JPS6375162A - Fiber sheet molded body - Google Patents

Fiber sheet molded body

Info

Publication number
JPS6375162A
JPS6375162A JP61218640A JP21864086A JPS6375162A JP S6375162 A JPS6375162 A JP S6375162A JP 61218640 A JP61218640 A JP 61218640A JP 21864086 A JP21864086 A JP 21864086A JP S6375162 A JPS6375162 A JP S6375162A
Authority
JP
Japan
Prior art keywords
fibers
fiber
molded
nonwoven fabric
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61218640A
Other languages
Japanese (ja)
Inventor
正彦 石田
塚本 昌博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP61218640A priority Critical patent/JPS6375162A/en
Publication of JPS6375162A publication Critical patent/JPS6375162A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、軽量、高強度で、賦形性、断熱性および吸音
性江優れ、特に自動車用天井材として有用な繊維シート
成形体に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a fiber sheet molded article that is lightweight, has high strength, has excellent formability, heat insulation properties and sound absorption properties, and is particularly useful as a ceiling material for automobiles.

(従来の技術) 自wJxLの内装材のひとつである成形天井にはダンボ
ールや各種樹脂発泡体などが使用されている。ダンボー
ルは軽量で安価であるが、成形手段が圧縮という操作の
みであるため、賦形性が悪く微妙な形状を付与すること
ができ々い。
(Prior Art) Cardboard and various resin foams are used for the molded ceiling, which is one of the interior materials of the WJxL. Cardboard is lightweight and inexpensive, but since the only means of shaping it is compression, it has poor formability and cannot be shaped into delicate shapes.

さらに、吸湿性を有するため形状維持性が悪いという欠
点がある。そのため、樹脂発泡体が広く利用されている
。例えば、特開昭58−71154号公報および特公昭
58−2811号公報には、変性ポリスチレン発泡体を
用いた成形天井がある。このような成形体は、樹脂を発
泡させて所望の形状に成形して得られるため賦形性に優
れ、得られる成形体は比較的強度が高く軽量であり、断
熱性、耐熱性などVC優れる。しかし、熱可塑性樹脂が
用いられるため、高温での寸法安定性および高温での強
度に劣る。さらπ、断熱効果を得るために独立気泡の発
泡体を用いるため表面での音の反射がおこり、充分な吸
音効果が得られない。このような成形天井の強度を向上
させるために補強材を積層したり、吸音効果を得るため
に吸音材を積層もしくけ基材に貫通孔を設けることが行
われている(特開毛55−11947号公報、特開昭5
3−i4074号公報および特公昭57−60944号
公報)が、製造工程が複雑になりコスト高となる。成形
天井自身の重量も増すため自動車の走行燃費が落ちると
いう欠点もある。
Furthermore, it has the disadvantage of poor shape retention due to its hygroscopic properties. Therefore, resin foams are widely used. For example, JP-A-58-71154 and JP-B-Sho 58-2811 disclose molded ceilings using modified polystyrene foam. Such molded bodies are obtained by foaming resin and molded into the desired shape, so they have excellent shaping properties, and the molded bodies obtained are relatively strong and lightweight, and have excellent VC properties such as heat insulation and heat resistance. . However, since thermoplastic resin is used, the dimensional stability and strength at high temperatures are poor. Furthermore, since closed-cell foam is used to obtain a heat-insulating effect, sound is reflected on the surface, making it impossible to obtain a sufficient sound-absorbing effect. In order to improve the strength of such molded ceilings, reinforcing materials are laminated, and in order to obtain a sound absorption effect, sound absorbing materials are laminated or through holes are provided in the base material (Japanese Patent Application Laid-open No. Publication No. 11947, Japanese Unexamined Patent Publication No. 11947
3-i4074 and Japanese Patent Publication No. 57-60944), the manufacturing process is complicated and costs are high. Another drawback is that the weight of the molded ceiling itself increases, reducing the fuel efficiency of the vehicle.

(発明が解決しようとする問題点) 本発明は上記従来の欠点を解消し、軽量、高強度で、賦
形性、耐熱性、断熱性および吸音性に優れ、かつ高温に
おける強度および寸法安定性にも優れた、特に自動車の
成形天井に適した繊維シート成形体を提供することを目
的としてなされたものである。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned conventional drawbacks, is lightweight, has high strength, has excellent formability, heat resistance, heat insulation, and sound absorption, and has high strength and dimensional stability at high temperatures. The purpose of this invention was to provide a fiber sheet molded product that has excellent properties and is particularly suitable for molded ceilings of automobiles.

