JPS6335863A - Fiber sheet molded body - Google Patents

Fiber sheet molded body

Info

Publication number
JPS6335863A
JPS6335863A JP61174566A JP17456686A JPS6335863A JP S6335863 A JPS6335863 A JP S6335863A JP 61174566 A JP61174566 A JP 61174566A JP 17456686 A JP17456686 A JP 17456686A JP S6335863 A JPS6335863 A JP S6335863A
Authority
JP
Japan
Prior art keywords
fibers
resin particles
base material
nonwoven fabric
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61174566A
Other languages
Japanese (ja)
Inventor
和夫 下村
正彦 石田
塚本 昌博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP61174566A priority Critical patent/JPS6335863A/en
Publication of JPS6335863A publication Critical patent/JPS6335863A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、軽量・高強度で2耐熱性、賦形性。[Detailed description of the invention] (Industrial application field) The present invention is lightweight, high strength, heat resistant, and formable.

吸音性などに優れた成形体、特に自動車用天井材として
有用な繊維シート成形体に関する。
This invention relates to a molded article with excellent sound absorption properties, particularly a fiber sheet molded article useful as a ceiling material for automobiles.

(従来の技術) 自動車の内装材のひとつである成形天井にはダンボール
や各種樹脂発泡体などが使用されている。
(Prior Art) Cardboard and various resin foams are used for molded ceilings, which are one of the interior materials of automobiles.

ダンボールは軽量で安価ではあるが、成形手段が圧縮と
いう操作のみであるため、賦形性が悪く微妙な形状を付
与することができない。さらに、吸湿性を有するため形
状維持性が悪いという欠点がある。そのため、樹脂発泡
体が広(利用されている。例えば特開昭58−7115
4号および特公昭58−2811号公報には、変性ポリ
スチレン発泡体を用いた成形天井の開示がある。このよ
うな成形体は、樹脂を発泡させて所望の形状に成形して
得られるため賦形性に優れ、得られる成形体は比較的強
度が高く軽量であり、断熱性、耐熱性などに優れる。し
かし、熱可塑性樹脂が用いられるため、高温での寸法安
定性および高温での強度に劣る。さらに。
Cardboard is lightweight and inexpensive, but since the only means of shaping is compression, it has poor formability and cannot be shaped into delicate shapes. Furthermore, it has the disadvantage of poor shape retention due to its hygroscopic properties. For this reason, resin foams are widely used.
No. 4 and Japanese Patent Publication No. 58-2811 disclose molded ceilings using modified polystyrene foam. Such molded bodies are obtained by foaming resin and molded into the desired shape, so they have excellent shapeability, and the molded bodies obtained are relatively strong and lightweight, and have excellent heat insulation and heat resistance. . However, since thermoplastic resin is used, the dimensional stability and strength at high temperatures are poor. moreover.

断熱効果を得るために独立気泡の発泡体を用いるため表
面で音の反射が起こり、充分な吸音効果が得られない。
Since closed-cell foam is used to obtain a heat-insulating effect, sound reflection occurs on the surface, making it impossible to obtain a sufficient sound-absorbing effect.

このような成形天井の強度を向上させるために補強材を
積層したり、吸音効果を得るために吸音材を積層もしく
は基材に貫通孔を設けることが行われている(特開昭5
5−11947号、特開昭53−14074号および特
公昭57−60944号公報)が。
In order to improve the strength of such molded ceilings, reinforcing materials are laminated, and in order to obtain a sound absorption effect, sound absorbing materials are laminated or through holes are provided in the base material (Japanese Patent Laid-Open No. 5
5-11947, Japanese Patent Application Laid-Open No. 53-14074, and Japanese Patent Publication No. 57-60944).

製造工程が複雑になりコスト高となる。成形天井自身の
重量も増すため自動車の走行燃費が落ちるという欠点も
ある。
The manufacturing process becomes complicated and costs increase. Another drawback is that the weight of the molded ceiling itself increases, reducing the fuel efficiency of the vehicle.

(発明が解決しようとする問題点) 本発明は、上記従来の欠点を解消するものであり、その
目的とするところは、軽量・高強度で。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned conventional drawbacks, and aims to achieve light weight and high strength.

賦形性、耐熱性、断熱性および吸音性に優れ、かつ高温
における強度および寸法安定性にも優れた。
It has excellent formability, heat resistance, heat insulation and sound absorption properties, as well as strength and dimensional stability at high temperatures.

自動車の成形天井に適した成形体を提供することにある
The object of the present invention is to provide a molded body suitable for molded ceilings of automobiles.

