JPH1147567A - Separation membrane and its preparation - Google Patents

Separation membrane and its preparation

Info

Publication number
JPH1147567A
JPH1147567A JP9210517A JP21051797A JPH1147567A JP H1147567 A JPH1147567 A JP H1147567A JP 9210517 A JP9210517 A JP 9210517A JP 21051797 A JP21051797 A JP 21051797A JP H1147567 A JPH1147567 A JP H1147567A
Authority
JP
Japan
Prior art keywords
separation membrane
polyalkylene glycol
module
blood
hollow fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9210517A
Other languages
Japanese (ja)
Other versions
JP3651195B2 (en
Inventor
Fumiaki Fukui
文明 福井
Masaaki Shimagaki
昌明 島垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP21051797A priority Critical patent/JP3651195B2/en
Publication of JPH1147567A publication Critical patent/JPH1147567A/en
Application granted granted Critical
Publication of JP3651195B2 publication Critical patent/JP3651195B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a separation membrane which has high substance permeability and less adhesion of blood ingredients by making a polyalkylene glycol being water-insolubilized exist on at least part of the surface of the separation membrane at a specified ratio. SOLUTION: To obtain a separation membrane which is built in a device for hemocatharsis and has both high substance permeability and anti- thrombocyte adhesiveness, a water-insoluble polyalkylene glycol is made to exist on the surface of the separation membrane at a ratio of 0.01 ng/cm<2> -500 ng/cm<2> . In this case, the separation membrane is formed by using at least one resin selected from polysulfone resins, polymethacrylate resins, polyacrylonitriles, polyamides, etc., as a base material. Under a condition where this separation membrane base material is immersed in a polyalkylene glycol soln. or is brought into contact with it, it is irradiated with radiation beams. In addition, under a condition where the separation membrane base material is assembled into a module and the separation membrane base material is immersed in a polyalkylene glycol soln. or is brought into contact with it, it is irradiated with radiation beams to prepare a device for hemocatharsis in which the separation membrane is built.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い物質透過性能
と 抗血小板付着性を両立する分離膜及びそれを含む血
液浄化器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separation membrane having both high substance permeation performance and antiplatelet adhesion and a blood purifier including the same.

【0002】[0002]

【従来の技術】現在、様々な高分子材料が医療分野で使
用されているが、人工血管、カテーテル、血液バッグ、
人工腎臓等の直接血液に接触する用具においては、血漿
蛋白や血小板等の血液成分の付着、及びこれに起因する
血栓の形成は避け難い問題である。特に血液浄化に使用
される分離膜では、血液成分の付着が直接膜の性能低下
につながるため重要な問題である。
2. Description of the Related Art At present, various polymer materials are used in the medical field, but artificial blood vessels, catheters, blood bags,
In tools that come into direct contact with blood, such as artificial kidneys, the adhesion of blood components such as plasma proteins and platelets and the formation of thrombus resulting therefrom are inevitable problems. Particularly, in the case of a separation membrane used for blood purification, the adhesion of blood components directly leads to a decrease in the performance of the membrane, which is an important problem.

【0003】従来、血液浄化用の分離膜の素材として
は、セルロース、セルロースアセテート、セルロースト
リアセテート、ポリオレフィン、ポリイミド、ポリカー
ボネイト、ポリアリレート、ポリエステル、ポリアクリ
ロニトリル、ポリメタクリル酸メチル、ポリアミド、ポ
リスルホン系樹脂等の高分子化合物が用いられてきた。
その中でも特に、ポリオレフィン、ポリイミド、ポリカ
ーボネイト、ポリアリレート、ポリエステル、ポリアク
リロニトリル、ポリメタクリル酸メチル、ポリスルホン
系樹脂等は、その素材自身の疎水性のために、血液成
分、特に血漿蛋白や血小板の付着による性能の経時的な
劣化は避けられないものであった。かかる疎水性膜の欠
点を解決するために該膜を親水化する手段として、例え
ば特公昭63-51035には、水溶性の重合体を1〜
100μg/cm2の範囲でグラフト結合した医療材料が示
されているが、この様な手段は人工血管などに抗血栓性
を付与するという意味では有用であるが、分離膜におい
ては水溶性重合体が細孔を塞ぐ、もしくは小さくするた
め性能の低下が起こり好ましくない。また、特開平6-
228887には表面に水に対して不溶化された親水性
高分子物質を物理的に保持した中空糸膜が開示されてい
るが、血液適合性と物質透過性能とを高い次元で両立す
るには至っていない。つまり、現在までは高い物質透過
性と血液適合性を兼ね備えた分離膜は実現されていな
い。
[0003] Conventionally, materials for separation membranes for blood purification include cellulose, cellulose acetate, cellulose triacetate, polyolefin, polyimide, polycarbonate, polyarylate, polyester, polyacrylonitrile, polymethyl methacrylate, polyamide, and polysulfone resin. High molecular compounds have been used.
Among them, in particular, polyolefin, polyimide, polycarbonate, polyarylate, polyester, polyacrylonitrile, polymethyl methacrylate, polysulfone resin, etc., due to the hydrophobicity of the material itself, blood components, especially due to adhesion of plasma proteins and platelets Performance degradation over time was inevitable. As means for hydrophilizing the hydrophobic film to solve the drawbacks of the hydrophobic film, for example, Japanese Patent Publication No.
Although a medical material grafted in the range of 100 μg / cm2 is shown, such means is useful in imparting antithrombotic properties to an artificial blood vessel or the like, but a water-soluble polymer is used in a separation membrane. Since the pores are closed or reduced, the performance is deteriorated, which is not preferable. In addition, JP-A-6-
No. 2,288,872 discloses a hollow fiber membrane in which a hydrophilic polymer substance insolubilized in water is physically held on the surface. However, it has not been possible to achieve both high blood compatibility and high substance permeation performance. Not in. That is, to date, a separation membrane having both high substance permeability and blood compatibility has not been realized.

【0004】[0004]

【発明が解決しようとする課題】本発明者は従来の技術
の改良を目指し、高い物質透過性をもち、なお且つ血漿
蛋白や血小板等の血液成分の付着も少ない分離膜、およ
びかかる分離膜を内蔵した血液適合性、特に抗血小板付
着性を有する血液浄化器を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present inventor aims to improve the prior art by providing a separation membrane having a high substance permeability and less adhesion of blood components such as plasma proteins and platelets, and such a separation membrane. An object of the present invention is to provide a blood purifier having built-in blood compatibility, particularly antiplatelet adhesion.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明は次の構成を有する。すなわち、 (1)表面の少なくとも一部に水不溶化したポリアルキ
レングリコールが0.01ng/cm2以上、500ng/cm2以
下の割合で存在することを特徴とする分離膜。
In order to achieve the above object, the present invention has the following arrangement. (1) A separation membrane characterized in that a water-insoluble polyalkylene glycol is present on at least a part of the surface at a rate of 0.01 ng / cm2 or more and 500 ng / cm2 or less.

【0006】(2)上記1記載の分離膜を内蔵すること
を特徴とする血液浄化器。
(2) A blood purifier comprising the separation membrane according to the above (1).

【0007】(3)分離膜基材をポリアルキレングリコ
ール溶液に浸漬、もしくは接触させた状態で放射線を照
射することを特徴とする前記分離膜の製造方法。
(3) The method for producing a separation membrane, wherein the substrate is irradiated with radiation while the base material of the separation membrane is immersed in or in contact with the polyalkylene glycol solution.

【0008】(4)分離膜基材をモジュールに組み込
み、分離膜基材をポリアルキレングリコール溶液に浸
漬、もしくは接触させた状態で放射線を照射することを
特徴とする前記分離膜を内蔵する血液浄化器の製造方
法。
(4) A blood purification system incorporating the separation membrane, wherein the separation membrane substrate is incorporated in a module, and the separation membrane substrate is irradiated with radiation while being immersed or in contact with the polyalkylene glycol solution. Method of manufacturing the vessel.