(問題点を解決するための手段) 本発明の要旨は、無機繊維を含有する繊維材間I/c熱
可塑性樹脂発泡性繊維が分散された不繊布基材が加熱圧
縮成形されて、前記繊維材間が前記熱可塑性樹脂発泡性
繊維の溶融物で接着されてなる繊維シート成形体に存す
る。
(Means for Solving the Problems) The gist of the present invention is that a nonwoven fabric base material in which I/C thermoplastic resin expandable fibers are dispersed between fiber materials containing inorganic fibers is heat-compression molded, and the fibers are There exists a fiber sheet molded article in which the materials are bonded together with a melt of the thermoplastic resin foamable fibers.

本発明の成形体の基材となる不織布に用いられる繊維材
は、無機繊維を含有し、必要に応じて有機繊維を75重
量%以下の割合で含有する。
The fibrous material used for the nonwoven fabric serving as the base material of the molded article of the present invention contains inorganic fibers and, if necessary, organic fibers in a proportion of 75% by weight or less.

このような無機繊維の素材としては、ガラス、ロックク
ールなどが、有機繊維の素材としては、ポリエチレン、
ポリプロピレン、ポリエステル、ナイロンなどがある。
Materials for such inorganic fibers include glass and rock cool, while materials for organic fibers include polyethylene,
Examples include polypropylene, polyester, and nylon.

有機繊維の含有量が751i量%を越えると、得られる
成形体の強度が低下する。これらの繊維は、いずれもそ
の直径が2〜40μm1長さが50〜2001!9Iの
短繊維である。繊維径や縁#長が上記範囲を下まわると
得られる成形体の強度が不充分であり、上2範囲を上ま
わると成形時の賦形性が悪い。
When the content of organic fiber exceeds 751i% by weight, the strength of the obtained molded article decreases. All of these fibers are short fibers with a diameter of 2 to 40 μm and a length of 50 to 2001!9I. If the fiber diameter or edge length is below the above range, the strength of the resulting molded product will be insufficient, and if it exceeds the above two ranges, the shapeability during molding will be poor.

前記不織布rc混綿される熱可塑性樹脂発泡性繊維は、
分解型発泡剤を混練したものであり、該分解型発泡剤の
分解温度以上に加熱されると、発泡する性質を有するも
のであるものが好適に使用される。熱可塑性樹脂として
は、ポリエチレン、ポリプロピレン、エチレン−酢酸ビ
ニル共重合体、ポリ塩化ビニル、ポリスチレン、ABS
樹脂等が使用される。分解型発泡剤としては、重炭酸ナ
トリウム、炭酸アンモニクム、亜硝酸アンモニクム、ア
ジド化合物などの無機系分解型発泡剤、アゾ化合物、ニ
トロン化合物、スルホニルヒドラジド化合物などの有機
系分解型発泡剤が使用される。
The thermoplastic resin foamable fibers to be mixed with the nonwoven RC fabric are:
A material prepared by kneading a decomposable foaming agent and having the property of foaming when heated to a temperature higher than the decomposition temperature of the decomposable foaming agent is preferably used. Thermoplastic resins include polyethylene, polypropylene, ethylene-vinyl acetate copolymer, polyvinyl chloride, polystyrene, and ABS.
Resin etc. are used. As decomposable blowing agents, inorganic decomposable blowing agents such as sodium bicarbonate, ammonicum carbonate, ammonicum nitrite, and azide compounds, and organic decomposable blowing agents such as azo compounds, nitrone compounds, and sulfonyl hydrazide compounds are used. .

熱可塑性樹脂発泡性繊維は、前記熱可塑性樹脂に、混練
ロールあるいは混練押出機等を用いて、熱可塑性樹脂の
軟化温度以上、混練する分解型発泡剤の分解温度以下の
温度にて、分解型発泡剤を混練し、仁の混線物を分解型
発泡剤の分解温度以下で多数のノズルより溶融押出し、
高速度で引取るなどの方法で線維状にすることにより製
造される。
The thermoplastic resin expandable fiber is produced by adding a decomposable foam to the thermoplastic resin using a kneading roll or a kneading extruder at a temperature above the softening temperature of the thermoplastic resin and below the decomposition temperature of the decomposable blowing agent to be kneaded. The blowing agent is kneaded and the mixture is melt-extruded through multiple nozzles at a temperature below the decomposition temperature of the decomposable blowing agent.
It is manufactured by forming it into a fiber using a method such as drawing at high speed.