(問題点を解決するための手段) 本発明の繊維シート成形体は、無機繊維を主成分とする
繊維中に発泡性樹脂粒子を分散した不織布基材を、加熱
し圧縮成形して得られ、そのことにより上記目的が達成
される。
(Means for Solving the Problems) The fiber sheet molded article of the present invention is obtained by heating and compression molding a nonwoven fabric base material in which expandable resin particles are dispersed in fibers mainly composed of inorganic fibers, This achieves the above objective.

本発明の成形体の基材となる不織布に用いられる繊維は
無機繊維を主成分とし、必要に応じて有n繊維を50重
量%以下の割合で含有する。このような無機繊維の素材
としてはガラス、ロックウールなどが、有機繊維の素材
としては、ポリエチレン、ポリプロピレンなどがある。
The fibers used in the nonwoven fabric serving as the base material of the molded article of the present invention are mainly composed of inorganic fibers, and optionally contain n-type fibers in a proportion of 50% by weight or less. Examples of such inorganic fiber materials include glass and rock wool, and examples of organic fiber materials include polyethylene and polypropylene.

有機繊維の含有量が50重量%を越えると、得られる成
形体の強度が低下する。これらの繊維は、いずれもその
直径が2〜40μm、長さが50〜200m1の短繊維
である。
If the content of organic fiber exceeds 50% by weight, the strength of the molded product obtained will decrease. All of these fibers are short fibers with a diameter of 2 to 40 μm and a length of 50 to 200 m1.

繊維径や繊維長が」二記範囲を下まわると得られる成形
体の強度が不充分であり、上記〒il!囲を上まわると
成形時の賦形性が悪い。
If the fiber diameter or fiber length is less than the range specified in 2 above, the strength of the obtained molded product will be insufficient, and the above-mentioned 〒il! If the value exceeds the range, shapeability during molding will be poor.

不織布に含有される発泡性樹脂粒子とは5発泡剤を含浸
させた熱可塑性樹脂粒子であり、該熱可塑性樹脂の融点
以上に加熱すると溶融・発泡する性質を存する。使用さ
れる熱可塑性樹脂としては。
The expandable resin particles contained in the nonwoven fabric are thermoplastic resin particles impregnated with a blowing agent, and have the property of melting and foaming when heated above the melting point of the thermoplastic resin. As for the thermoplastic resin used.

ポリスチレンなどがある。発゛泡剤としては、ブタン、
ペンタン2フレオンなどの揮発性溶剤や炭酸ガスが用い
られる。このような発泡性樹脂粒子は。
Examples include polystyrene. As a foaming agent, butane,
A volatile solvent such as pentane 2 freon or carbon dioxide gas is used. Such expandable resin particles.

上記熱可塑性樹脂でなる粒子を1例えば、オートクレー
ブ中で上記揮発性溶剤に浸漬することにより得られる。
The particles made of the thermoplastic resin can be obtained, for example, by immersing the particles in the volatile solvent in an autoclave.

オートクレーブ中、高圧下で樹脂粒子を浸漬すると、該
樹脂中に揮発性溶剤が侵入する。この樹脂粒子を常圧に
もどしても2粒子内部へ入り込み閉じ込められた溶剤は
、実質的に揮発・消失することがない。このようにして
得られる発泡性樹脂粒子の粒子径は1.Ou+程度まで
であり。
When resin particles are immersed under high pressure in an autoclave, volatile solvents enter the resin. Even when the resin particles are returned to normal pressure, the solvent that has entered and become trapped inside the two particles does not substantially volatilize or disappear. The particle size of the expandable resin particles thus obtained is 1. It is up to about Ou+.

その形状は特に制限されない。入手できる粒子径の下限
は通常0.01mm(らいであるが制限はない。
Its shape is not particularly limited. The lower limit of the available particle size is usually 0.01 mm, but there is no limit.

粒子径が1.0龍を越えると基材である不織布中に均一
に分散するのが困難となる。
When the particle size exceeds 1.0 mm, it becomes difficult to uniformly disperse the particles in the nonwoven fabric that is the base material.

発泡性樹脂粒子の発泡率は10倍以上、好ましくは20
倍以上である。10倍を下まわると後述の基材の加熱・
成形時に基材の繊維同士を接着するバインダーとしての
働きが不充分であり、そのために得られる成形体の強度
が低下する。発泡性樹脂粒子の発泡率の上限は特に制限
されないが、このような発泡性樹脂粒子の製造可能な発
泡率の上限は約80倍である。発泡性樹脂粒子の発泡率
が10倍以上となるようにポリマーの素材2粒径1発泡
剤の種類2発泡剤の含浸量などを適宜選択する。
The foaming rate of the expandable resin particles is 10 times or more, preferably 20 times or more.
That's more than double that. If it is less than 10 times, the heating and
The binder function to bond the fibers of the base material to each other during molding is insufficient, resulting in a decrease in the strength of the molded product obtained. Although the upper limit of the expansion rate of the expandable resin particles is not particularly limited, the upper limit of the expansion rate that can be produced by such expandable resin particles is about 80 times. Polymer material, particle size, blowing agent type, blowing agent impregnation amount, etc. are appropriately selected so that the foaming rate of the expandable resin particles is 10 times or more.