【0009】[0009]

【発明の実施の形態】本発明では、セルロース、セルロ
ースアセテート、セルローストリアセテート、ポリオレ
フィン、ポリイミド、ポリカーボネイト、ポリアリレー
ト、ポリエステル、ポリアクリロニトリル、ポリメタク
リル酸メチル、ポリアミド、ポリスルホン系樹脂等の高
分子化合物などを主成分とし、さらにそれを基材とする
分離膜において効果が発揮されるが、その中でも特に、
ポリスルホン系樹脂・ポリメタクリル酸系樹脂・ポリア
クリロニトリル・ポリアミド・セルロース系樹脂をもつ
分離膜において特に顕著に発揮される。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, polymer compounds such as cellulose, cellulose acetate, cellulose triacetate, polyolefin, polyimide, polycarbonate, polyarylate, polyester, polyacrylonitrile, polymethyl methacrylate, polyamide, and polysulfone resin are used. The main component, the effect is exhibited in the separation membrane further using it as a base material, among which, in particular,
It is particularly remarkably exhibited in a separation membrane having a polysulfone resin, a polymethacrylic acid resin, a polyacrylonitrile, a polyamide, and a cellulose resin.

【0010】本発明における血液浄化器とは、血液透析
器、血液濾過器、血液濾過透析器、血漿分離器等の血液
処理用の分離膜を含有するモジュールである。
[0010] The blood purifier in the present invention is a module containing a separation membrane for blood treatment, such as a hemodialyzer, a hemofilter, a hemofiltration dialyzer, and a plasma separator.

【0011】本発明におけるポリアルキレングリコール
は例えばポリエチレングリコールやポリプロピレングリ
コールに代表される主鎖中に酸素原子を含む鎖状高分子
であるが、ポリアルキレングリコールがグラフトしたポ
リマーであっていてもよい。
The polyalkylene glycol in the present invention is a chain polymer containing an oxygen atom in the main chain represented by, for example, polyethylene glycol or polypropylene glycol, but may be a polymer grafted with polyalkylene glycol.

【0012】かかる水不溶性ポリアルキレングリコール
は0.01〜500ng/cm2の範囲、好ましくは0.05〜
300ng/cm2の範囲で不溶化されて、分離膜の表面に存
在していることが必要である。ポリアルキレングリコー
ルの固定化密度が少ないと、抗血小板付着性の程度は低
く、逆に固定化密度が高いと膜表面でポリアルキレング
リコールのゲル層が形成されたり、ポリアルキレングリ
コールが膜の細孔を塞いでしまうために物質透過性が低
下する傾向にある。また上記の範囲のうち、200ng/c
m2未満、10ng/cm2未満の密度も選択することができ
る。
The water-insoluble polyalkylene glycol is in the range of 0.01 to 500 ng / cm 2, preferably 0.05 to 500 ng / cm 2.
It must be insolubilized in the range of 300 ng / cm2 and exist on the surface of the separation membrane. If the immobilization density of polyalkylene glycol is low, the degree of antiplatelet adhesion is low, and if the immobilization density is high, a gel layer of polyalkylene glycol is formed on the membrane surface, , The material permeability tends to decrease. In addition, 200ng / c
Densities below m2 and below 10 ng / cm2 can also be selected.

【0013】このポリアルキレングリコールの不溶化の
程度(以下固定化密度ということがある)は従来材料表
面を親水化する目的で行われてきた処理方法に比較し
て、非常に低いものである。従来の方法は材料表面に比
較的多量の親水性高分子を固定し、材料表面を被覆する
ことにより親水性化するという考え方であり、このよう
な方法は例えば血液回路や血液バッグ等には有効である
かもしれないが、血液処理のための分離膜に適用した場
合、膜表面に親水性高分子のゲル層ができてしまうた
め、血漿蛋白や血小板などの血液成分の付着を抑制 す
ることはできても、膜本来の物質透過性能を維持するこ
とは困難である。これに対して、本発明ではポリアルキ
レングリコールの割合を0.01〜500ng/cm2の範囲
にすることにより、その詳細なメカニズムは不明ではあ
るが、例えば膜表面上にポリアルキレングリコールがゲ
ル層を形成することなく、ポリアルキレングリコールの
本来もつ運動性、言い換えればその排除体積効果により
血液成分の膜表面への接触を抑制 し高い抗血小板付着
性を発現し、かつ高い物質透過性能を維持することがで
きると考えている。
The degree of insolubilization of the polyalkylene glycol (hereinafter sometimes referred to as immobilization density) is extremely low as compared with the conventional treatment method for the purpose of making the material surface hydrophilic. The conventional method is to fix a relatively large amount of hydrophilic polymer on the surface of a material and make the material hydrophilic by coating the surface of the material. Such a method is effective for blood circuits and blood bags, for example. However, when applied to a separation membrane for blood treatment, a gel layer of a hydrophilic polymer is formed on the membrane surface, and therefore, it is not possible to suppress the adhesion of blood components such as plasma proteins and platelets. Even if it is possible, it is difficult to maintain the original material permeation performance of the membrane. In contrast, in the present invention, by setting the proportion of polyalkylene glycol in the range of 0.01 to 500 ng / cm2, the detailed mechanism is unknown, but for example, the polyalkylene glycol forms a gel layer on the film surface. Without forming, the inherent motility of polyalkylene glycol, in other words, the elimination volume effect, suppresses the contact of blood components with the membrane surface, expresses high antiplatelet adhesion, and maintains high substance permeation performance We think that we can do.

【0014】水不溶化性ポリアルキレングリコールと
は、ポリアルキレングリコールが分離膜表面に物理的お
よび/または化学的に固定化されており、有効膜面積
(中空糸膜の場合は内表面基準)1m2 の分離膜を37
℃の蒸留水1Lに1時間浸漬したとき、蒸留水中に溶出
するポリアルキレングリコールが1mg以下である状態
をいう。そしてその量は、分離膜の有効膜面積(中空糸
膜の場合は内表面基準)1m2 あたり1Lの37℃の蒸
留水に1時間浸漬したとき、蒸留水中に溶出するポリア
ルキレングリコールが1mg以下になるまで洗浄した状
態で残存したポリアルキレングリコールの量を言う。
The water-insoluble polyalkylene glycol is a polyalkylene glycol which is physically and / or chemically immobilized on the surface of a separation membrane, and has an effective membrane area of 1 m 2 (based on the inner surface in the case of a hollow fiber membrane). 37
When immersed in 1 L of distilled water at 1 ° C. for 1 hour, the polyalkylene glycol eluted in distilled water is 1 mg or less. The amount of the polyalkylene glycol eluted in distilled water is 1 mg or less when immersed in 1 L of 37 ° C. distilled water for 1 hour per 1 m 2 per 1 m 2 of the effective membrane area of the separation membrane (in the case of hollow fiber membrane, based on the inner surface). Means the amount of polyalkylene glycol remaining after washing until the

【0015】ポリアルキレングリコールを膜表面に固定
化するには、従来公知の方法を使用することができ、固
定化密度が上述した範囲になるよう条件を操作すればよ
い。例えば放射線を用いる方法であれば、分離膜基材を
ポリアルキレングリコール溶液(望ましくは水溶液)に
浸漬、もしくは接触させた状態で放射線を照射すればよ
く、膜表面にポリアルキレングリコールが上記範囲で水
に対して不溶化されればよい。また分離膜を含有する血
液透析器、血液濾過器、血液濾過透析器、血漿分離器等
の血液浄化器を抗血小板付着性化する場合であれば、該
血液浄化器内の分離膜および少なくとも血液が接触する
部分全てにポリアルキレングリコール水溶液が接触した
状態で放射線処理すれば、膜表面ばかりでなく、血液浄
化器端部やヘッダーの内側などの血液が接触する部位の
全てを抗血小板付着性化することが可能であり、さらに
血液浄化器端部での血液凝固を軽減することも可能であ
る。
In order to immobilize the polyalkylene glycol on the membrane surface, a conventionally known method can be used, and conditions may be adjusted so that the immobilization density is in the above-mentioned range. For example, in the case of a method using radiation, radiation may be applied while the separation membrane substrate is immersed in or brought into contact with a polyalkylene glycol solution (preferably an aqueous solution). What is necessary is just to be insolubilized with respect to. When a blood purifier such as a hemodialyzer, a hemofilter, a hemofiltration dialyzer, and a plasma separator containing a separation membrane is made to have antiplatelet adhesion, the separation membrane and at least the blood in the blood purifier are used. If radiation treatment is performed while the polyalkylene glycol aqueous solution is in contact with all the parts that come into contact, not only the surface of the membrane but also all the parts that come into contact with blood, such as the end of the blood purifier and the inside of the header, have antiplatelet adhesion. It is also possible to reduce blood clotting at the end of the blood purifier.