熱可塑性樹脂発泡性繊維の発泡時の最大発泡倍率は6倍
以上、好ましくは10倍以上である。
The maximum expansion ratio during foaming of the thermoplastic resin expandable fiber is 6 times or more, preferably 10 times or more.

6倍を下まわると後述する不織布基材の加熱圧la底成
形時不織布基材中の繊維材同士を接着するパイングーと
しての働きが不充分であり、そのためVC得られる成形
体の強度が低下する。発泡性繊維の発泡倍率の上限は特
に制限されないが、このような発泡繊維の製造可能な発
泡倍率の上限は約50倍である。発泡性繊維の発泡倍率
が6倍以上となるように熱可塑性樹脂の素材、粒径、発
泡剤の種類、発泡剤の含有量などを適宜選択する。
If it is less than 6 times, the function as a pin glue to bond the fiber materials in the nonwoven fabric base material to each other during hot pressure la bottom molding of the nonwoven fabric base material, which will be described later, will be insufficient, resulting in a decrease in the strength of the VC molded product. . Although the upper limit of the expansion ratio of the expandable fiber is not particularly limited, the upper limit of the expansion ratio that can be produced by such foam fiber is about 50 times. The material of the thermoplastic resin, the particle size, the type of blowing agent, the content of the blowing agent, etc. are appropriately selected so that the expansion ratio of the expandable fibers is 6 times or more.

このような発泡性繊維は、不織布基材全体の20〜12
0重量%の割合で含有される。少なすぎると得られる成
形体の強度が不充分であり、過剰であると不織布基材の
調整が困難と々る。
Such expandable fibers can be used in an amount of 20 to 12
It is contained in a proportion of 0% by weight. If it is too small, the strength of the molded product obtained will be insufficient, and if it is too large, it will be difficult to adjust the nonwoven fabric base material.

また、発泡性繊維は、太さ40μm程度のもの壕でか好
適であり、長さは2〜200 mm程度のものが好適で
ある。上記値より大きなものであると繊維材との混綿が
困難となる場合が生じるが、混綿が困難でない限り、太
さおよび長さは特に制限されない。
Further, the foamable fibers preferably have a thickness of about 40 μm, and a length of about 2 to 200 mm. If it is larger than the above value, it may be difficult to mix it with fiber materials, but the thickness and length are not particularly limited as long as it is not difficult to mix it.

本発明の成形体の基材である不繊布基材は、前記無at
R維、発泡性繊維および必要VC応じて有機繊維を用い
、通常の不織布の製造法に準じて製造される。例えば、
まずヤーンチョップ、ロービングチョップなどの形状で
市販されるガラス繊維を開繊する。有機繊維を用いると
きVC#−i、これも同様に廃線してフイクメント状と
し、このガラス繊維(無機縁14k)、発泡性繊維およ
び必要に応じて有機繊維をカードマシンなどを用いて充
分にブレンドし、圧aii成形して不織布基材を得る。
The nonwoven fabric base material which is the base material of the molded article of the present invention is
It is manufactured using R fibers, foamable fibers, and organic fibers depending on the required VC according to a conventional manufacturing method for nonwoven fabrics. for example,
First, glass fibers, which are commercially available in shapes such as yarn chops and roving chops, are opened. When using organic fibers, VC#-i is also discarded in the same way to form a fixture, and the glass fibers (inorganic edge 14k), foamed fibers, and if necessary organic fibers are thoroughly processed using a card machine or the like. Blend and pressure molding to obtain a nonwoven fabric substrate.