このような発泡性樹脂粒子は、使用される繊維(無機繊
維および必要に応じて11機繊維を含む)全体の20〜
120重壇%の割合で基材中に含有される。過少である
と得られる成形体の強度が不充分であり、過剰であると
基材シートの調製が困難となる。本発明の成形体の基材
である不織布は、上記無機繊維1発泡性樹脂粒子および
必要に応じて有機繊維を用い2通常の不織布の製造法に
準じて調製される。例えば、まずヤーンチョップ、ロー
ビングチョップなどの形状で市販されるガラス繊維を開
繊する。有機繊維を用いるときには、これも同様に開繊
してフィラメント状とし、このガラス繊維(無機繊維)
2発泡性樹脂粒子および必要に応じて有機繊維をカード
マシンなどを用いて充分にブレンドし、圧縮成形して不
織布を得る。
Such expandable resin particles account for 20 to 20% of the total fibers used (including inorganic fibers and optionally organic fibers).
It is contained in the base material at a ratio of 120%. If it is too small, the resulting molded product will have insufficient strength, and if it is too large, it will be difficult to prepare the base sheet. The nonwoven fabric that is the base material of the molded article of the present invention is prepared using the above-mentioned inorganic fibers (1) expandable resin particles and, if necessary, organic fibers (2) according to a conventional nonwoven fabric manufacturing method. For example, first, glass fibers commercially available in the form of yarn chops, roving chops, etc. are opened. When using organic fibers, they are similarly opened into filaments, and this glass fiber (inorganic fiber)
2. Expandable resin particles and, if necessary, organic fibers are thoroughly blended using a card machine or the like, and compression molded to obtain a nonwoven fabric.

このような不織布の空隙率は92〜99,5%である。The porosity of such a nonwoven fabric is 92-99.5%.

92%を下まわると後述の加熱・成形工程において。If it falls below 92%, it will be used in the heating and molding process described below.

発泡性樹脂粒子が発泡しても充分に溶融樹脂が繊維間に
入り込むことができず、その結果、繊維同士を強固に融
着するバインダーの効果が充分に得られない。つまり、
得られる成形体の強度が不充分となる。空隙率が高すぎ
ると不織布としての形状を維持するのが困難となり、得
られる成形品の強度も低下する。不織布の厚みは目的と
する成形体の厚みや密度により異なるが2通常10〜1
00mm。
Even when the expandable resin particles are foamed, the molten resin cannot sufficiently penetrate between the fibers, and as a result, the effect of the binder to firmly fuse the fibers together cannot be obtained. In other words,
The strength of the resulting molded product will be insufficient. If the porosity is too high, it will be difficult to maintain the shape of the nonwoven fabric, and the strength of the resulting molded product will also decrease. The thickness of the nonwoven fabric varies depending on the thickness and density of the intended molded product, but is usually 10 to 1.
00mm.

好ましくは10〜60mmである。10 viaを下ま
わると成形天井全体としての強度が不充分であり、  
100mを越えると後述の加熱時に中心部分まで熱が伝
わりにくくなるため大熱量を必要とする。
Preferably it is 10-60 mm. If it is less than 10 via, the strength of the molded ceiling as a whole is insufficient,
If the length exceeds 100 m, it will be difficult for heat to be transmitted to the center during heating, which will be described later, and a large amount of heat will be required.

このようにして得られる基材(不織布)は、適当な大き
さに切断され、加熱し、常法により所望の形状の凸と凹
との一対の金型で加圧成形される。
The base material (nonwoven fabric) obtained in this manner is cut to an appropriate size, heated, and pressure-molded using a pair of molds having convex and concave shapes of a desired shape by a conventional method.

加熱温度は、基材中の発泡性樹脂粒子に使用される樹脂
の融点以上である。通常、溶融・発泡を短時間で行わせ
るために融点よりも20〜150℃程度高い温度に設定
される。例えば、基材の繊維の素材がガラスであり発泡
性樹脂粒子の素材がポリスチレンであるときの加熱温度
は100℃以上1通常200℃程度である。金型の温度
は2発泡性樹脂粒子の融点以下2通常、常温〜80℃程
度である。圧縮力は通常、0.3〜30kg/cdであ
り、圧縮時間は10秒〜5分である。このようにして、
もとの基材の厚みの0.05〜0.7倍の範囲に圧縮さ
れた成形体が得られる。(成形体の厚みは1〜20mm
となる)。
The heating temperature is equal to or higher than the melting point of the resin used for the expandable resin particles in the base material. Usually, the temperature is set at about 20 to 150°C higher than the melting point in order to melt and foam in a short time. For example, when the fiber material of the base material is glass and the material of the expandable resin particles is polystyrene, the heating temperature is 100° C. or higher and usually about 200° C. The temperature of the mold is 2 below the melting point of the expandable resin particles 2 and usually from room temperature to about 80°C. The compression force is usually 0.3 to 30 kg/cd, and the compression time is 10 seconds to 5 minutes. In this way,
A molded body compressed to a thickness in the range of 0.05 to 0.7 times the thickness of the original base material is obtained. (The thickness of the molded body is 1 to 20 mm.
).