【0016】前述の方法で、溶液中でのポリアルキレン
グリコールの分子量およびポリアルキレングリコール水
溶液の濃度は特に限定するものではなく、希望する抗血
小板付着性の程度さらにポリアルキレングリコール水溶
液に対する分離膜の量により最適な条件を選択すること
ができる。例えば一般には低分子量、低濃度の組み合わ
せであれば比較的抗血小板付着性化の程度は低く、分子
量が高くなるほど、また濃度が高くなるほど抗血小板付
着性化の程度は高くなる。また、低濃度であってもポリ
アルキレングリコールの分子量をあげるか、逆に低分子
量のポリアルキレングリコールであっても水溶液濃度を
高くすることにより膜表面のポリアルキレングリコール
の固定化密度はあがり、抗血小板付着性化の程度は高く
なる。しかし本発明の処理方法ではポリアルキレングリ
コールの分子量を選択することにより水溶液の濃度が1
〜5000ppmと比較的低濃度であっても十分な抗血小
板付着性を得ることができるので、抗血小板付着性化に
対するコストを低く抑えることができるばかりか、分離
膜を含有する血液浄化器にポリアルキレングリコール水
溶液を充填して放射線処理する場合には、処理後の血液
浄化器の洗浄をなくすことさえ可能であり、好ましい。
他方、高分子量、高濃度の組み合わせになると、膜表面
にポリアルキレングリコール鎖が固定化するだけでなく
ポリアルキレングリコール鎖同士が互いに架橋し膜表面
にゲル層を形成したり、ポリアルキレングリコール鎖が
分離膜の細孔を塞ぎ易くなり、物質透過性が低下する恐
れがある。
In the above method, the molecular weight of the polyalkylene glycol and the concentration of the aqueous solution of the polyalkylene glycol in the solution are not particularly limited, and the desired degree of antiplatelet adhesion and the amount of the separation membrane with respect to the aqueous solution of the polyalkylene glycol are not limited. , An optimal condition can be selected. For example, in general, the degree of antiplatelet adhesion is relatively low for a combination of low molecular weight and low concentration, and the degree of antiplatelet adhesion is higher as the molecular weight is higher or the concentration is higher. Also, by increasing the molecular weight of the polyalkylene glycol even at a low concentration, or conversely, by increasing the aqueous solution concentration even at a low molecular weight polyalkylene glycol, the immobilized density of the polyalkylene glycol on the membrane surface increases, The degree of platelet adhesion is increased. However, in the treatment method of the present invention, by selecting the molecular weight of the polyalkylene glycol, the concentration of the aqueous solution becomes 1
Sufficient antiplatelet adhesion can be obtained even at a relatively low concentration of up to 5,000 ppm, so that not only the cost for antiplatelet adhesion can be kept low, but also a blood purification device containing a separation membrane can be used in a blood purification device. In the case of performing radiation treatment by filling with an alkylene glycol aqueous solution, it is possible to even eliminate washing of the blood purifier after the treatment, which is preferable.
On the other hand, when the combination of high molecular weight and high concentration is used, not only the polyalkylene glycol chains are immobilized on the membrane surface, but also the polyalkylene glycol chains cross-link with each other to form a gel layer on the membrane surface, The pores of the separation membrane can be easily closed, and the material permeability may be reduced.

【0017】また、ポリアルキレングリコールの分子量
とポリアルキレングリコール水溶液の濃度との関係は抗
血小板付着性化したい分離膜の素材やその形状、細孔径
などにより個々の場合について最適な条件は異なる。
The optimum conditions for the relationship between the molecular weight of the polyalkylene glycol and the concentration of the aqueous solution of the polyalkylene glycol differ depending on the material of the separation membrane to be made antiplatelet-adhering, its shape, pore size, and the like.

【0018】例えば血液透析器に使用されるポリスルホ
ン中空糸分離膜の場合、数平均分子量200程度の比較
的低分子量のポリアルキレングリコールであれば、50
ppmよりも低い濃度では高い抗血小板付着性は期待でき
ないし、逆に分子量20000程度の比較的高分子量の
ポリアルキレングリコールであれば、50000ppm以
上の濃度では物質透過性の低下が起こる傾向がある。以
上のことから、ポリスルホン中空糸分離膜の場合、ポリ
アルキレングリコールの分子量と水溶液濃度(ppm)の
積が104以上107以下であることが好ましい。また、
血液透析器に使用されるポリメタクリル酸メチル中空糸
分離膜であれば、前記のポリスルホン中空糸分離膜の場
合に比較して抗血小板付着性化の効果が期待できるポリ
アルキレングリコールの分子量または水溶液の濃度は比
較的高く、分子量1000のポリアルキレングリコール
の場合は1000ppm以上の、また分子量6000の場
合は100ppm以上の水溶液濃度が必要である。さらに
分子量20000程度の比較的高分子量のポリアルキレ
ングリコールの濃度2000ppm以上の高濃度水溶液で
あっても物質透過性の低下はなく好適に用いることがで
きる。以上のことから、ポリメタクリル酸メチル中空糸
分離膜の場合、ポリアルキレングリコールの分子量と水
溶液濃度(ppm)の積が106以上、一方109以下であ
ることが好ましい。ポリアクリロニトリル中空糸分離膜
の場合には比較的低分子量、低濃度の場合には顕著な効
果はみられないが、例えば分子量1000ならば濃度2
000ppm以上で、分子量6000ならば濃度1000p
pm以上で抗血小板付着性の効果が現れる。つまり、ポリ
アクリロニトリル中空糸分離膜の場合、ポリアルキレン
グリコールの分子量と水溶液濃度(ppm)の積が106
上109以下であることが好ましい。ポリアミド中空糸
分離膜もポリアクリロニトリル中空糸分離膜同様、比較
的低分子量、低濃度の場合には効果がなく、例えば分子
量1000ならば濃度1000ppm以上で、分子量60
00ならば濃度500ppm以上で抗血小板付着性の効果
が現れ、好適な水溶液の条件はポリアクリロニトリル中
空糸分離膜の場合とほぼ同じである。一方、セルロース
系樹脂中空糸分離膜の場合は、比較的低分子量、低濃度
の組み合わせであっても効果が現れ、例えば分子量20
0でも濃度500ppm以上で、分子量1000ならば濃
度500ppm以上で抗血小板付着性の効果が現れる。つ
まり、セルロース系樹脂中空糸分離膜の場合には、ポリ
アルキレングリコールの分子量と水溶液濃度(ppm)の
積が104以上109以下であることが好ましい。
For example, in the case of a polysulfone hollow fiber separation membrane used for a hemodialyzer, a relatively low molecular weight polyalkylene glycol having a number average molecular weight of about 200 is used.
At a concentration lower than ppm, high anti-platelet adhesion cannot be expected. Conversely, with a relatively high molecular weight polyalkylene glycol having a molecular weight of about 20,000, a decrease in substance permeability tends to occur at a concentration of 50,000 ppm or more. From the above, in the case of the polysulfone hollow fiber separation membrane, the product of the molecular weight of the polyalkylene glycol and the concentration of the aqueous solution (ppm) is preferably 10 4 or more and 10 7 or less. Also,
If it is a polymethyl methacrylate hollow fiber separation membrane used for a hemodialyzer, the molecular weight or aqueous solution of a polyalkylene glycol which can be expected to have an effect of antiplatelet adhesion compared to the case of the polysulfone hollow fiber separation membrane described above. The concentration is relatively high, and a polyalkylene glycol having a molecular weight of 1000 requires an aqueous solution concentration of 1000 ppm or more, and a molecular weight of 6000 requires an aqueous solution concentration of 100 ppm or more. Furthermore, even a high-concentration aqueous solution having a concentration of 2000 ppm or more of a relatively high-molecular-weight polyalkylene glycol having a molecular weight of about 20,000 can be suitably used without a decrease in substance permeability. From the above, in the case of the polymethyl methacrylate hollow fiber separation membrane, the product of the molecular weight of the polyalkylene glycol and the concentration of the aqueous solution (ppm) is preferably 10 6 or more, and on the other hand, 10 9 or less. In the case of a polyacrylonitrile hollow fiber separation membrane, a remarkable effect is not seen at a relatively low molecular weight and at a low concentration.
If the molecular weight is 6000 ppm or more and the molecular weight is 6000, the concentration is 1000p
Above pm, the antiplatelet adhesion effect appears. That is, in the case of the polyacrylonitrile hollow fiber separation membrane, the product of the molecular weight of the polyalkylene glycol and the concentration of the aqueous solution (ppm) is preferably 10 6 or more and 10 9 or less. Similarly to the polyacrylonitrile hollow fiber separation membrane, the polyamide hollow fiber separation membrane has no effect when the molecular weight is relatively low and the concentration is low.
If the concentration is 00, the effect of anti-platelet adhesion appears at a concentration of 500 ppm or more, and the suitable conditions for the aqueous solution are almost the same as those for the polyacrylonitrile hollow fiber separation membrane. On the other hand, in the case of a cellulosic resin hollow fiber separation membrane, the effect is exhibited even in a combination of a relatively low molecular weight and a low concentration.
Even if the concentration is 0, the concentration is 500 ppm or more, and if the molecular weight is 1,000, the effect of antiplatelet adhesion appears at a concentration of 500 ppm or more. That is, in the case of the cellulose resin hollow fiber separation membrane, the product of the molecular weight of the polyalkylene glycol and the concentration of the aqueous solution (ppm) is preferably 10 4 or more and 10 9 or less.

