney, which is a dialyzer, but there are also artificial livers, artificial lungs,
It goes without saying that it can be used in artificial blood vessels, blood circuits, blood separation devices, etc., and if the vitamin E coating is formed on areas that have membranes permeable to body fluids, especially blood, remarkable effects can be obtained. Next, the present invention will be explained in more detail by giving examples. (Example) Example 1 Inner diameter approximately 200 μm, outer diameter approximately 220 μm, length 14 to 14.5
Using 368 cuprammonium regenerated cellulose hollow fibers of cm, as shown in FIG.
Then, headers 10 and 11 were attached to both ends, and the caps 12 and 13 were used to secure the dialyzer (artificial kidney) 1. The inner membrane area of this product was 300 cm 2 . On the other hand, an ethanol solution of vitamin E was prepared by dissolving 1.0 g of vitamin E (DL-α-tocopherol) in 100 ml of ethanol. A 50 ml syringe was connected to one end of the dialyzer 1, and the other end was immersed in the vitamin E solution. The plunger of the syringe was activated to fill the dialyzer with the vitamin E solution. In this state, it was left at room temperature for about 5 minutes. Then, after pulling up the dialyzer to drain the vitamin E solution,
An aspirator was connected and air was blown to dry at a temperature of 25°C. Furthermore, to ensure complete drying, it was left in an oven at 60°C overnight. The theoretical thickness of the vitamin E coating in the dialyzer thus obtained was estimated to be about 0.05 μm. Example 2 A dialyzer was manufactured in the same manner as in Example 1 except that the concentration of vitamin E in the ethanol solution of vitamin E was changed to 0.1 w/v%. The theoretical thickness of the vitamin E coating in this dialyzer was estimated to be 0.005 μm. Comparative Example For comparison purposes, a dialyzer similar to Example 1, which was not treated with vitamin E in ethanol solution, was simply wetted by autoclaving. Example 3 Vitamin E (DL-α-tocopherol) was dissolved in ethanol at a concentration of 1 w/v%, and a polystyrene plate was immersed in the resulting solution for 3 minutes, then taken out and left at room temperature to completely dry. A sample was obtained. Similarly, a sample was obtained using a 0.1 w/v % ethanol solution of vitamin E. These samples and untreated samples were evaluated by a platelet dilatation test. Evaluation of platelet expansion ability was performed by the following method. In other words, 4.5 ml of venous blood of a healthy person is 3.8
Blood was collected using a polypropylene syringe containing 0.5 ml of sodium citrate, transferred to a polypropylene test tube, and centrifuged at 800 rpm for 5 minutes.
A diluent (saline: 3.8% sodium citrate = 9:1) was added to the obtained PRP to prepare a platelet suspension. This solution was dropped onto a sample (a plate with a thickness of 0.4 mm) and left for a certain period of time to allow platelets to adhere and expand. This was fixed with 2% glutaraldehyde, subjected to stepwise dehydration in an ethanol series, and observed under an electron microscope after drying. The evaluation method looked at the number of platelets attached to 0.11 mm 2 and changes in their morphology. Morphological changes were classified into the following three types. Type: The platelet's normal platelet shape, which is a disc, has become spherical and has 3 to 4 pseudopodia, and is thought to have relatively weak adhesion to the material surface. Type: A type with several or more pseudopodia extended and the cell body expanded to half of the pseudopod, which seems to have strongly adhered to the material surface. Type: One with a thin vesicle expanded to more than half the length of the pseudopod, which appears to have expanded to an almost reduced size, exhibiting a circular system, and completely adhered to the material surface.