例えば、自動車用天井材において、特に強度が必要とさ
れる周辺部ではもとの厚みの0.05〜0.3倍に1強
度は周辺部はど必要としないが吸音性や緩衝性を必要と
する中央部はもとの厚みの0.2〜0,7倍に圧縮され
る。このような成形体の周辺部の厚みは約1〜3fl、
中央部は4〜10+++−である。0.7倍以上の厚み
に(低密度)に成形されると発泡性樹脂粒子の発泡・同
化による繊維間の接着が充分に得られないため、成形体
の強度が不充分となる。
For example, in the case of ceiling materials for automobiles, the strength is 0.05 to 0.3 times the original thickness at the periphery where strength is particularly required.The periphery does not require sound absorption or cushioning properties. The central part is compressed to 0.2 to 0.7 times its original thickness. The thickness of the peripheral part of such a molded body is about 1 to 3 fl,
The central part is 4-10+++-. When molded to a thickness 0.7 times or more (low density), sufficient adhesion between fibers cannot be obtained due to foaming and assimilation of the expandable resin particles, resulting in insufficient strength of the molded product.

逆に0.05倍以下であっても特に問題はないが、圧縮
に大きな力を必要とするため無駄である。上記中央部の
空隙率は約50%以上となり、このような成形体は吸音
性に優れる。
Conversely, if it is 0.05 times or less, there is no particular problem, but it is wasteful because a large force is required for compression. The porosity of the central portion is about 50% or more, and such a molded body has excellent sound absorption properties.

このような方法で得られた自動車天井用の成形体表面に
は、m布、不織布、プラスチックシートなどでなる内装
用化粧材が接着される。基材と内装用化粧材とを積層し
、これを加熱し一体的に成形してもよい。
An interior decoration material made of m-cloth, nonwoven fabric, plastic sheet, etc. is adhered to the surface of the molded product for automobile ceilings obtained by such a method. The base material and the interior decorative material may be laminated, heated, and integrally formed.

本発明の成形体は9例えば1次のように調製される。第
1図に示すように、繊維供給容器1に収納された開繊繊
維11(無機繊維および必要に応じて有m繊維)が所定
量ずつベルトコンベアー12上に供給される。この繊維
1工はカードマシン2に供給され充分に混合される。カ
ードマシン2には発泡性樹脂粒子31を収納した発泡性
樹脂粒子供給容器3が連結されており、該容器中から発
泡性樹脂粒子31がカードマシン2に供給され、繊維1
1と充分に混合される。この繊維11と発泡性樹脂粒子
31との混合物はカードマシン2により連続状の不織布
120に形成され2巻取り機4にて巻きとられる。
The molded article of the present invention is prepared, for example, in the following manner. As shown in FIG. 1, spread fibers 11 (inorganic fibers and, if necessary, organic fibers) stored in a fiber supply container 1 are supplied onto a belt conveyor 12 in predetermined amounts. This fiber 1 is supplied to a card machine 2 and thoroughly mixed. A foamable resin particle supply container 3 containing foamable resin particles 31 is connected to the card machine 2, and the foamable resin particles 31 are supplied from the container to the card machine 2, and the fibers 1
1 and thoroughly mixed. This mixture of fibers 11 and expandable resin particles 31 is formed into a continuous nonwoven fabric 120 by a card machine 2 and wound up by a two-winder 4.

巻きとられた不織布120は、所望のサイズに切断され
る。第2図に示すように、この切断された不織布12と
内装用化粧材13との積層体10はベルトコンベアー5
1上を加熱炉5に導かれる。加熱炉5で加熱され発泡し
た積層体10は2次に成形用金型6で常法にて圧縮成形
され、成形体100が得られる。
The wound nonwoven fabric 120 is cut into a desired size. As shown in FIG.
1 to the heating furnace 5. The laminate 10 heated and foamed in the heating furnace 5 is then compression-molded using a molding die 6 in a conventional manner to obtain a molded body 100.