【0019】放射線の照射量は特に限定されるものでは
なく、抗血小板付着性化したい膜表面や血液浄化器の血
液が接触する面にポリアルキレングリコール鎖が固定化
するだけの照射量があればよく、好ましくは吸収エネル
ギーとして10〜50kGy、さらに好ましくは15〜4
0kGy程度が好適に用いられる。また、抗血小板付着性
を付与すると同時に滅菌を行うこともできる。
The irradiation dose of radiation is not particularly limited, provided that the irradiation dose is such that the polyalkylene glycol chains are immobilized on the surface of the membrane to be made antiplatelet-adherent or the blood contact surface of the blood purifier. Good, preferably 10 to 50 kGy as absorption energy, more preferably 15 to 4 kGy
About 0 kGy is preferably used. In addition, sterilization can be performed simultaneously with imparting antiplatelet adhesion.

【0020】[0020]

【実施例】以下に本発明を実施例に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.

【0021】以下、用いた測定法は以下の通りである。Hereinafter, the measuring method used is as follows.

【0022】(1)ポリエチレングリコールの固定化密
度の測定 放射線照射後のミニモジュール(もしくは小型モジュー
ル)を解体して中空糸を取り出し、中空糸内表面積1m
2 あたり1Lの37℃の蒸留水に1時間浸漬し、蒸留水
中に溶出するPEG量が1mg以下になるまで水を交換し
ながら洗浄した。洗浄した中空糸を50℃、0.5torr
にて10時間乾燥した。乾燥した中空糸10〜100mg
を試験管に取り、無水酢酸とパラトルエンスルホン酸の
混合溶液2mlを添加し、120℃で約1時間アセチル化
し、冷却後2mlの純水で器壁を洗い落とした後、20%
炭酸ナトリウム溶液で中和し、トリクロロメタン5mlで
抽出し、ガスクロマトグラフィ法(以下GCと言う)で分
析した。
(1) Measurement of immobilized density of polyethylene glycol The mini-module (or small module) after irradiation was disassembled, and the hollow fiber was taken out.
It was immersed in 1 L of distilled water at 37 ° C. for 1 hour for 2 hours, and washed while exchanging water until the amount of PEG eluted in distilled water became 1 mg or less. Washed hollow fiber at 50 ° C, 0.5 torr
For 10 hours. 10-100 mg of dried hollow fiber
Was placed in a test tube, 2 ml of a mixed solution of acetic anhydride and paratoluenesulfonic acid was added, the mixture was acetylated at 120 ° C. for about 1 hour, and after cooling, the wall was washed off with 2 ml of pure water, and then 20%
The mixture was neutralized with a sodium carbonate solution, extracted with 5 ml of trichloromethane, and analyzed by gas chromatography (hereinafter referred to as GC).

【0023】膜に固定化されているポリエチレングリコ
ール量は、予め作成した検量線から求めた。
The amount of polyethylene glycol immobilized on the membrane was determined from a previously prepared calibration curve.

【0024】単位表面積当たりの固定化密度はGCにより
求めた固定化量を、窒素吸着法により求めた膜の細孔内
部を含む表面積で割り、求めた。
The immobilization density per unit surface area was determined by dividing the amount of immobilization determined by GC by the surface area including the inside of the pores of the membrane determined by the nitrogen adsorption method.

【0025】(2)in vitro 血小板付着実験 放射線照射後のミニモジュールの血液入口と透析液出口
をシリコンチューブで繋ぎ、血液出口から蒸留水500
mlを100ml/minの流速で流し中空糸およびモジュール
内部を洗浄した後、中空糸中空部分に、3.8%クエン
酸ナトリウム水溶液を10容量%添加した家兎新鮮血1
0ccを0.57ml/minで流し、生理食塩水にて洗浄後グ
ルタルアルデヒド固定し、中空糸分離膜をミニモジュー
ルから切り出して凍結乾燥した。この中空糸の内表面を
FE-SEM(フィールドエミッション型走査電子顕微鏡)に
て観察し、0.01cm2の面積中の付着血小板数を数え
た。
(2) In vitro Platelet Adhesion Experiment The blood inlet and dialysate outlet of the mini-module after irradiation were connected with a silicon tube, and distilled water 500
After the hollow fiber and the inside of the module were washed by flowing 100 ml / min at a flow rate of 100 ml / min, rabbit fresh blood 1 containing 10% by volume of a 3.8% aqueous sodium citrate solution was added to the hollow fiber hollow portion.
0 cc was flowed at 0.57 ml / min, washed with physiological saline, fixed with glutaraldehyde, and the hollow fiber separation membrane was cut out from the mini-module and freeze-dried. The inner surface of this hollow fiber
Observation was performed with a FE-SEM (field emission scanning electron microscope), and the number of adhered platelets in an area of 0.01 cm 2 was counted.