【表】 実施例 4 ウサギの体重を測定したのち、北島式固定台に
背位固定した。ついで、電動バリカンで術野の毛
を刈り、酒精綿で清拭した。ハサミで顎下から鎖
骨に入るまで正中線に沿つて切開し、さらに筋膜
を開き、神経、分枝血管および周囲の組織を損傷
しないように注意しながら右(左)総頚動脈を剥
離した。ついで、左(右)顔面静脈を同様に注意
深く剥離し、1IU/mlのヘパリン加生食水を満た
した混注用ゴムキヤツプを付けたテルモ株式会社
製のサーフロー(テルモ株式会社の登録商標)留
置カテーテルを挿入し、結紮固定した。同様に、
前記動脈にもカテーテルを挿入し、結紮固定し
た。 このときの供試ウサギの体重は、第2表のとお
りであつた。 第 2 表 試 料 体 重(Kg) VE1.0% 2.53 VE0.1% 2.66 無処理 2.58 このようにして準備したウサギ20について、
実施例1〜2および比較例のダイアライザー1を
開いて実験回路を準備した。すなわち、ウサギ2
0の動脈に連結されたカテーテル21をポンプ2
2に連結し、該カテーテル21にはバイパスカテ
ーテル23を連結し、該バイパスカテーテル23
はマノメータのアウト25側に連通したチヤンバ
ー24に連結し、さらにチヤンバー24とウサギ
20の静脈とをカテーテル26で連結した。ポン
プ22とダイアライザー1とはチユーブ27で連
結し、該チユーブ27はマノメータのイン28側
に連通している。さらに、ダイアライザー1とチ
ヤンバー24とはチユーブ29で連結した。一
方、ダイアライザー1の透析液出入口はチユーブ
30で連結し、該チユーブ30にはポンプ31を
設置するとともに37℃の水浴32中に浸漬した。
このようにして構成された回路は1IU/mlのヘパ
リン加生食水(100ml)でプライミング洗浄を行
なつた。 採血した血液を1.5%EDTA−3K生食水で2倍
に希釈し、ELT−8(Ortho Instrument)にて
算定した。その結果得られた白血球数(WBC)、
血小板数(PLT)およびヘマトクリツト値
(HCT)を第3〜5表に示す。なお、白血球数、
血小板数は、次式を用いてHCT値補正を行な
い、循環開始直前のHCT値での値として表わし
た。 Cx=CoHCTx/HCTo ただし、式中の記号はつぎのとおりである。 Cx:補正値 Co:実測算定値 HCTx:補正基準Hct値=最初のHct値 HCTo:Co値を得たときのHct値
[Table] Example 4 After measuring the weight of the rabbit, it was fixed in the dorsal position on a Kitajima type fixation table. Next, the hair in the surgical field was trimmed with electric clippers and wiped with alcohol cotton. An incision was made along the midline from submandibular to the clavicle with scissors, the fascia was further opened, and the right (left) common carotid artery was dissected, being careful not to damage nerves, branch vessels, and surrounding tissues. Next, the left (right) facial vein was carefully dissected in the same way, and a Terumo Corporation Surflow (registered trademark of Terumo Corporation) indwelling catheter with a rubber cap for mixed injection filled with 1 IU/ml heparinized saline was inserted. and fixed with a ligature. Similarly,
A catheter was also inserted into the artery and ligated and fixed. The weights of the test rabbits at this time were as shown in Table 2. Table 2 Sample weight (Kg) VE1.0% 2.53 VE0.1% 2.66 No treatment 2.58 Regarding rabbit 20 prepared in this way,
The dialyzers 1 of Examples 1 and 2 and Comparative Example were opened to prepare experimental circuits. i.e. rabbit 2
The catheter 21 connected to the artery of
2, a bypass catheter 23 is connected to the catheter 21, and the bypass catheter 23 is connected to the catheter 21.
was connected to the chamber 24 communicating with the out 25 side of the manometer, and further the chamber 24 and the vein of the rabbit 20 were connected with a catheter 26. The pump 22 and the dialyzer 1 are connected through a tube 27, and the tube 27 communicates with the inlet 28 side of the manometer. Further, the dialyzer 1 and the chamber 24 were connected through a tube 29. On the other hand, the dialysate inlet and outlet of the dialyzer 1 were connected by a tube 30, a pump 31 was installed in the tube 30, and the dialyzer 1 was immersed in a water bath 32 at 37°C.
The thus constructed circuit was subjected to priming cleaning with 1 IU/ml heparinized saline (100 ml). The collected blood was diluted 2 times with 1.5% EDTA-3K saline and calculated using ELT-8 (Ortho Instrument). The resulting white blood cell count (WBC),
Platelet counts (PLT) and hematocrit values (HCT) are shown in Tables 3-5. In addition, white blood cell count,
The platelet count was corrected for the HCT value using the following formula and expressed as the value at the HCT value immediately before the start of circulation. Cx=CoHCTx/HCTo However, the symbols in the formula are as follows. Cx: Correction value Co: Actual measurement calculation value HCTx: Correction standard Hct value = initial Hct value HCTo: Hct value when the Co value is obtained