(作用) 本発明の繊維シート成形体は、無機繊維を主成分とする
繊維中に発泡性樹脂粒子が分散した不織布基材を加熱・
圧縮成形して得られる。基材中に含有される発泡性樹脂
粒子の熱可塑性樹脂は加熱工程で軟化・溶解する。この
ことにより2粒子中の揮発性溶剤などが気化し1発泡が
起こる。発泡性樹脂粒子は基材中に均一に分散されてい
るため基材中で均一に発泡する。この基材を金型で圧縮
すると発泡性樹脂粒子に由来する溶融・発泡した樹脂は
基材の繊維間に充分に浸透する。温度が降下すると、こ
の樹脂は硬化し、繊維同士を強固に繊維するバインダー
の働きを示す。このように。
(Function) The fiber sheet molded article of the present invention is a nonwoven fabric base material in which expandable resin particles are dispersed in fibers mainly composed of inorganic fibers.
Obtained by compression molding. The thermoplastic resin of the expandable resin particles contained in the base material is softened and dissolved in the heating process. As a result, volatile solvents and the like in the two particles are vaporized and foaming occurs. Since the expandable resin particles are uniformly dispersed in the base material, they foam uniformly in the base material. When this base material is compressed with a mold, the melted and foamed resin derived from the expandable resin particles sufficiently penetrates between the fibers of the base material. When the temperature drops, this resin hardens and acts as a binder, binding the fibers together. in this way.

繊維同士が樹脂により固定された状態にあるため。This is because the fibers are fixed to each other by resin.

強度および形状維持性に優れる。無機繊維が使用されて
いるため、その熱安定性は従来の熱可塑性樹脂発泡体に
比べてはるかに高い。
Excellent strength and shape retention. Due to the use of inorganic fibers, its thermal stability is much higher compared to conventional thermoplastic foams.

本発明の成形体は比較的低密度の不織布基材から得られ
るため軽量である。成形体の密度はその部分により異な
るが2例えば自動車天井の周辺部は充分に圧縮して成形
されているため高密度であり、中央部は圧縮度が小さい
ため低密度である。
The molded article of the present invention is lightweight because it is obtained from a relatively low-density nonwoven fabric base material. The density of the molded body varies depending on the part; for example, the peripheral part of an automobile ceiling has a high density because it is sufficiently compressed and molded, and the central part has a low density because the degree of compression is small.

高密度部分は特に高強度であり、低密度部分は弾力性を
有し吸音効果が高い。
The high-density part has particularly high strength, and the low-density part has elasticity and a high sound absorption effect.

このように2本発明の成形体は、上記各種の優れた性質
を有するため、従来必要とされた補強材。
As described above, the molded article of the present invention has the above-mentioned various excellent properties, so it is a reinforcing material that has been needed in the past.

吸音材などが不要となる。そのため、自動車天井製造の
ための工程が簡略化され、天井自体の重量も軽量化され
る。
Sound absorbing materials are not required. Therefore, the process for manufacturing the automobile ceiling is simplified, and the weight of the ceiling itself is also reduced.

(実施例) 以下に本発明を実施例につき説明する。(Example) The invention will be explained below with reference to examples.

尖硲開土 (八)成形体の調製: 繊維ニガラス繊維(直径13μm、繊維長5〜20cm
) ・=90重量部 ポリプロピレン繊維(直径18μm。
Preparation of molded body: Fiber glass fiber (diameter 13 μm, fiber length 5-20 cm)
) ・=90 parts by weight polypropylene fiber (diameter 18 μm.

繊維長5〜20cm)・・・10重量部発泡性樹脂粒子
ニスチロピース(積木化成品■製;ポリスチレン粒子に
ブタン を含浸、直径0.2〜0.8鳳l1発泡倍率30倍)・
・・50重量部 内装用化粧材:ポリエステル製不織布(厚さ1.5m) 上記無機繊維(ガラス繊維)、有機繊維(ポリエステル
製繊維)および発泡性樹脂粒子を用い。
Fiber length 5-20cm)...10 parts by weight Expandable resin particles Nistyropeace (manufactured by Building Blocks Chemicals ■; polystyrene particles impregnated with butane, diameter 0.2-0.8, foaming ratio 30 times).
...50 parts by weight Decorative material for interior: Polyester nonwoven fabric (thickness 1.5 m) The above inorganic fiber (glass fiber), organic fiber (polyester fiber), and foamable resin particles were used.

第1図に示す装置により幅1300mで長さが30mの
ロール状不織布を調製した。この不織布の厚みおよび空
隙率を下表に示す。この不織布を幅1150mn。
A rolled nonwoven fabric having a width of 1300 m and a length of 30 m was prepared using the apparatus shown in FIG. The thickness and porosity of this nonwoven fabric are shown in the table below. This nonwoven fabric has a width of 1150 mm.