【0026】(3)in vivo 血小板付着実験 放射線照射後の小型モジュールの血液入口と透析液出口
をシリコンチューブで繋ぎ、血液出口から蒸留水100
0mlを100ml/minの流速で流し中空糸およびモジュー
ル内部を洗浄した後、体重約3kgの家兎の頚動脈から導
き出した血液を小型モジュールの血液入口から中空糸中
空部に通し、小型モジュールの血液出口から該家兎の頚
静脈へ戻す体外循環試験を行った。血液の流速は50ml
/min、抗凝固剤としてヘパリンを18IU 初期投与し、
更に60IU/hr 持続投与しながら3時間循環した。体
外循環終了後、in vitro 血小板付着実験と同様に生理
食塩水にて洗浄後グルタルアルデヒド固定し、モジュー
ルから切り出した中空糸及びモジュールヘッダーを凍結
乾燥した。この中空糸の内表面及びモジュールヘッダー
内側(血液接触面)をFE-SEMにて観察し、0.01cm2の
面積中の付着血小板数を数えた。
(3) In Vivo Platelet Adhesion Experiment The blood inlet and dialysate outlet of the small module after irradiation were connected with a silicon tube, and 100 mL of distilled water was passed through the blood outlet.
After washing the hollow fiber and the inside of the module by flowing 0 ml at a flow rate of 100 ml / min, blood drawn from the carotid artery of a rabbit weighing about 3 kg is passed through the hollow fiber hollow through the blood inlet of the small module and the blood outlet of the small module. An extracorporeal circulation test was performed to return the rabbit to the jugular vein of the rabbit. The blood flow rate is 50ml
/ Min, initial administration of heparin as an anticoagulant 18 IU,
Circulation was continued for 3 hours while continuously administering 60 IU / hr. After the end of extracorporeal circulation, the cells were washed with physiological saline and fixed with glutaraldehyde in the same manner as in the in vitro platelet adhesion experiment, and the hollow fiber cut out from the module and the module header were freeze-dried. The inner surface of the hollow fiber and the inside of the module header (blood contact surface) were observed by FE-SEM, and the number of adhered platelets in an area of 0.01 cm 2 was counted.

【0027】(4)in vitro β2-ミクログロブリン
(以下β2-MG)除去性能の測定 放射線照射後のミニモジュールの血液入口と透析液出口
をシリコンチューブで繋ぎ、血液出口から蒸留水500
mlを100ml/minの流速で流し中空糸およびモジュール
内部を洗浄した後、フィルター処理を行った牛血清 3
0ml に、ヒトβ2-MGを5mg/mlの濃度で溶解し、ミニ
モジュール内の中空糸中空部分に1ml/minで灌流し、中
空糸外側には37℃に保ったPBS140mlを20ml/min
の速度で密閉形で灌流した。4時間灌流後中空糸内側・
外側灌流液を採取し、クリアランスを算出した。クリア
ランスは式(2)により算出した。
(4) Measurement of β2-microglobulin (β2-MG) removal performance in vitro The blood inlet and the dialysate outlet of the mini-module after irradiation were connected with a silicon tube, and distilled water 500 from the blood outlet.
After the hollow fiber and the inside of the module were washed by flowing 100 ml / min at a flow rate of 100 ml / min, the bovine serum was subjected to a filter treatment.
In 0 ml, human β2-MG was dissolved at a concentration of 5 mg / ml, and perfused into the hollow portion of the hollow fiber in the mini-module at 1 ml / min, and 140 ml of PBS kept at 37 ° C. was added to the outside of the hollow fiber at 20 ml / min.
Perfusion in closed form at a speed of. After perfusion for 4 hours
The outer perfusate was collected and the clearance was calculated. The clearance was calculated by equation (2).

【数1】 ここでCL:クリアランス(ml/min)、CBi:モジュール入
口側濃度(mg/ml)、 CBo:モジュール出口側濃度(mg/m
l)、QB:モジュール供給液量(ml/min)である。
(Equation 1) Where CL: clearance (ml / min), CBi: concentration at the module inlet (mg / ml), CBo: concentration at the module outlet (mg / m)
l), QB: Module supply liquid volume (ml / min).

【0028】また、実施例、比較例に使用した試料中空
糸は次のようにして準備した。
The sample hollow fibers used in Examples and Comparative Examples were prepared as follows.

【0029】実施例1〜12、比較例1 ポリスルホン(ユ―デルP―3500)20部、水2部
をN,N-ジメチルアセトアミド78部に加え、加熱溶解し
た。この製膜原液をオリフィス型二重円筒型口金より吐
出し空気中を200mm通過した後、水100%の凝固浴
中に導き中空糸を得た。この際、内部注入液にはDMAc5
0部、水50部の注入液を用いた。該中空糸の内径は
0.2mm、膜厚は0.04mmであった。
Examples 1 to 12 and Comparative Example 1 20 parts of polysulfone (Udel P-3500) and 2 parts of water were added to 78 parts of N, N-dimethylacetamide and dissolved by heating. This membrane-forming stock solution was discharged from an orifice-type double cylindrical die, passed through the air 200 mm, and then guided into a coagulation bath of 100% water to obtain a hollow fiber. At this time, DMAc5
An injection liquid of 0 parts and 50 parts of water was used. The inner diameter of the hollow fiber was 0.2 mm, and the film thickness was 0.04 mm.

【0030】このようにして準備したポリスルホン中空
糸分離膜を40本束ね、中空糸中空部を閉塞しないよう
にエポキシ系ポッティング剤で両末端をガラス管モジュ
ールケースに固定し、図1に示す形状のミニモジュール
を作成した。該ミニモジュールの直径は約7mm、長さは
約10cmである。
The polysulfone hollow fiber separation membranes thus prepared were bundled in a bundle of 40, and both ends were fixed to a glass tube module case with an epoxy potting agent so as not to block the hollow portion of the hollow fiber. Created a mini module. The mini-module has a diameter of about 7 mm and a length of about 10 cm.

【0031】該ミニモジュールの血液入口と透析液出口
をシリコンチューブで繋ぎ、血液出口からポリエチング
リコール水溶液100mlを100ml/minの流速で流し、
ミニモジュール内に空気が入らないようにキャップを
し、30kGyでγ線を照射した。ミニモジュールに充填
したポリエチレングリコール水溶液のポリエチレングリ
コールの分子量および水溶液濃度を表に示す。このよう
にして準備したミニモジュールを用いて、ポリエチレン
グリコールの固定化密度の測定、in vitro 血小板付着
実験およびin vitro β2-MG除去性能の測定を行った。
各ミニモジュールの測定結果を蒸留水を充填し、γ線を
照射した比較例1の結果を100とした相対値で表に示
す。
The blood inlet and the dialysate outlet of the mini-module are connected by a silicon tube, and 100 ml of a polyethene glycol aqueous solution is flowed from the blood outlet at a flow rate of 100 ml / min.
The mini-module was capped to prevent air from entering, and irradiated with γ-rays at 30 kGy. The molecular weight and aqueous solution concentration of polyethylene glycol in the aqueous polyethylene glycol solution filled in the mini-module are shown in the table. Using the mini-module thus prepared, the measurement of the immobilized density of polyethylene glycol, the in vitro platelet adhesion experiment, and the in vitro β2-MG removal performance were measured.
The measurement results of each mini-module are shown in the table as relative values when the results of Comparative Example 1 in which distilled water was filled and γ-rays were irradiated were set to 100.

【0032】実施例13〜21、比較例2 iso(アイソタクティック)-ポリメタクリル酸メチル5
部、syn(シンジオタクティック)-ポリメタクリル酸メ
チル20部をジメチルスルホキシド75部に加え、加熱
溶解した。この製膜原液をオリフィス型二重円筒型口金
より吐出し空気中を200mm通過した後、水100%の
凝固浴中に導き中空糸を得た。この際、内部注入気体と
して乾燥窒素を用いた。該中空糸の内径は0.2mm、膜
厚は0.03mmであった。
Examples 13 to 21, Comparative Example 2 iso (isotactic) -polymethyl methacrylate 5
Parts, syn (syndiotactic) -polymethyl methacrylate (20 parts) was added to dimethyl sulfoxide (75 parts) and dissolved by heating. This membrane-forming stock solution was discharged from an orifice-type double cylindrical die, passed through the air 200 mm, and then guided into a coagulation bath of 100% water to obtain a hollow fiber. At this time, dry nitrogen was used as the internal injection gas. The inner diameter of the hollow fiber was 0.2 mm, and the film thickness was 0.03 mm.