このような不織布基材の空隙率は92〜99゜5%であ
る。92%を下まわると後述の加熱圧縮成形工程におい
て、発泡性繊維が発泡してもその溶融物が充分に繊維材
間に入り込むことができず、その結果、繊維材同士を強
固に接着するバインダーの効果が充分に得られない。つ
まり、得られる成形体の強度が不充分となる。空隙率が
高すぎると不織布としての形状を維持するのが困難とな
り、得られる成形品の強度も低下する。不織布基材の厚
みは目的とする成形体の厚みや密度により異々るが、通
常10〜100m、好ましくFil O〜60ffであ
る。10flを下まわると成形天井全体の強度が不充分
であり、l 00ffを越えると後述の加熱時に中心部
分まで熱が伝わりにくくなるため大熱量を必要とする。
The porosity of such a nonwoven fabric substrate is 92 to 99.5%. If it is less than 92%, even if the expandable fibers are foamed in the heat compression molding process described below, the melt will not be able to sufficiently penetrate between the fiber materials, and as a result, the binder that firmly adheres the fiber materials to each other will fail. The effect cannot be obtained sufficiently. In other words, the strength of the molded product obtained is insufficient. If the porosity is too high, it will be difficult to maintain the shape of the nonwoven fabric, and the strength of the resulting molded product will also decrease. The thickness of the nonwoven fabric base material varies depending on the thickness and density of the intended molded article, but is usually 10 to 100 m, preferably Fil O to 60 ff. If it is less than 10fl, the strength of the entire molded ceiling will be insufficient, and if it exceeds 100ff, it will be difficult for heat to be transmitted to the center during heating, which will be described later, so a large amount of heat will be required.

このようKして得られる不織布基材は適当な大きさに切
断され、加熱後、所望する形状の凹凸を有する一対の金
型で圧縮成形される。この時の加熱温度は発泡性繊維中
に混練された分解型発泡剤の分解温度及び発泡性繊維中
に使用されている熱可塑性樹脂の融点以上の温度である
必要がある。
The nonwoven fabric substrate obtained in this way is cut to an appropriate size, heated, and compression molded using a pair of molds having projections and depressions of a desired shape. The heating temperature at this time needs to be higher than the decomposition temperature of the decomposable blowing agent kneaded into the expandable fibers and the melting point of the thermoplastic resin used in the expandable fibers.

また、圧縮成形するときの金型の温度は、発泡性繊維中
に使用されている熱可塑性樹脂および必要に応じて混綿
されている有機繊維の融点以下であればよいが、通常常
温〜80℃程度である。圧縮成形の圧縮力は通常0.2
〜50)l/−であり、圧縮時間FiIO〜600秒で
ある。
The temperature of the mold during compression molding may be below the melting point of the thermoplastic resin used in the expandable fibers and the organic fibers mixed as needed, but is usually room temperature to 80°C. That's about it. The compression force of compression molding is usually 0.2
~50) l/- and the compression time FiIO ~600 seconds.

このようKして、もとの不織布基材の厚鳳のへ05〜α
7倍の範囲に圧縮成形され、繊維シート成形体が得られ
る。そして成形体の厚みは、1〜20ffとされる。
In this way, the thickness of the original nonwoven fabric base material is 05~α
Compression molding is performed to a 7-fold range to obtain a fiber sheet molded product. The thickness of the molded body is 1 to 20 ff.

例えば、自動車用天井材において、特に強度が必要とさ
れる周辺部ではもとの厚木のα05倍以下倍に1強度は
周辺部はど必要としないが吸音性や緩衝性を必要とする
中央部けもとの厚^の0,2〜0,7倍に圧縮される。
For example, in the case of ceiling materials for automobiles, in the peripheral part where strength is particularly required, the strength is less than α05 times that of the original thick wood. It is compressed to 0.2 to 0.7 times the thickness of the animal.

このような成形体の周辺部の厚みは約1〜3WM、中央
部#′i4〜1105rである。α7倍以上の厚み(低
密度)K成形されると発泡性繊維の発泡・溶融・固化に
よる繊維材間の接着が充分に行われないため、成形体の
強度が不充分となる。逆にα05倍以下であっても特に
問題はないが、圧1t3VC大きな力を必要とするため
無駄である。上記中央部の空隙率ば約50%以上となり
、このよつな成形体は吸音性に優れる。
The peripheral part of such a molded body has a thickness of about 1 to 3 WM, and the central part has a thickness of about #'i4 to 1105r. If K is molded to a thickness of α7 times or more (low density), the strength of the molded product will be insufficient because the foaming, melting, and solidification of the expandable fibers will not sufficiently bond the fiber materials. On the other hand, there is no particular problem if it is less than α05 times, but it is wasteful because it requires a pressure as large as 1t3VC. The porosity of the central portion is about 50% or more, and this type of molded body has excellent sound absorption properties.