長さ1400鶴に切断し、これに同サイズの上記内装用
化粧材を積層して2周囲をクランプでピンチした。この
積層体を第2図に示すように、180℃の熱風加熱炉で
3分間加熱した後、速やかに温度30℃の金型を用い、
圧縮力l kg / c++Iの力で1分間圧縮成形し
た。この金型は、最小肉厚部が2,9u+。
It was cut to a length of 1,400 squares, the above-mentioned interior decoration material of the same size was laminated thereon, and the two peripheries were pinched with clamps. As shown in Fig. 2, after heating this laminate in a hot air heating furnace at 180°C for 3 minutes, immediately using a mold at a temperature of 30°C,
Compression molding was performed for 1 minute with a compression force of l kg/c++I. The minimum thickness of this mold is 2.9u+.

最大肉厚部が8.0鰭に設計されており、得られた成形
体はほぼこの金型の形状に対応していた。
The maximum thickness part was designed to be 8.0 fins, and the obtained molded product almost corresponded to the shape of this mold.

CB)成形体の性能評価:(A)項で得られた成形体を
95℃の熱風オープン中で4 hrs保持した後。
CB) Performance evaluation of molded body: After the molded body obtained in section (A) was held in a hot air open at 95°C for 4 hrs.

成形体のもとの厚みが2,9龍の部分ともとの厚みが8
Hの部分についての厚みを測定し、変化率(%)を算出
した。別に、(A)項で得られた成形体から厚さ3m、
幅30龍、長さ150龍の試料片を切り取り2曲げ強度
の評価を行なった。まず、上記試料片を100m+++
+の間隔をもって配設された一対の支持体上に載置する
。次いで、この試料片中央部に50mn/分のスピード
で力を加えてゆく。そして。
The original thickness of the molded body is 2.9, and the original thickness of the dragon part is 8.
The thickness of the H portion was measured and the rate of change (%) was calculated. Separately, from the molded body obtained in section (A), a thickness of 3 m,
A sample piece with a width of 30 mm and a length of 150 mm was cut out and its bending strength was evaluated. First, the above sample piece was
It is placed on a pair of supports spaced apart by +. Next, force is applied to the center of this sample piece at a speed of 50 m/min. and.

試料片が屈曲するときの重量を測定した。さらに5(八
)項で得られた成形体から厚さ8鰭9幅50(bm。
The weight of the sample piece was measured when it was bent. Further, from the molded body obtained in Section 5 (8), a thickness of 8 fins and a width of 50 (bm) was obtained.

長さ500■lの試料片を切り取り、残響室法により1
00011zにおける吸音率を測定した。それぞれの結
果を下表に示す。下表の曲げ強さの項において。
A sample piece with a length of 500 μl was cut out and 1
The sound absorption coefficient at 00011z was measured. The respective results are shown in the table below. In the section of bending strength in the table below.

○印は10 kg / cI+!以上を、Δは9.9〜
6 kg / cutを。
The circle is 10 kg/cI+! Above, Δ is 9.9~
6 kg/cut.

そして×は5.9kg/co!以下を示す。実施例2〜
7および比較例1〜6の結果もあわせて下表に示す。
And × is 5.9kg/co! The following is shown. Example 2~
The results of Comparative Examples 7 and Comparative Examples 1 to 6 are also shown in the table below.

1施±1 発泡性樹脂粒子を繊維重量に対して115%の割合で使
用したこと以外は実施例1と同様である。
1 Execution ± 1 The same as Example 1 except that the expandable resin particles were used at a ratio of 115% based on the weight of the fibers.

x嵐量主 発泡性樹脂粒子を繊維重量に対して25%の割合で使用
したこと以外は実施例1と同様である。
x Storm amount The same as Example 1 except that the main expandable resin particles were used at a ratio of 25% based on the weight of the fibers.

去施■土 不織布基材の厚みを60龍としたこと以外は実施例1と
同様である。
The procedure was the same as in Example 1 except that the thickness of the nonwoven fabric base material was 60 mm.

ル1汁i 不織布基材の空隙率を93%、厚みを12m1としたこ
と以外は実施例1と同様である。
Example 1 Same as Example 1 except that the porosity of the nonwoven fabric base material was 93% and the thickness was 12 m1.

刀1辻l 不織布基材の空隙率を99.4%厚みを60mmとした
こと以外は実施例1と同様である。
The same as Example 1 except that the porosity of the nonwoven fabric base material was 99.4% and the thickness was 60 mm.

実」缶朋ニ ガラス繊維とポリプロピレン繊維との重量比を1:lと
したこと以外は実施例1と同様である。
The procedure was the same as in Example 1 except that the weight ratio of glass fiber and polypropylene fiber was 1:l.

此較貫上 発泡性樹脂粒子の代わりに同一の粒径を有するポリスチ
レン粒子を使用したこと以外は実施例Iと同様である。
This comparison is the same as Example I except that polystyrene particles having the same particle size were used instead of the upwardly expandable resin particles.