【0033】このようにして準備したポリメタクリル酸
メチル中空糸分離膜を用いて、実施例1と同様にミニモ
ジュールを作成し、蒸留水もしくは種種のポリエチング
リコール水溶液を充填し、30kGyでγ線を照射した。
ミニモジュールに充填したポリエチレングリコール水溶
液のポリエチレングリコールの分子量および水溶液濃度
を表に示す。この様にして準備したミニモジュールを用
いて、ポリエチレングリコールの固定化密度の測定、in
vitro 血小板付着実験およびin vitro β2-MG除去性
能の測定を行った。各ミニモジュールの測定結果を蒸留
水を充填しγ線照射した比較例2の結果を100とした
相対値で表に示す。
Using the polymethyl methacrylate hollow fiber separation membrane prepared in this manner, a mini-module was prepared in the same manner as in Example 1, filled with distilled water or various polyethyne glycol aqueous solutions, and subjected to γ-ray irradiation at 30 kGy. Was irradiated.
The molecular weight and aqueous solution concentration of polyethylene glycol in the aqueous polyethylene glycol solution filled in the mini-module are shown in the table. Using the mini-module prepared in this way, measurement of the immobilized density of polyethylene glycol, in
An in vitro platelet adhesion experiment and in vitro β2-MG removal performance were measured. The measurement results of each mini-module are shown in the table as relative values, where the results of Comparative Example 2 in which distilled water was filled and γ-ray irradiation was performed were set to 100.

【0034】実施例22、比較例3 旭メディカル社製ダイアライザー”PAN-17DX”を解体
し、中空糸分離膜(ポリアクリロニトリル製)を切り出
した。
Example 22, Comparative Example 3 A dialyzer "PAN-17DX" manufactured by Asahi Medical Co., Ltd. was disassembled, and a hollow fiber separation membrane (made of polyacrylonitrile) was cut out.

【0035】この中空糸分離膜を用いて、実施例1と同
様にミニモジュールを作成し、蒸留水および分子量60
00、濃度2000ppmのポリエチングリコール水溶液
を充填し、30kGyでγ線を照射した。この様にして準
備したミニモジュールを用いて、ポリエチレングリコー
ルの固定化密度の測定、in vitro 血小板付着実験およ
びin vitro β2-MG除去性能の測定を行った。各ミニモ
ジュールの測定結果を蒸留水を充填しγ線照射した比較
例3の結果を100とした相対値で表に示す。
Using this hollow fiber separation membrane, a mini-module was prepared in the same manner as in Example 1, and distilled water and a molecular weight of 60 were prepared.
A polyethene glycol aqueous solution having a concentration of 2000 ppm was filled and irradiated with γ-rays at 30 kGy. Using the mini-module prepared in this way, measurement of the immobilized density of polyethylene glycol, in vitro platelet adhesion experiment, and measurement of in vitro β2-MG removal performance were performed. The measurement results of each mini-module are shown in the table as relative values, where the results of Comparative Example 3 in which distilled water was filled and γ-ray irradiation was performed were set to 100.

【0036】実施例23、比較例4 ガンブロ社製ダイアライザー”ポリフラックス-16
0”を解体し、中空糸分離膜(ポリアミド製)を切り出
した。
Example 23, Comparative Example 4 Dialyzer "Polyflux-16" manufactured by Gambro
0 "was disassembled, and a hollow fiber separation membrane (made of polyamide) was cut out.

【0037】この中空糸分離膜を用いて、実施例1と同
様にミニモジュールを作成し、蒸留水および分子量60
00、濃度2000ppmのポリエチングリコール水溶液
を充填し、30kGyのγ線を照射した。この様にして準
備したミニモジュールを用いて、ポリエチレングリコー
ルの固定化密度の測定、in vitro 血小板付着実験およ
びin vitro β2-MG除去性能の測定を行った。実施例2
3の測定結果を蒸留水を充填しγ線照射した比較例4の
結果を100とした相対値で表に示す。
Using this hollow fiber separation membrane, a mini-module was prepared in the same manner as in Example 1, and distilled water and a molecular weight of 60 were prepared.
A polyethylene glycol aqueous solution having a concentration of 2000 ppm was filled and irradiated with 30 kGy γ-rays. Using the mini-module prepared in this way, measurement of the immobilized density of polyethylene glycol, in vitro platelet adhesion experiment, and measurement of in vitro β2-MG removal performance were performed. Example 2
Table 3 shows the measurement results of Comparative Example 3 as relative values with the result of Comparative Example 4 in which distilled water was filled and γ-ray irradiation was performed, where 100.

【0038】実施例24、比較例5 泉工医科社製ダイアライザー”MC-1.5H”を解体し、
中空糸分離膜(ヘモファン)を切り出した。
Example 24, Comparative Example 5 A dialyzer "MC-1.5H" manufactured by Izumi Kogyo Kagaku was dismantled.
A hollow fiber separation membrane (hemophane) was cut out.

【0039】この中空糸分離膜を用いて、実施例1と同
様にミニモジュールを作成し、蒸留水および分子量60
00、濃度2000ppmのポリエチングリコール水溶液
を充填し、30kGyのγ線を照射した。この様にして準
備したミニモジュールを用いて、ポリエチレングリコー
ルの固定化密度の測定、in vitro 血小板付着実験およ
びin vitro β2-MG除去性能の測定を行った。実施例2
4の測定結果を蒸留水を充填しγ線照射した比較例5の
結果を100とした相対値で表に示す。
Using this hollow fiber separation membrane, a mini-module was prepared in the same manner as in Example 1, and distilled water and a molecular weight of 60 were prepared.
A polyethylene glycol aqueous solution having a concentration of 2000 ppm was filled and irradiated with 30 kGy γ-rays. Using the mini-module prepared in this way, measurement of the immobilized density of polyethylene glycol, in vitro platelet adhesion experiment, and measurement of in vitro β2-MG removal performance were performed. Example 2
Table 4 shows the measurement results of Comparative Example 4 as relative values, where the result of Comparative Example 5 in which distilled water was filled and γ-ray irradiation was performed was taken as 100.

【0040】実施例25、比較例6 実施例1と同様に紡糸したポリスルホン中空糸分離膜
3,500本を束ね、中空糸中空部を閉塞しないように
ウレタン系ポッティング剤で中空糸分離膜の両末端をポ
リスチレン製モジュールケースに固定し、モジュールケ
ース両端部にポリスチレン製モジュールヘッダーを装着
し、図2に示す小型モジュールを作成した。該小型モジ
ュールの胴体部直径は約3cm、長さは約15cmである。
この小型モジュールの血液入口と透析液出口をシリコン
チューブで繋ぎ、血液出口から蒸留水もしくは分子量6
000、濃度2000ppmのポリエチングリコール水溶
液500mlを100ml/minの流速で流し、小型モジュー
ル内に空気が入らないようにキャップをし、30kGyで
γ線を照射した。この様にして準備した小型モジュール
を用いてポリエチレングリコールの固定化密度の測定、
in vivo 血小板付着実験を行った。また、同様に処理し
た小型モジュールを洗浄後、モジュールを解体し中空糸
を取り出し、実施例1と同様のミニモジュールを作成
し、in vitro β2-MG除去性能の測定を行った。実施例
25の測定結果を蒸留水を充填しγ線照射した比較例6
の結果を100とした相対値で表に示す。
Example 25, Comparative Example 6 3,500 hollow polysulfone hollow fiber separation membranes spun in the same manner as in Example 1 were bundled, and both of the hollow fiber separation membranes were coated with a urethane-based potting agent so as not to block the hollow fiber hollow portion. The ends were fixed to a polystyrene module case, and polystyrene module headers were attached to both ends of the module case, thereby producing a small module shown in FIG. The small module has a body diameter of about 3 cm and a length of about 15 cm.
The blood inlet and dialysate outlet of this small module are connected by a silicon tube, and distilled water or molecular weight 6
500 ml of an aqueous solution of polyethyne glycol having a concentration of 2000 ppm and 2000 ppm was flowed at a flow rate of 100 ml / min. The small module was capped so that air did not enter the module, and irradiated with γ rays at 30 kGy. Measurement of the immobilized density of polyethylene glycol using the small module prepared in this way,
An in vivo platelet adhesion experiment was performed. After washing the similarly treated small module, the module was disassembled and the hollow fiber was taken out, a mini-module similar to that of Example 1 was prepared, and the in vitro β2-MG removal performance was measured. Comparative Example 6 wherein the measurement result of Example 25 was filled with distilled water and irradiated with gamma rays.
The results are shown in the table as relative values with the result being 100.