このような方法で得られた自動車用天井材の成形体表面
VCは、織布、不織布、プラスチツタシートなどの内装
用化粧材が接着される。不織布基材と内装用化粧材とを
積層し、これを加熱し、一体内に圧縮成形してもよい。
A decorative interior material such as a woven fabric, a nonwoven fabric, or a plastic ivy sheet is adhered to the surface VC of the molded object of the automobile ceiling material obtained by such a method. The nonwoven fabric base material and the interior decorative material may be laminated, heated, and compression-molded into one body.

以上のように、本発明の繊維シート成形体は、無機繊維
を含有する繊維材間に熊野m性樹脂発泡性繊維が分散さ
れた不織布基材が加熱圧lEa成形されて得られる。不
織布基材中の発泡性繊維中に使用されている熱可塑性樹
脂は、加熱工程で軟化し、後に溶融する。また発泡性繊
維中に含有された分解型発泡剤が分解し、ガスが発生す
る。このために、加熱により発泡性繊維が不織布基材中
で充分均一に混綿されている状態で発泡を起こすことK
なり、繊維材間に充分に浸透した后、溶融し滴状物とな
る。このようになった不織布基材を、金型で圧縮するこ
とで、発泡性繊維に由来する溶融樹脂は、更に:繊維材
間へと浸透が促進され、温度が降下すると、この樹脂が
硬化し繊維材同士を強固に接着するバインダーの働きを
する。このように繊維材同士が樹脂により固定された状
mKあるため、強度及び形状維持性に優れる。無機繊維
が使用されているため、その、熱安定性は従来の熱可塑
性樹脂発泡体に比べてけるかに高い。
As described above, the fiber sheet molded article of the present invention is obtained by hot-pressure molding a nonwoven fabric base material in which Kumano resin foamable fibers are dispersed between fiber materials containing inorganic fibers. The thermoplastic resin used in the expandable fibers in the nonwoven substrate softens during the heating process and later melts. Further, the decomposable foaming agent contained in the foamable fibers decomposes and gas is generated. For this purpose, it is necessary to cause foaming when the foamable fibers are sufficiently uniformly mixed in the nonwoven fabric base material by heating.
After it has sufficiently penetrated between the fibers, it melts and forms droplets. By compressing this nonwoven fabric base material with a mold, the molten resin derived from the foamable fibers is further promoted to penetrate between the fiber materials, and when the temperature drops, this resin hardens. Acts as a binder to firmly bond fibers together. Since the fibrous materials are fixed to each other by the resin in this manner, it has excellent strength and shape retention. Because inorganic fibers are used, its thermal stability is much higher than that of conventional thermoplastic foams.

本発明の成形体は比較的低密度の不繊布基材から得られ
るため軽量である。成形体の密度はその部分により異々
るが、例えば自動車天井の周辺部は充分に圧縮して成形
されているため高密度であり、低密度部分は弾力性を有
し吸音率が高い。
The molded article of the present invention is lightweight because it is obtained from a relatively low-density nonwoven fabric base material. The density of the molded body differs depending on its part, but for example, the peripheral part of an automobile ceiling has a high density because it is sufficiently compressed and molded, while the low-density part has elasticity and high sound absorption coefficient.

このように1本発用の成形体は、上記各種の優れた性質
を有するため、従来必要とされた補強材、吸音材などが
不要となる。そのため、自動車天井製造のため工程が簡
略化され、天井自体の重量も軽量化される。
As described above, since the single molded product has the above-mentioned various excellent properties, there is no need for reinforcing materials, sound absorbing materials, etc. that were conventionally required. Therefore, the manufacturing process for automobile ceilings is simplified, and the weight of the ceiling itself is also reduced.

次に、本発明の成形体が、どのようにして製造されるか
、第1図及び第2図の一例を参照して説明する。
Next, how the molded article of the present invention is manufactured will be explained with reference to an example of FIGS. 1 and 2.

第1図において、繊維供給容器1.IIKそれぞれ収納
された無機繊維2および発泡性繊維3が所定量ずつベル
トコンベアー21上に供給される。この無機繊維2およ
び発泡性繊m3は、カードマシン5に供給され、充分圧
混綿された後、連続状の不織布基材6が形成され、巻取
機7にて巻取られる。巻取られた不織布基材6け所望の
形状サイズに切断される。
In FIG. 1, fiber supply container 1. A predetermined amount of the inorganic fibers 2 and foamable fibers 3 stored in IIK are supplied onto the belt conveyor 21. The inorganic fibers 2 and foamable fibers m3 are supplied to a card machine 5 and mixed under sufficient pressure to form a continuous nonwoven fabric base material 6, which is wound up by a winder 7. The six rolled up nonwoven fabric base materials are cut into desired shapes and sizes.