ル較桝I 発泡性樹脂粒子を繊維重量に対して15%の割合で使用
したこと以外は実施例1と同様である。
Comparison I The same as Example 1 except that the expandable resin particles were used at a ratio of 15% based on the weight of the fibers.

上較±1 不織布基材の空隙率を91%としたこと以外は実施例1
と同様である。
Above comparison ±1 Example 1 except that the porosity of the nonwoven fabric base material was 91%
It is similar to

止較拠↓ 不織布基材の空隙率を99.7%としたこと以外は実施
例1と同様である。
Comparison ↓ The same as Example 1 except that the porosity of the nonwoven fabric base material was 99.7%.

止較拠工 不織布基材の厚みを9鶴としたこと以外は実施例1と同
様である。
It is the same as Example 1 except that the thickness of the nonwoven fabric base material is 9 mm.

北較■旦 ポリプロピレン繊維のみを用いて不織布基材を調製した
こと以外は実施例1と同様である。
The procedure was the same as in Example 1 except that the nonwoven fabric base material was prepared using only polypropylene fibers.

(以下余白) (発明の効果) 本発明によれば、このように、軽量で高強度を有し、か
つ賦形性、耐熱性、断熱性および吸音性に優れ、かつ高
温における強度および寸法安定性に優れた繊維シート成
形体が得られる。このような成形体は、特に、自動車天
井材に好適である。
(Left below) (Effects of the Invention) According to the present invention, it is lightweight, has high strength, has excellent formability, heat resistance, heat insulation and sound absorption, and has strength and dimensional stability at high temperatures. A fiber sheet molded article with excellent properties can be obtained. Such molded bodies are particularly suitable for automobile ceiling materials.

本発明の成形体を自動車天井材に用いると、従来。When the molded article of the present invention is used as an automobile ceiling material, conventionally.

自動車天井材に必要とされた補強材、吸音材などが不要
となる。そのため、製造工程が簡略化される。成形体自
体の製造法も筒車であるため、安価に自動車天井材が供
給される。補強材などを必要としないため天井自体が軽
量化され、燃費が低減する。
This eliminates the need for reinforcing materials, sound-absorbing materials, etc. required for automobile ceiling materials. Therefore, the manufacturing process is simplified. Since the molded body itself is manufactured using an hour wheel, automobile ceiling materials can be supplied at low cost. Since no reinforcing materials are required, the ceiling itself is lighter, reducing fuel consumption.

本発明の成形体は、自動車天井材に限らず、家屋や船舶
用の天井材あるいは断熱用建材など多くの分野に利用さ
れうる。
The molded product of the present invention can be used not only as a ceiling material for automobiles but also in many fields such as ceiling materials for houses and ships, and building materials for heat insulation.

−り一図I!」11〜W凱 第1図は基材となる不織布の調製工程を示す概略図、そ
して第2図は、得られた基材を用いて成形体を調製する
工程を示す概略図である。
- Riichizu I! 11-W Kai FIG. 1 is a schematic diagram showing the process of preparing a nonwoven fabric serving as a base material, and FIG. 2 is a schematic diagram showing a process of preparing a molded article using the obtained base material.

1・・・繊維供給容器、2・・・カードマシン、3・・
・発泡性樹脂粒子供給容器、5・・・加熱炉26・・・
金型。
1... Fiber supply container, 2... Card machine, 3...
- Expandable resin particle supply container, 5... Heating furnace 26...
Mold.

11・・・開繊繊維、31・・・発泡性樹脂粒子、 1
2・・・不織布。
11... Spread fiber, 31... Expandable resin particles, 1
2...Nonwoven fabric.

100・・・成形体。100... Molded object.

以上that's all

Claims (5)

【特許請求の範囲】[Claims] 1.無機繊維を主成分とする繊維中に発泡性樹脂粒子を
分散した不織布基材を,加熱し圧縮成形して得られる繊
維シート成形体。
1. A fiber sheet molded product obtained by heating and compression molding a nonwoven fabric base material in which expandable resin particles are dispersed in fibers mainly composed of inorganic fibers.
2.前記発泡性樹脂粒子が,発泡剤を含浸させた熱可塑
性樹脂粒子である特許請求の範囲第1項に記載の成形体
2. The molded article according to claim 1, wherein the expandable resin particles are thermoplastic resin particles impregnated with a foaming agent.
3.前記無機繊維がガラス繊維である特許請求の範囲第
1項に記載の成形体。
3. The molded article according to claim 1, wherein the inorganic fiber is glass fiber.
4.前記繊維が50重量%以下の割合で有機繊維を含有
する特許請求の範囲第1項に記載の成形体。
4. The molded article according to claim 1, wherein the fibers contain organic fibers in a proportion of 50% by weight or less.
5.前記基材の片面に内装化粧材を積層し,加熱し,圧
縮成形して得られる特許請求の範囲第1項に記載の成形
体。
5. The molded article according to claim 1, which is obtained by laminating an interior decorative material on one side of the base material, heating, and compression molding.
JP61174566A 1986-07-24 1986-07-24 Fiber sheet molded body Pending JPS6335863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61174566A JPS6335863A (en) 1986-07-24 1986-07-24 Fiber sheet molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61174566A JPS6335863A (en) 1986-07-24 1986-07-24 Fiber sheet molded body

Publications (1)

Publication Number Publication Date
JPS6335863A true JPS6335863A (en) 1988-02-16

Family

ID=15980802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61174566A Pending JPS6335863A (en) 1986-07-24 1986-07-24 Fiber sheet molded body

Country Status (1)

Country Link
JP (1) JPS6335863A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005115586A1 (en) * 2004-05-28 2005-12-08 Nippon Muki Co., Ltd. Medium for mid-performance air filter, process for producing the same and mid-performance air filter
JP4590483B1 (en) * 2009-08-07 2010-12-01 中川産業株式会社 Manufacturing method of thermally expandable base material for vehicle interior and manufacturing method of base material for vehicle interior using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954678A (en) * 1972-09-27 1974-05-28
JPS6264512A (en) * 1985-09-17 1987-03-23 Honda Motor Co Ltd Molding of formed sound absorption material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954678A (en) * 1972-09-27 1974-05-28
JPS6264512A (en) * 1985-09-17 1987-03-23 Honda Motor Co Ltd Molding of formed sound absorption material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005115586A1 (en) * 2004-05-28 2005-12-08 Nippon Muki Co., Ltd. Medium for mid-performance air filter, process for producing the same and mid-performance air filter
JP4590483B1 (en) * 2009-08-07 2010-12-01 中川産業株式会社 Manufacturing method of thermally expandable base material for vehicle interior and manufacturing method of base material for vehicle interior using the same
WO2011016417A1 (en) * 2009-08-07 2011-02-10 中川産業株式会社 Method for manufacturing thermally expandable base material for vehicle interior and method for manufacturing base material for vehicle interior using same
JP2011037072A (en) * 2009-08-07 2011-02-24 Nakagawa Sangyo Kk Method of manufacturing thermally expandable base material for interior of vehicle and method of manufacturing base material for interior of vehicle using the same
CN102256763A (en) * 2009-08-07 2011-11-23 中川产业株式会社 Method for manufacturing thermally expandable base material for vehicle interior and method for manufacturing base material for vehicle interior using same
US8216406B2 (en) 2009-08-07 2012-07-10 Nakagawa Sangyo Co., Ltd. Method for manufacturing thermally expandable base material for vehicle interior and method for manufacturing base material for vehicle interior using same
EP2463074A4 (en) * 2009-08-07 2017-09-20 Nakagawa Sangyo Co., Ltd. Method for manufacturing thermally expandable base material for vehicle interior and method for manufacturing base material for vehicle interior using same

Similar Documents

Publication Publication Date Title
US3382302A (en) Method for the manufacture of reinforced plastic foams
US5049439A (en) Thermoformable article
US4695501A (en) Thermoformable composite articles
US4940629A (en) Fiber reinforced thermoplastic integral skin foams and manufacture thereof
US5258089A (en) Method for producing interior-finishing material for use in automobiles
IE872027L (en) Making laminated reinforced thermoplastic sheets
EP0058141B1 (en) Resin-impregnated fibre composite materials and a method for their manufacture
CA1333627C (en) Interior-finishing material for use in automobiles and a method for producing the same
US3817819A (en) Fibrous insert for reinforcing foam plastic products and process for the production of these foam plastic products
JPS6335863A (en) Fiber sheet molded body
JPS6335862A (en) Fiber molded body
JPS63309659A (en) Fiber molded body
JPS63126955A (en) Production of fibrous sheet composite
JPS63309435A (en) Fiber molded body
JP3824376B2 (en) Papermaking stampable sheet, lightweight stampable sheet and manufacturing method thereof
JPS6375162A (en) Fiber sheet molded body
JP3067511B2 (en) Phenolic resin laminate and method for producing phenolic resin molded article using the same
JPS63120151A (en) Production of fibrous lightweight molded body
JPS63120152A (en) Production of fibrous molded body
JPH0649363B2 (en) Method for producing fiber molding for thermoforming
JPH0423657B2 (en)
JPH01308623A (en) Manufacture of fiber molded form
JPS6330240A (en) Preparation of sheet-shaped molding
JPH062976B2 (en) Method for producing fiber molding for thermoforming
JPH01285432A (en) Automobile ceiling material and manufacture thereof