【表】【table】

【表】【table】

【表】【table】

【表】 以上の結果から得られる白血球数の経時変動を
示すと第4図のとおりである。同図において、曲
線AはビタミンE1.0%の場合、曲線Bはビタミ
ンE0.1%の場合および曲線CはビタミンE0%の
場合をそれぞれ示す。第4図から明らかなよう
に、ビタミンEおよびグリセリン被覆したもの
は、使用開始後に通常発生しやすい一過性白血球
減少症を生じることなく、また長時間使用による
白血球の増加も極めて僅かである。また、血小板
数の経時変動を示すと第5図のとおりである。同
図において、曲線DはビタミンE1.0%の場合、
曲線EはビタミンE0.1%の場合および曲線Fは
ビタミンE0%の場合をそれぞれ示す。第5図か
ら明らかなように、ビタミンEを被覆したもの
は、血小板数の経時変動にはなんら悪影響を与え
ないことが明らかである。 (発明の効果) 以上述べたように、本発明による人工臓器は、
人工臓器内の体液流通域の該体液と接触し得る部
位の表面にビタミンEの被膜を被覆してなるもの
であるから、該ビタミンEの作用により生体に対
する副作用、例えば一過性白血球減少症を軽減す
ることができる。特に人工臓器が少なくとも一部
に透析膜を有する対外循環用人工臓器であり、ま
たそのうちでも特に透析膜が再生セルロース膜で
場合には、従来発現が著しかつた一過性白血球減
少症を著しく軽減できるので、従来使用初期に白
血球数の減少により大きかつた感染の危険性を低
下させることができる。また、ビタミンEは前記
一過性白血球減少症や血小板拡張に対して優れた
効果を示す。したがつて、人工腎臓、人工肝臓、
人工肺、血液分離装置、血液回路、人工血管等と
して有用であり、特に人工腎臓として優れた効果
を示す。また、人工腎臓等の人工臓器は、使用前
に生理食塩水等でプライミング操作を行なうが、
この操作の時に表面被覆した物質が剥離または溶
解しては充分な効果は得難いが、ビタミンEは脂
溶性であるので、本発明による人工臓器において
は、このような剥離または溶解はない。 また、本発明による人工臓器の製造方法は、人
工臓器内の体液流通域に有機溶媒溶液中のビタミ
ンEの濃度が0.01〜10w/v%であるビタミンEの
有機溶媒溶液を流入させて該溶液との接触部位に
該溶液を十分なじませたのち、該溶液を排出さ
せ、ついで乾燥して前記有機溶媒を除去すること
により行なわれるものであるから、被覆処理が容
易であり、このため低いコストとすることがで
き、また被覆時に化学反応を必要としないため、
被覆操作により副次的な人工臓器の汚染の可能性
が少ない。また、使用されるビタミンEの作用に
より生体に対する副作用、例えば一過性白血球減
少症を軽減することができ、また血小板拡張抑制
に対しても優れた効果を発揮する。また、ビタミ
ンEは有機溶媒溶液として使用されるので、脂溶
性であるビタミンを効率よく極めて薄く被覆する
ことができる。
[Table] Figure 4 shows the changes over time in the number of white blood cells obtained from the above results. In the figure, curve A shows the case of vitamin E 1.0%, curve B shows the case of vitamin E 0.1%, and curve C shows the case of vitamin E 0%. As is clear from FIG. 4, those coated with vitamin E and glycerin do not cause the transient leukopenia that usually occurs after the start of use, and the increase in white blood cells due to long-term use is extremely small. Furthermore, the change in platelet count over time is shown in FIG. In the same figure, curve D is for vitamin E 1.0%;
Curve E shows the case of vitamin E 0.1%, and curve F shows the case of vitamin E 0%. As is clear from FIG. 5, it is clear that the vitamin E coating does not have any adverse effect on the change in platelet count over time. (Effects of the invention) As described above, the artificial organ according to the present invention has
Since the surface of the body fluid circulation area in the artificial organ that can come into contact with the body fluid is coated with a vitamin E film, the action of the vitamin E can cause side effects on the living body, such as transient leukopenia. It can be reduced. In particular, when the artificial organ is an external circulation artificial organ that has at least a dialysis membrane at least in part, and especially when the dialysis membrane is a regenerated cellulose membrane, transient leukopenia, which has traditionally occurred significantly, can be significantly reduced. Therefore, it is possible to reduce the risk of infection, which conventionally was large due to a decrease in the number of white blood cells at the initial stage of use. Furthermore, vitamin E shows excellent effects on the above-mentioned transient leukopenia and platelet expansion. Therefore, artificial kidney, artificial liver,