第2図において、切断された不織布基材6と内装化粧材
8とが積層されて積層体lOとされ、この積層体10は
ベルトコンベアー22上を加熱炉51に導かれ、ここで
加熱された積層体10が成形用金型12で圧縮成形され
、#&維レシート成形体成形される。
In FIG. 2, the cut nonwoven fabric base material 6 and the interior decoration material 8 are laminated to form a laminate 10, and this laminate 10 is led onto a belt conveyor 22 to a heating furnace 51, where it is heated. The laminate 10 is compression-molded using a molding die 12 to form a #&fiber receipt molded body.

(実施例) 以下、本発明を実施例により説明する。(Example) The present invention will be explained below using examples.

実施例1 込)成形体の作製 無機繊維として、直径13μm1繊維長5〜20csの
ガラス繊維90重量部、有機Fa維として、直径18μ
m1繊維長5〜20口のポリプロピレン繊維10重量部
、発泡性繊維として、ポリプロピレン樹脂100重量部
とアゾジカルボンアミド10重量部とからなり、直径1
5μm1長さ5〜20国のポリプロピレン発泡性繊維5
0重量部を用い、第1図て示す装置により、幅1300
tmで長さが30mのロール状不織布を作製した。この
不織布を幅1150111、長さ1400+11’2F
K切断し、これに同サイズの前記内装用化粧材を積層し
て、周囲をクランプでピンチした。
Example 1) Preparation of molded body As inorganic fiber, 90 parts by weight of glass fiber with diameter 13 μm 1 fiber length 5 to 20 cs, as organic Fa fiber, diameter 18 μm
10 parts by weight of polypropylene fibers with a fiber length of 5 to 20 m1, 100 parts by weight of polypropylene resin and 10 parts by weight of azodicarbonamide as foamable fibers, and a diameter of 1
5 μm 1 length 5-20 countries polypropylene foam fiber 5
Using the device shown in Figure 1, using 0 parts by weight, the width was 1300 mm.
A roll-shaped nonwoven fabric having a length of 30 m and a length of 30 m was produced. Width 1150111, length 1400+11'2F
K cutting was carried out, the above-mentioned interior decoration material of the same size was laminated thereon, and the periphery was pinched with a clamp.

この積層体を第2図に示すようKして、180℃の熱風
加熱炉で3分間加熱した後、速やかに温度30℃の金型
を用い、圧縮力IKg/−の圧力で1分間圧縮成形した
。この金型は、最小肉厚部がl(1MIR,最大肉厚部
が8.0IOIK設計されており、得られた成形体はほ
ぼこの金型の形状に対応していた。
This laminate was heated as shown in Fig. 2 for 3 minutes in a hot air heating furnace at 180°C, and then immediately compression-molded for 1 minute using a mold at a temperature of 30°C at a compression force of I kg/-. did. This mold was designed to have a minimum thickness of 1MIR and a maximum thickness of 8.0IOIK, and the obtained molded product almost corresponded to the shape of this mold.

(B)成形体の性能評価 囚項で得られた成形体を95℃の熱風オープン中で4時
間保持した後、成形体のもとの厚みがZ9nの部分と、
もとの厚みが81!r1!の部分について厚みを測定し
、変化率(%)を算出した。別に1囚項で得られた成形
体から厚さ8rtttr、幅301!7w、長さ150
0の試験片を切り取り、曲げ強度の評価を行った。
(B) Performance evaluation of molded body After holding the molded body obtained in the prison term in a hot air open at 95°C for 4 hours, the original thickness of the molded body was Z9n,
The original thickness is 81! r1! The thickness of the portion was measured and the rate of change (%) was calculated. Separately, from the molded body obtained in Section 1, the thickness was 8rtttr, the width was 301!7w, and the length was 150mm.
A test piece of No. 0 was cut out and the bending strength was evaluated.

まず、上記試験片を10onの間隔をもって配及された
一対の支持体上に載置する。次いで、この試験片中央部
Know/分のスピードで力を加えていく。そして、試
料片が屈曲するときの重量を測定した。
First, the test piece was placed on a pair of supports spaced apart from each other by 10 on. Next, force is applied to the center of the test piece at a speed of Know/min. Then, the weight of the sample piece when it was bent was measured.