【0041】実施例26、比較例7 実施例10と同様に紡糸したポリメタクリル酸メチル中
空糸分離膜3,500本を束ね、実施例18と同様に小
型モジュールを作成し、実施例25と同様に蒸留水もし
くは分子量6000、濃度2000ppmのポリエチング
リコール水溶液で充填したものに30kGyでγ線を照射
した。この様にして準備した小型モジュールを用いてポ
リエチレングリコールの固定化密度の測定、in vivo 血
小板付着実験を行った。また、同様に処理した小型モジ
ュールを洗浄後、実施例25と同様にミニモジュールを
作成し、in vitro β2-MG除去性能の測定を行った。実
施例26の測定結果を蒸留水を充填しγ線照射した比較
例7の結果を100とした相対値で表に示す。
Example 26, Comparative Example 7 3,500 polymethyl methacrylate hollow fiber separation membranes spun in the same manner as in Example 10 were bundled, and a small module was prepared in the same manner as in Example 18; Filled with distilled water or an aqueous solution of polyethyne glycol having a molecular weight of 6000 and a concentration of 2000 ppm was irradiated with γ-rays at 30 kGy. Using the small module prepared in this way, the immobilization density of polyethylene glycol was measured, and an in vivo platelet adhesion experiment was performed. After washing the similarly treated small module, a mini-module was prepared in the same manner as in Example 25, and the in vitro β2-MG removal performance was measured. The measurement results of Example 26 are shown in the table as relative values, where the results of Comparative Example 7 in which distilled water was filled and γ-ray irradiation was performed were set to 100.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【表4】 [Table 4]

【0046】[0046]

【表5】 [Table 5]

【0047】[0047]

【表6】 [Table 6]

【0048】[0048]

【表7】 [Table 7]

【0049】実施例1〜26の結果が示すとおり、特定
の量で水不溶性のポリエチレングリコールを膜表面に固
定化することにより付着血小板数は減少し、抗血小板付
着性が向上することがわかる。更に実施例25、26の
結果から判るように、ヘッダー内面の付着血小板数も減
少することから血液浄化器の血液接触面全体での抗血小
板付着性化が可能であることも分かる。また、β2-MG
除去能は膜表面にポリエチレングリコールを不溶化して
いない分離膜の性能をほぼ維持しており、物質透過性能
の低下がほとんどないことが分かる。
As can be seen from the results of Examples 1 to 26, by immobilizing a specific amount of water-insoluble polyethylene glycol on the membrane surface, the number of adherent platelets is reduced, and the antiplatelet adhesion is improved. Furthermore, as can be seen from the results of Examples 25 and 26, since the number of platelets adhered to the inner surface of the header is also reduced, it can be seen that antiplatelet adhesion can be achieved on the entire blood contact surface of the blood purifier. Also, β2-MG
It can be seen that the removal ability almost maintains the performance of the separation membrane in which polyethylene glycol is not insolubilized on the membrane surface, and there is almost no decrease in the substance permeation performance.

【0050】実施例27 実施例25と同様に処理したγ線照射後の小型モジュー
ルを解体して中空糸を取り出し、その中空糸を50℃、
0.5torr にて10時間乾燥した。乾燥した中空糸20g
を200mlのDMAcに投入し、室温にて2時間撹拌した後、D
MAc不溶解分を濾別した。このDMAc不溶解分を新しいDMA
c200mlに再び投入し、室温にて2時間撹拌した。この操
作を3回繰り返し得られたDMAc不溶解分を蒸留水で洗浄
し、50℃、0.5torr にて10時間乾燥した。乾燥し
た不溶解分をKBr法にてIR測定した。また同時に、この
不溶解分を10〜100mg試験管に取り、無水酢酸とパ
ラトルエンスルホン酸の混合溶液2mlを添加し、120
℃で約1時間アセチル化し、冷却後2mlの純水で器壁を
洗い落とした後、20%炭酸ナトリウム溶液で中和し、
トリクロロメタン5mlで抽出し、GCで分析した。
Example 27 A small module after irradiation with γ-ray treated in the same manner as in Example 25 was disassembled and a hollow fiber was taken out.
It was dried at 0.5 torr for 10 hours. 20g of dried hollow fiber
Was added to 200 ml of DMAc and stirred at room temperature for 2 hours.
MAc insolubles were filtered off. This DMAc insoluble matter is transferred to a new DMA
c 200 ml was added again, and the mixture was stirred at room temperature for 2 hours. This operation was repeated three times, and the DMAc insoluble matter obtained was washed with distilled water and dried at 50 ° C. and 0.5 torr for 10 hours. The dried insoluble matter was subjected to IR measurement by the KBr method. At the same time, 10 to 100 mg of the insoluble matter was placed in a test tube, and 2 ml of a mixed solution of acetic anhydride and paratoluenesulfonic acid was added.
Acetylation at about 1 hour, cool down, wash the vessel wall with 2 ml of pure water, neutralize with 20% sodium carbonate solution,
Extracted with 5 ml of trichloromethane and analyzed by GC.

【0051】IR測定の結果、測定チャートには、ポリス
ルホンのベンゼン環に由来する1585cm-1、スルホニル基
に由来する1150cm-1の吸収、ポリビニルピロリドンの第
3アミド基に由来する1690cm-1の吸収が認められた。GC
の結果からは、ポリエチレングリコール由来のピークが
認められた。以上の結果から、ポリビニルピロリドンを
含むポリスルホン膜をポリエチレングリコール水溶液中
でガンマ線照射することにより、ポリスルホン、ポリビ
ニルピロリドン、ポリエチレングリコールの3成分が互
いに架橋することがわかった。
As a result of IR measurement, the measurement chart shows that the absorption at 1585 cm-1 derived from the benzene ring of polysulfone, the absorption at 1150 cm-1 derived from the sulfonyl group, and the absorption at 1690 cm-1 derived from the tertiary amide group of polyvinylpyrrolidone were obtained. Was observed. GC
As a result, a peak derived from polyethylene glycol was observed. From the above results, it was found that the polysulfone, polyvinylpyrrolidone, and polyethylene glycol were mutually cross-linked by irradiating the polysulfone membrane containing polyvinylpyrrolidone with gamma rays in an aqueous polyethylene glycol solution.

【0052】実施例28 実施例26と同様に処理したγ線照射後の小型モジュー
ルを解体して中空糸を取り出し、その中空糸をDMAcの代
わりに塩化メチレンを用いたこと、蒸留水による洗浄は
行わなかったこと以外は全て実施例27と同様の操作を
し、塩化メチレン不溶解分についてIR測定およびGC測定
を行った。IR測定の結果、測定チャートには、ポリメタ
クリル酸メチルのカルボン酸エステルに由来する1740cm
-1の吸収が認められた。GCの結果からは、ポリエチレン
グリコール由来のピークが認められた。以上の結果か
ら、ポリメタクリル酸メチル膜をポリエチレングリコー
ル水溶液中でガンマ線照射することにより、ポリメタク
リル酸メチルとポリエチレングリコールが互いに架橋す
ることがわかった。
Example 28 A small module after irradiation with gamma rays treated in the same manner as in Example 26 was disassembled, and a hollow fiber was taken out. The hollow fiber was replaced with methylene chloride instead of DMAc. The same operation as in Example 27 was performed except that the measurement was not performed, and an IR measurement and a GC measurement were performed on the insoluble portion of methylene chloride. As a result of IR measurement, the measurement chart shows that the polymethyl methacrylate is derived from a carboxylic acid ester of 1740 cm.
Absorption of -1 was observed. From the results of GC, a peak derived from polyethylene glycol was observed. From the above results, it was found that polymethyl methacrylate and polyethylene glycol crosslinked each other by irradiating the polymethyl methacrylate film with gamma rays in an aqueous solution of polyethylene glycol.