It is useful as an artificial lung, blood separation device, blood circuit, artificial blood vessel, etc., and exhibits particularly excellent effects as an artificial kidney. In addition, artificial organs such as artificial kidneys are primed with physiological saline etc. before use.
If the surface-coated substance peels off or dissolves during this operation, it would be difficult to obtain a sufficient effect, but since vitamin E is fat-soluble, such peeling or dissolution does not occur in the artificial organ according to the present invention. In addition, the method for manufacturing an artificial organ according to the present invention includes flowing an organic solvent solution of vitamin E in which the concentration of vitamin E in the organic solvent solution is 0.01 to 10 w/v% into the body fluid circulation area in the artificial organ. The coating process is carried out by sufficiently applying the solution to the contact area, discharging the solution, and then drying to remove the organic solvent. Therefore, the coating process is easy and the cost is low. and does not require a chemical reaction during coating.
There is less possibility of secondary contamination of the artificial organ due to the covering operation. Furthermore, the action of the vitamin E used can reduce side effects on living organisms, such as transient leukopenia, and also exhibits an excellent effect on inhibiting platelet expansion. Furthermore, since vitamin E is used as an organic solvent solution, the fat-soluble vitamin can be efficiently coated extremely thinly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による人工臓器の一実施態様を
示す一部切欠部を有する斜視図、第2図は中空糸
の縦断面図、第3図は本発明による人工臓器の性
能評価のための実験回路、第4図は白血球数の経
時変動を示すグラフであり、また第5図は血小板
数の経時変動を示すグラフである。 1…ダイアライザー、4…筒状本体、5…中空
糸束、6,7…ポツテイング剤、10,11…ヘ
ツダー、12,13…キヤツプ。
FIG. 1 is a partially cutaway perspective view showing an embodiment of the artificial organ according to the present invention, FIG. 2 is a longitudinal cross-sectional view of a hollow fiber, and FIG. 3 is a perspective view showing an embodiment of the artificial organ according to the present invention. In the experimental circuit, FIG. 4 is a graph showing changes over time in the number of white blood cells, and FIG. 5 is a graph showing changes over time in the number of platelets. DESCRIPTION OF SYMBOLS 1... dialyzer, 4... cylindrical main body, 5... hollow fiber bundle, 6, 7... potting agent, 10, 11... header, 12, 13... cap.

Claims (1)

【特許請求の範囲】 1 人工臓器内の体液流通域の該体液と接触し得
る部位の表面にビタミンEの被膜を被覆してなる
人工臓器。 2 体液流通域は少なくともその一部分が体液透
過膜である特許請求の範囲第1項に記載の人工臓
器。 3 体液透過膜が再生セルロース膜である特許請
求の範囲第2項に記載の人工臓器。 4 再生セルロース膜が中空糸型膜である特許請
求の範囲第3項に記載の人工臓器。 5 人工臓器が人工腎蔵、人工肝臓、人工肺また
は血液分離装置である特許請求の範囲第1項ない
し第4項のいずれか一つに記載の人工臓器。 6 人工臓器内の体液流通域に有機溶媒溶液中の
ビタミンEの濃度が0.01〜10w/v%であるビタミ
ンEの有機溶媒溶液を流入させて該溶液との接触
部位に該溶液を充分なじませたのち、該溶液を排
出させ、ついで乾燥して前記有機溶媒を除去する
ことを特徴とする人工臓器内の体液流通域の該体
液と接触し得る部位の表面にビタミンEの被膜を
被覆してなる人工臓器の製造方法。 7 体液流通域は少なくともその一部分が体液透
過膜である特許請求の範囲第6項に記載の製造方
法。 8 体液透過膜が再生セルロース膜である特許請
求の範囲第7項に記載の製造方法。 9 再生セルロース膜が中空糸型膜である特許請
求の範囲第8項に記載の製造方法。 10 有機溶媒が低級アルコールである特許請求
の範囲第6項ないし第9項のいずれか一つに記載
の製造方法。 11 乾燥は前記体液流通域に10〜80℃の温度で
前記ビタミンEに対して不活性なガスを流通させ
て行なわれる特許請求の範囲第6項ないし第10
項のいずれか一つに記載の製造方法。
[Scope of Claims] 1. An artificial organ in which a vitamin E film is coated on the surface of a part of the artificial organ that can come into contact with the body fluid in the body fluid circulation area. 2. The artificial organ according to claim 1, wherein at least a portion of the body fluid flow area is a body fluid permeable membrane. 3. The artificial organ according to claim 2, wherein the body fluid permeable membrane is a regenerated cellulose membrane. 4. The artificial organ according to claim 3, wherein the regenerated cellulose membrane is a hollow fiber membrane. 5. The artificial organ according to any one of claims 1 to 4, wherein the artificial organ is an artificial kidney, an artificial liver, an artificial lung, or a blood separation device. 6. Flow an organic solvent solution of vitamin E in which the concentration of vitamin E in the organic solvent solution is 0.01 to 10 w/v% into the body fluid circulation area in the artificial organ, and thoroughly spread the solution to the contact area with the solution. After that, the solution is drained, and then the organic solvent is removed by drying.A coating of vitamin E is coated on the surface of a part of the body fluid circulation area in the artificial organ that can come into contact with the body fluid. A method for manufacturing artificial organs. 7. The manufacturing method according to claim 6, wherein at least a portion of the body fluid flow area is a body fluid permeable membrane. 8. The manufacturing method according to claim 7, wherein the body fluid permeable membrane is a regenerated cellulose membrane. 9. The manufacturing method according to claim 8, wherein the regenerated cellulose membrane is a hollow fiber membrane. 10. The manufacturing method according to any one of claims 6 to 9, wherein the organic solvent is a lower alcohol. 11. Drying is carried out by passing a gas inert to the vitamin E through the body fluid circulation area at a temperature of 10 to 80°C.
The manufacturing method described in any one of the paragraphs.
JP57155842A 1982-09-09 1982-09-09 Artificial organ and production thereof Granted JPS5964054A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP57155842A JPS5964054A (en) 1982-09-09 1982-09-09 Artificial organ and production thereof
DE8383108834T DE3378461D1 (en) 1982-09-09 1983-09-07 Artificial organ and method for manufacturing thereof
EP83108834A EP0103816B1 (en) 1982-09-09 1983-09-07 Artificial organ and method for manufacturing thereof
US06/530,023 US4588407A (en) 1982-09-09 1983-09-07 Artificial organ and method for manufacture thereof
US06/818,878 US4634447A (en) 1982-09-09 1986-01-14 Method for manufacturing artificial organ
US06/878,059 US4643715A (en) 1982-09-09 1986-06-24 Artificial organ and method for manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57155842A JPS5964054A (en) 1982-09-09 1982-09-09 Artificial organ and production thereof

Publications (2)

Publication Number Publication Date
JPS5964054A JPS5964054A (en) 1984-04-11
JPS6241738B2 true JPS6241738B2 (en) 1987-09-04

Family

ID=15614682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57155842A Granted JPS5964054A (en) 1982-09-09 1982-09-09 Artificial organ and production thereof

Country Status (1)

Country Link
JP (1) JPS5964054A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024602A (en) * 1988-06-10 1990-01-09 Tokyo Shokai:Kk Portion packaging apparatus for powdery and granular material
EP0749775A1 (en) * 1995-06-22 1996-12-27 Terumo Kabushiki Kaisha Method for production of hollow-fiber membrane, hollow-fiber membrane, and dialyzer
JP2007001922A (en) * 2005-06-23 2007-01-11 Asahi Kasei Pharma Kk Renal disease ameliorating agent in dialysis patient or functional food

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964057A (en) * 1982-10-06 1984-04-11 テルモ株式会社 Pasturized artificial organ and production thereof
JPS5964058A (en) * 1982-10-06 1984-04-11 テルモ株式会社 Pasturized artificial organ and production thereof
JPS5964056A (en) * 1982-10-06 1984-04-11 テルモ株式会社 Medical permeable menbrane and production thereof
JPS6080462A (en) * 1983-10-07 1985-05-08 テルモ株式会社 Production of medical permselective membrane
JPS6397546U (en) * 1986-12-17 1988-06-24

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418476A (en) * 1977-07-12 1979-02-10 Teijin Ltd Separating unit for fluid by use if hollow fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418476A (en) * 1977-07-12 1979-02-10 Teijin Ltd Separating unit for fluid by use if hollow fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024602A (en) * 1988-06-10 1990-01-09 Tokyo Shokai:Kk Portion packaging apparatus for powdery and granular material
EP0749775A1 (en) * 1995-06-22 1996-12-27 Terumo Kabushiki Kaisha Method for production of hollow-fiber membrane, hollow-fiber membrane, and dialyzer
JP2007001922A (en) * 2005-06-23 2007-01-11 Asahi Kasei Pharma Kk Renal disease ameliorating agent in dialysis patient or functional food

Also Published As

Publication number Publication date
JPS5964054A (en) 1984-04-11

Similar Documents

Publication Publication Date Title
US4588407A (en) Artificial organ and method for manufacture thereof
US5496637A (en) High efficiency removal of low density lipoprotein-cholesterol from whole blood
JP4848663B2 (en) Method for coating surface modification agent on hollow fiber blood purification membrane, surface modification agent coated hollow fiber blood purification membrane, and surface modification agent coated hollow fiber blood purification device
JPS6241738B2 (en)
JP3193819B2 (en) Artificial organ
JP3357262B2 (en) Hollow fiber membrane type body fluid purifying device and method of manufacturing the same
EP1658126B1 (en) Surface treatment of the membrane and associated product
JPH06296686A (en) Polysulfone hollow yarn membrane for medical purpose
JP4876431B2 (en) Method for coating surface modification agent on hollow fiber blood purification membrane, surface modification agent coated hollow fiber blood purification membrane, and surface modification agent coated hollow fiber blood purification device
JP3171896B2 (en) Permeable membrane with excellent biocompatibility
JPH0966225A (en) Production of hollow fiber membrane, hollow fiber membrane and dialyser
JPS633627B2 (en)
JP2717663B2 (en) Hollow fiber membrane dialysis machine
JPS633626B2 (en)
JP6383631B2 (en) Hollow fiber membrane blood purifier
EP0570232A2 (en) Microporous polysulfone supports suitable for removal of low density lipoprotein-cholesterol
JPS6246191B2 (en)
JP4129393B2 (en) Extracorporeal treatment apparatus for blood or plasma containing wet semipermeable membrane and method for producing the same
JPS6328625B2 (en)
JP4433821B2 (en) Modified substrate
JP4196570B2 (en) Hollow fiber membrane for plasma separation membrane or artificial kidney and module using the same
JPS6465B2 (en)
JP4830181B2 (en) Hollow fiber membrane for lipid peroxide adsorption and module using the same
JPS61115569A (en) Artificial kidney and its production
JP2018171431A (en) Hollow fiber membrane-type blood purifier