さらに、囚項で得られた成形体から、厚さgfl、幅5
0(iff1長さ50酊の試料片を切り取り、残響室法
により1000Hzにおける吸音率を測定した。
Furthermore, from the molded body obtained in the prison term, a thickness of gfl and a width of 5
A sample piece with a length of 50 mm was cut out, and the sound absorption coefficient at 1000 Hz was measured using the reverberation chamber method.

それぞれの結果を第1表に示す。第1表の曲げ強さの項
において、○印は10Kg/an以上を、Δ印Fi9.
9〜6駿/−を、そして×印#′i5.9Kg/cll
i以下を示す。
The results are shown in Table 1. In the bending strength section of Table 1, ○ indicates 10Kg/an or more, Δ indicates Fi9.
9 to 6 Shun/-, and × mark #'i5.9Kg/cll
Indicates i or less.

実施例2〜7、および比較例1〜6の結果も併せて第1
表に示す。
The results of Examples 2 to 7 and Comparative Examples 1 to 6 are also included in the first
Shown in the table.

実施例2 発泡性繊維を、L&維材(無機繊維+有機繊維)111
fiに対して11′5%の割合で使用したこと以外は実
施例1と同様である。
Example 2 Expandable fibers are L&fiber material (inorganic fibers + organic fibers) 111
The process is the same as in Example 1 except that it was used at a ratio of 11'5% to fi.

実施例3 発泡性繊維を繊維材重量に対して25%の割合で使用し
たこと以外は実施例1と同様である。
Example 3 The same as Example 1 except that the expandable fibers were used at a ratio of 25% based on the weight of the fiber material.

夾施例4 不織布基材の厚&を601fl+としたこと以外は実施
例1と同様である。
Example 4 This was the same as Example 1 except that the thickness of the nonwoven fabric base material was 601 fl+.

*絶倒5 不織布基材の空隙率を93%、厚みを12罰としたこと
以外は実施例1と同様である。
*Zettai 5 Same as Example 1 except that the porosity of the nonwoven fabric base material was 93% and the thickness was 12%.

実施例6 不織布基材の空隙率を99.49h1厚みを60Mとし
たこと以外は実施例1と同様である。
Example 6 The same as Example 1 except that the porosity of the nonwoven fabric base material was 99.49h1 and the thickness was 60M.

−*絶倒7 ガラスtR維とポリプロピレン繊維との重量比をl:1
としたこと以外は実施例1と同様である。
-* Absolutely 7 The weight ratio of glass tR fiber and polypropylene fiber is 1:1
This example is the same as Example 1 except for the above.

比較例1 発泡性繊維を混綿しなかったこと以外Fip施例絶倒同
様である。
Comparative Example 1 Completely the same as the Fip example except that no foamable fiber was mixed.

比較例2 無機繊維を用いることなく、有機繊維を100重景部用
いたこと以外Fi実施例1と同様である。
Comparative Example 2 Comparative Example 2 Same as Fi Example 1 except that organic fiber was used in the 100-fold area without using inorganic fiber.

(発明の効果) 本発明繊維シート成形体は、上述のとおりの構成である
ので、軽量、高強度で、賦形性、耐熱性、断熱性、吸音
性に優れており、自動車天井材に用いろと好適であり、
従来自動車天井に必要とされた補強材、クッション材、
吸音材が不要となり、安価に供給され、天井自体も軽量
化されるため、燃費が低減する。
(Effects of the Invention) Since the fiber sheet molded article of the present invention has the above-described structure, it is lightweight, has high strength, and has excellent formability, heat resistance, heat insulation, and sound absorption properties, and is suitable for use in automobile ceiling materials. Iroto is suitable,
Reinforcing materials, cushioning materials, and
Sound-absorbing materials are no longer needed and can be supplied at low cost, and the ceiling itself is also lighter, reducing fuel consumption.

木発男繊維シート成形体は、自*JIE天井材に限らず
、家屋や船舶の天井材あるいFiwh熱用建材用建材分
野に利用される。
The wood fiber sheet molded product is used not only for JIE ceiling materials, but also for ceiling materials for houses and ships, and building materials for fire-heating construction materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図社、零発用の成形体を製造する工程の
説男図である。 符号の説明 1.11・・・繊維供給容器、2・・・無機繊維、3・
・・発泡性繊維1.5・・・カード臂シン、6・・・不
織布基材、7・・・巻取機、8・−・内装化粧材、10
・・・積層体、21・・・ベルトコンベア、51・・・
加熱炉。
Figures 1 and 2 are explanatory diagrams of the process of manufacturing a molded body for zero firing. Explanation of symbols 1.11...Fiber supply container, 2...Inorganic fiber, 3.
... Foaming fiber 1.5... Card arm shin, 6... Nonwoven fabric base material, 7... Winding machine, 8... Interior decorative material, 10
...Laminated body, 21...Belt conveyor, 51...
heating furnace.

Claims (2)

【特許請求の範囲】[Claims] 1.無機繊維を含有する繊維材間に熱可塑性樹脂発泡性
繊維が分散された不織布基材が加熱圧縮成形されて、前
記繊維材間が前記熱可塑性樹脂発泡性繊維の溶融物で接
着されてなる繊維シート成形体。
1. A nonwoven fabric base material in which thermoplastic resin foamable fibers are dispersed between fiber materials containing inorganic fibers is heat compression molded, and the fiber materials are bonded with a melt of the thermoplastic resin foamable fibers. Sheet molded body.
2.繊維材が有機繊維を75重量%以下の重量分率で含
有するものである特許請求の範囲第1項記載の繊維シー
ト成形体。
2. The fibrous sheet molded article according to claim 1, wherein the fibrous material contains organic fibers in a weight fraction of 75% by weight or less.
JP61218640A 1986-09-16 1986-09-16 Fiber sheet molded body Pending JPS6375162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61218640A JPS6375162A (en) 1986-09-16 1986-09-16 Fiber sheet molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61218640A JPS6375162A (en) 1986-09-16 1986-09-16 Fiber sheet molded body

Publications (1)

Publication Number Publication Date
JPS6375162A true JPS6375162A (en) 1988-04-05

Family

ID=16723115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61218640A Pending JPS6375162A (en) 1986-09-16 1986-09-16 Fiber sheet molded body

Country Status (1)

Country Link
JP (1) JPS6375162A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032609A (en) * 2011-07-01 2013-02-14 Sekisui Chem Co Ltd Fiber mat and laminated body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954678A (en) * 1972-09-27 1974-05-28
JPS5871154A (en) * 1981-09-28 1983-04-27 トヨタ自動車株式会社 Ceiling interior finish material for automobile and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954678A (en) * 1972-09-27 1974-05-28
JPS5871154A (en) * 1981-09-28 1983-04-27 トヨタ自動車株式会社 Ceiling interior finish material for automobile and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032609A (en) * 2011-07-01 2013-02-14 Sekisui Chem Co Ltd Fiber mat and laminated body

Similar Documents

Publication Publication Date Title
US20200385905A1 (en) Thermoplastic composites with improved thermal and mechanical properties
US5049439A (en) Thermoformable article
EP0373135A2 (en) Headliners having improved sound-absorbing characteristics
US4284683A (en) Structural laminate
US4596682A (en) Method of manufacturing fire retardant polystyrene insulating board
JPS6375162A (en) Fiber sheet molded body
JP2001353763A (en) Polyolefin resin open cell foam extrusion foamed sheet
JP3512467B2 (en) Method for foaming polystyrene with flameproofing and molded article made of polystyrene
US4714715A (en) Method of forming fire retardant insulating material from plastic foam scrap and the resultant product
JPS6335862A (en) Fiber molded body
JPS583854A (en) Light molding sound insulating material for car and its manufacture
JPS6335863A (en) Fiber sheet molded body
JPS63120151A (en) Production of fibrous lightweight molded body
JPS63126955A (en) Production of fibrous sheet composite
JPS63309659A (en) Fiber molded body
JP3824376B2 (en) Papermaking stampable sheet, lightweight stampable sheet and manufacturing method thereof
JPS63120152A (en) Production of fibrous molded body
JP2871510B2 (en) Method for producing fiber molded product
JPS6244778B2 (en)
JPS63309435A (en) Fiber molded body
JPH01308623A (en) Manufacture of fiber molded form
JPH06155605A (en) Manufacture of thermoplastic form board having internal void
JPS6375185A (en) Production of fibrous sheet
JPH04128012A (en) Thermosetting resin prepreg and trimming core material for automobile
JPS6330240A (en) Preparation of sheet-shaped molding