【0053】[0053]

【発明の効果】以上述べた如く、本発明による分離膜は
高い抗血小板付着性をもち、尚且つ高い物質透過性能を
もった分離膜であり、また該分離膜は低コストで簡便に
得ることできる。
As described above, the separation membrane according to the present invention is a separation membrane having high antiplatelet adhesion and high material permeation performance, and the separation membrane can be easily obtained at low cost. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例1〜24、比較例1〜5に用いた
ミニモジュールの模式図である。
FIG. 1 is a schematic view of a mini-module used in Examples 1 to 24 of the present invention and Comparative Examples 1 to 5.

【図2】本発明実施例25、26、比較例6、7に用い
た小型モジュールの模式図である。
FIG. 2 is a schematic diagram of a small module used in Examples 25 and 26 of the present invention and Comparative Examples 6 and 7.

【符号の説明】[Explanation of symbols]

1. 血液入口 2. ポッティング部 3. 透析液入口 4. 中空糸分離膜 5. ガラス管モジュールケース 6. 透析液入口 7. 血液出口 8. モジュールヘッダー 9. モジュールケース 1. Blood inlet 2. Potting section 3. Dialysate inlet 4. Hollow fiber separation membrane 5. Glass tube module case 6. Dialysate inlet 7. Blood outlet 8. Module header 9. Module case

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01D 71/66 B01D 71/66 D01C 1/00 D01C 1/00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI B01D 71/66 B01D 71/66 D01C 1/00 D01C 1/00

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】表面に水不溶性ポリアルキレングリコール
が0.01ng/cm2以上、500ng/cm2以下の割合で存在
することを特徴とする分離膜。
1. A separation membrane characterized in that a water-insoluble polyalkylene glycol is present on the surface at a rate of 0.01 ng / cm 2 or more and 500 ng / cm 2 or less.
【請求項2】水不溶性ポリアルキレングリコールが0.
05ng/cm2以上、300ng/cm2以下の割合で存在するこ
とを特徴とする請求項1記載の分離膜。
2. The method according to claim 1, wherein the water-insoluble polyalkylene glycol is present in an amount of from 0.1 to 2.
2. The separation membrane according to claim 1, wherein the separation membrane is present at a rate of not less than 05 ng / cm2 and not more than 300 ng / cm2.
【請求項3】該分離膜がポリスルホン系樹脂、ポリメタ
クリル酸系樹脂、ポリアクリロニトリル、ポリアミドお
よびセルロース系樹脂から選ばれる少なくとも一種の樹
脂を基材としてなることを特徴とする請求項1記載の分
離膜。
3. The separation membrane according to claim 1, wherein said separation membrane comprises at least one resin selected from the group consisting of a polysulfone resin, a polymethacrylic acid resin, a polyacrylonitrile, a polyamide and a cellulose resin. film.
【請求項4】血液浄化用である請求項1〜3いずれかに
記載の分離膜。
4. The separation membrane according to claim 1, which is for blood purification.
【請求項5】請求項4記載の分離膜を内蔵することを特
徴とする血液浄化器。
5. A blood purifier incorporating the separation membrane according to claim 4.
【請求項6】分離膜基材をポリアルキレングリコール溶
液に浸漬、もしくは接触させた状態で放射線を照射する
ことを特徴とする請求項1〜4いずれかの分離膜の製造
方法。
6. The method for producing a separation membrane according to claim 1, wherein the substrate is immersed in or contacted with a polyalkylene glycol solution and irradiated with radiation.
【請求項7】分離膜基材をモジュールに組み込み、分離
膜基材をポリアルキレングリコール溶液に浸漬、もしく
は接触させた状態で放射線を照射することを特徴とする
請求項1〜4いずれかの分離膜を内蔵する血液浄化器の
製造方法。
7. The separation according to any one of claims 1 to 4, wherein the separation membrane substrate is incorporated in a module, and the separation membrane substrate is irradiated with radiation while being immersed or in contact with the polyalkylene glycol solution. Manufacturing method of blood purifier with built-in membrane.
JP21051797A 1997-08-05 1997-08-05 Separation membrane and method for producing the same Expired - Fee Related JP3651195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21051797A JP3651195B2 (en) 1997-08-05 1997-08-05 Separation membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21051797A JP3651195B2 (en) 1997-08-05 1997-08-05 Separation membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1147567A true JPH1147567A (en) 1999-02-23
JP3651195B2 JP3651195B2 (en) 2005-05-25

Family

ID=16590687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21051797A Expired - Fee Related JP3651195B2 (en) 1997-08-05 1997-08-05 Separation membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP3651195B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276585A (en) * 2000-04-03 2001-10-09 Kuraray Co Ltd Hollow fiber membrane and method of manufacturing the same
JP2009535201A (en) * 2006-04-28 2009-10-01 ダウ グローバル テクノロジーズ インコーポレイティド Reverse osmosis membrane with branched polyalkylene oxide modified anti-adhesive surface
JP2011183384A (en) * 2011-04-01 2011-09-22 Toray Ind Inc Adsorption material and manufacturing method for the same
CN102791365A (en) * 2010-03-10 2012-11-21 陶氏环球技术有限责任公司 Polyamide membrane with a coating comprising polyalkylene oxide and acetophenone compounds

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276585A (en) * 2000-04-03 2001-10-09 Kuraray Co Ltd Hollow fiber membrane and method of manufacturing the same
JP2009535201A (en) * 2006-04-28 2009-10-01 ダウ グローバル テクノロジーズ インコーポレイティド Reverse osmosis membrane with branched polyalkylene oxide modified anti-adhesive surface
US7918349B2 (en) 2006-04-28 2011-04-05 Dow Global Technologies Llc Composite polyamide membrane with branched poly(alkylene oxide) modified surface
CN102791365A (en) * 2010-03-10 2012-11-21 陶氏环球技术有限责任公司 Polyamide membrane with a coating comprising polyalkylene oxide and acetophenone compounds
JP2011183384A (en) * 2011-04-01 2011-09-22 Toray Ind Inc Adsorption material and manufacturing method for the same

Also Published As

Publication number Publication date
JP3651195B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
JP4810827B2 (en) Modified substrate and method for producing modified substrate
US5258149A (en) Process of making a membrane for high efficiency removal of low density lipoprotein-cholesterol from whole blood
JP3097149B2 (en) Medical dialysis module and method of manufacturing the same
JP4453248B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane module
US5418061A (en) Microporous polysulfone supports suitable for removal of low density lipoprotein-cholesterol
US5187010A (en) Membrane having high affinity for low density lipoprotein-cholesterol from whole blood
US7087168B2 (en) Hollow fiber membrane for purifying blood
JP3366040B2 (en) Polysulfone-based semipermeable membrane and method for producing the same
JP2000140589A (en) Porous polysulfone film
RU95107703A (en) Acetate cellulose semipermeable membrane, containing hollow fibers, method of manufacture of hollow fiber semipermeable acetate cellulose membrane, hemodialyzer, instrument for treatment of extracorporal blood
JP3498543B2 (en) Separation membrane and method for producing the same
JPH1147567A (en) Separation membrane and its preparation
JP3171896B2 (en) Permeable membrane with excellent biocompatibility
JP3297707B2 (en) Modified hollow fiber and method for producing the same
EP0570232A2 (en) Microporous polysulfone supports suitable for removal of low density lipoprotein-cholesterol
JP2003175320A (en) Method for manufacturing hollow fiber membrane
JP2003175321A (en) Method for manufacturing hollow fiber membrane
JP2003290638A (en) Polysulfone-based semipermeable membrane and artificial kidney using the same
JP3651121B2 (en) Permselective separation membrane
JP4433821B2 (en) Modified substrate
JP3334705B2 (en) Polysulfone-based selectively permeable hollow fiber membrane
JP3496382B2 (en) Separation membrane and method for producing the same
JP4003982B2 (en) Polysulfone-based selectively permeable separation membrane
JPH09206570A (en) Separation membrane and its production
JP2002212333A (en) Antithrombotic porous membrane and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees