JPS6335357B2 - - Google Patents
Info
- Publication number
- JPS6335357B2 JPS6335357B2 JP4959178A JP4959178A JPS6335357B2 JP S6335357 B2 JPS6335357 B2 JP S6335357B2 JP 4959178 A JP4959178 A JP 4959178A JP 4959178 A JP4959178 A JP 4959178A JP S6335357 B2 JPS6335357 B2 JP S6335357B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- plate thickness
- current
- temperature
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000003466 welding Methods 0.000 claims description 59
- 239000000463 material Substances 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 6
- 230000007547 defect Effects 0.000 claims description 6
- 230000020169 heat generation Effects 0.000 claims description 2
- 238000005520 cutting process Methods 0.000 description 6
- 230000002950 deficient Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000012937 correction Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000012905 input function Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Control Of Temperature (AREA)
Description
【発明の詳細な説明】
本発明は、電縫管溶接装置に関し、特に溶接入
熱制御に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric resistance welding tube welding device, and particularly to welding heat input control.
電縫管溶接、例えば高周波電縫管溶接は、管状
成形され衝合溶接される端面のVシエーブ部に高
周波電流を誘導し、抵抗発熱による溶接を行な
う。この場合、溶接温度は溶接状態の良否を決め
る重要なフアクタとなり、種々の制御方法が提案
されている。例えば、特開昭50−45753号公報に
示される如く溶接電流計測による高周波入熱調整
方式や、溶接温度を温度センサーで検出して入熱
制御する方法がある。 In ERW tube welding, for example, high frequency ERW tube welding, a high frequency current is induced in the V-shape portion of the end face of a tube formed and butt welded, and welding is performed by resistance heat generation. In this case, welding temperature is an important factor that determines the quality of welding, and various control methods have been proposed. For example, there is a high frequency heat input adjustment method using welding current measurement, as disclosed in Japanese Patent Laid-Open No. 50-45753, and a method of detecting welding temperature with a temperature sensor to control heat input.
しかし、本願発明者等の実験によれば、溶接電
流計測による入熱制御では被加熱物板厚の変化と
いう外乱に対しては溶接電流の変化として表われ
ないので、溶接温度調整能力のないことがわかつ
た。また、温度計測による入熱制御は原理的に好
ましいが、測定条件の外乱と温度計測器自体の応
答性に問題があるため、40m/min〜200m/min
クラスの高速溶接には不適当なものであつた。 However, according to experiments conducted by the present inventors, heat input control using welding current measurement does not reflect disturbances such as changes in the thickness of the heated object as changes in the welding current, and therefore does not have the ability to adjust the welding temperature. I understood. In addition, although heat input control using temperature measurement is preferable in principle, there are problems with disturbances in the measurement conditions and the responsiveness of the temperature measuring device itself, so
It was unsuitable for this class of high-speed welding.
本発明の目的は、溶接電流計測による入熱制御
において、板厚の変化も入熱制御に取込むことで
溶接継目品質を安定にし、さらに溶接電流変化か
ら溶接継目の局部不良検出も可能にした電縫管溶
接装置を提供するにある。 The purpose of the present invention is to stabilize the quality of welded seams by incorporating changes in plate thickness into heat input control using welding current measurement, and to also make it possible to detect local defects in welded seams from changes in welding current. To provide ERW pipe welding equipment.
本発明においては、電縫管の送り速度に板厚補
正を加えて入熱制御をし、板厚は帯板の厚み計測
又は溶接後の継目の温度から検出する。 In the present invention, heat input is controlled by adding plate thickness correction to the feed rate of the electric resistance welded pipe, and the plate thickness is detected from the thickness measurement of the strip plate or the temperature of the seam after welding.
第1図は本発明の基本構成を示す。管状に成形
された管素材1には溶接効果を高めるために内部
に冷却管2aを設けたインピーダ2を挿設し、こ
の管素材1を矢印の方向に移動させながらそのV
字状シーム部1aの対向した縁部を2つのスクイ
ーズローラ3a,3bによつて圧接すると共にサ
イリスタ等の電圧調整回路4aと真空管等を使用
した発振回路4bを含む可変電圧高周波発振回路
4から同調回路5を介して加熱材6、例えば誘導
コイルや接触子によつて前記シーム部1aに高周
波電流を流し、近接効果及び表皮効果を利用して
溶接を行なう。なお、4cは昇圧回路、4dは整
流回路である。 FIG. 1 shows the basic configuration of the present invention. In order to enhance the welding effect, an impeder 2 with a cooling pipe 2a inside is inserted into the tube material 1 formed into a tubular shape, and while the tube material 1 is moved in the direction of the arrow, its V
The opposing edges of the letter-shaped seam portion 1a are pressed together by two squeeze rollers 3a and 3b, and tuned by a variable voltage high frequency oscillation circuit 4 including a voltage adjustment circuit 4a such as a thyristor and an oscillation circuit 4b using a vacuum tube or the like. A high frequency current is passed through the seam portion 1a by a heating material 6, such as an induction coil or a contactor, through a circuit 5, and welding is performed using the proximity effect and the skin effect. Note that 4c is a booster circuit, and 4d is a rectifier circuit.
電圧調整回路4aは制御装置7により交流出力
電圧Eacが制御され、出力電圧Eacを操作量として
発振回路4の出力電流iωを制御する場合である。
発振回路4の出力電流iωは例えば加熱材6とで
電流変成器を構成する電流検出器8で検出し、こ
の検出電流iωを設定器9で管素材送り速度に応
じて設定される入熱量と比較して制御装置7の制
御信号にするフイードバツクループを構成する。
このフイードバツクループにより、溶接温度を変
化させる要因のうち、電源変動、真空管等の発振
器内の性能劣化、インピーダコアの劣化・脱落、
コンタクトチツプの接触点の変化等による電気変
動要因およびVシエーブ部角度の変化という機械
変動要因を補正することができる。 In the voltage adjustment circuit 4a, the AC output voltage Eac is controlled by the control device 7, and the output current iω of the oscillation circuit 4 is controlled using the output voltage Eac as a manipulated variable.
The output current iω of the oscillator circuit 4 is detected by a current detector 8 that constitutes a current transformer together with the heating material 6, for example, and this detected current iω is set by a setting device 9 as the amount of heat input and the amount of heat set according to the tube material feeding speed. A feedback loop is constructed to compare the signals and generate a control signal for the control device 7.
Among the factors that change the welding temperature, this feedback loop includes power supply fluctuations, performance deterioration in oscillators such as vacuum tubes, impeder core deterioration and falling out,
It is possible to correct electrical fluctuation factors such as changes in the contact point of the contact tip and mechanical fluctuation factors such as changes in the V-shave angle.
なお、上記フイードバツクループの制御量とし
ては発振器出力電流iωに限らず、交流出力電圧
Eac、直流電圧Ep又は交流電圧eHFを制御すること
でも同様の制御機能を持たせることが可能であ
る。 Note that the control amount of the above feedback loop is not limited to the oscillator output current iω, but also the AC output voltage.
A similar control function can be provided by controlling E ac , DC voltage E p or AC voltage e HF .
このような入熱制御において、本構成において
は、管素材1の送り速度Spの検出値と溶接温度θ
検出値を入力とする演算器10において送り速度
Spの板厚補正演算をし、この演算結果を速度―入
熱量の関数特性を持つ関数発生器11を通して設
定器9の出力を設定する。12は例えばタコジエ
ネレータ等で構成される送り速度検出器である。
温度検出器13は溶接温度検出により板厚変化を
検出するためのもので、これは同じ送り速度、入
熱量において板厚が変れば溶接温度変化として現
われることになる。また、温度検出器13は溶接
温度を直接に測定するものでなく、溶接部の火
花、スケール、蒸気、水など温度計測にとつて不
具合な雰囲気を過ぎた位置での測定を行なう。こ
れは、電縫管固有の特性として、板厚の変化は非
常にゆるやかに変化(JIS規格では±10%の値が
許容され帯コイルの先端と後端が薄くなる)する
ことに着目し、溶接に使用した熱の残留熱による
材料温度を検出することが溶接部温度を直接に計
測する条件よりも良好な計測条件になることに基
づいている。 In such heat input control, in this configuration, the detected value of the feed speed S p of the tube material 1 and the welding temperature θ
The feed rate is determined in the computing unit 10 that receives the detected value as input.
A plate thickness correction calculation is performed for S p , and the calculation result is passed through a function generator 11 having a speed-heat input function characteristic to set the output of the setting device 9. Reference numeral 12 denotes a feed rate detector composed of, for example, a tachometer generator.
The temperature detector 13 is used to detect changes in plate thickness by detecting welding temperature, and this will appear as a change in welding temperature if the plate thickness changes at the same feed rate and heat input. Further, the temperature detector 13 does not directly measure the welding temperature, but measures the welding temperature at a position past the atmosphere that is inconvenient for temperature measurement, such as sparks, scale, steam, and water at the welding part. This is based on the fact that the plate thickness changes very gradually (JIS standards allow a value of ±10%, making the tip and rear ends of the band coil thinner), which is a characteristic unique to ERW pipes. This is based on the fact that detecting the material temperature due to residual heat from the heat used in welding provides better measurement conditions than directly measuring the temperature of the weld zone.
一方、演算器14は電流検出器8の検出電流
iωと速度検出器12の検出速度Spを入力とし、
検出電流iωの瞬時異常から溶接の局部的不具合
を判断し、検出速度Spから該不具合位置検出さら
には不良品仕分け信号を発生する。電流iωの異
常原因は、例えば、電源の瞬停、瞬時過電圧、V
シエーブ短絡、等でおこり、これら現象は溶接品
質の低下(オーバヒート、コールドウエルド)に
なるものであり、演算器14による位置信号、仕
分け信号の算出をする。 On the other hand, the arithmetic unit 14 calculates the current detected by the current detector 8.
Input iω and the detected speed S p of the speed detector 12,
A local defect in welding is determined based on the instantaneous abnormality of the detected current iω, and the location of the defect is detected based on the detection speed S p , and a defective product sorting signal is generated. Causes of abnormality in current iω include, for example, instantaneous power failure, instantaneous overvoltage, V
These phenomena occur due to sheave short circuits, etc., and these phenomena result in deterioration of welding quality (overheating, cold welding), and the position signal and sorting signal are calculated by the computing unit 14.
このように演算器10を設けることにより、溶
接温度を変化させる要因のうち、製管速度の変化
(加減速中又は定常速度変化)は検出速度Spによ
る入熱制御がなされ、そのときの材料板厚の変化
は検出温度θに基づく検出速度Spの補正で入熱制
御がなされる。また、演算器14を設けることに
より、溶接温度を変化させる要因のうち上記Vシ
エーブ短絡等の瞬時変化要因には検出電流iωの
変化時点までの検出速度Spの積分から管上の位置
を検出して該溶接部分の取除きもしくは該電縫管
を不良品として取除く制御がなされる。 By providing the computing unit 10 in this way, among the factors that change the welding temperature, changes in pipe manufacturing speed (during acceleration/deceleration or steady speed changes) are controlled by the detected speed S p , and the heat input is controlled by the detected speed S p. Changes in plate thickness are controlled by heat input by correcting the detection speed S p based on the detected temperature θ. In addition, by providing the computing unit 14, among the factors that change the welding temperature, instantaneous change factors such as the above-mentioned V-shave short circuit can be detected by detecting the position on the pipe from the integral of the detected speed S p up to the point of change of the detected current iω. Then, control is performed to remove the welded portion or remove the electric resistance welded pipe as a defective product.
第2図は第1図における演算器10,14の具
体的なブロツク構成を示す。演算器10の板厚算
出器15は、温度検出器13からの検出温度θを
入力とし、この検出温度θから板厚値を求める。
この板厚算出器15は、管素材1の送り速度と入
熱量が一定で、標準板厚での溶接温度に対する実
際の検出温度θとの偏差から板厚値を関数演算や
テーブルデータから求める。次に、演算器10の
板厚設定器16には標準板厚値が設定され、この
設定値と板厚算出器15の算出値とは比較器17
の比較入力され、該比較器17に標準板厚設定値
と算出値との偏差(板厚増減量)が求められる。
この比較器17の出力は乗算器18の乗数入力に
され、乗算器18の被乗数入力には送り速度検出
器12からの速度検出値が与えられる。この乗算
器18による乗算は板厚増減量を送り速度Spの増
減量に換算するもので、例えば板厚が標準値より
も増したときには現在速度Spを板厚増分の比率だ
け低下させる減速量を求める。 FIG. 2 shows a concrete block configuration of the arithmetic units 10 and 14 in FIG. 1. The plate thickness calculator 15 of the calculator 10 receives the detected temperature θ from the temperature detector 13 as input, and calculates the plate thickness value from this detected temperature θ.
The plate thickness calculator 15 calculates the plate thickness value from the deviation of the actual detected temperature θ with respect to the welding temperature at the standard plate thickness from functional calculations and table data, while the feed rate and heat input of the tube material 1 are constant. Next, a standard plate thickness value is set in the plate thickness setter 16 of the calculator 10, and this set value and the calculated value of the plate thickness calculator 15 are compared to the comparator 17.
A comparison is input to the comparator 17, and the deviation (increase/decrease in thickness) between the standard plate thickness setting value and the calculated value is determined.
The output of this comparator 17 is used as a multiplier input of a multiplier 18, and the speed detection value from the feed speed detector 12 is given to the multiplicand input of the multiplier 18. The multiplication by this multiplier 18 is to convert the plate thickness increase/decrease into an increase/decrease in the feed speed S p . For example, when the plate thickness increases more than the standard value, the current speed S p is decelerated to be reduced by the ratio of the plate thickness increment. Find the quantity.
次に、演算器10の利得設定器19は、送り速
度検出器12の速度検出値Spを設定される利得で
増幅し、検出値Spに比例した値を得る。この利得
設定器19は例えばポテンシヨメータによつて現
在速度Spの検出レベルを分圧し、乗算器18の出
力との比率調整を行う。次に、加算器20は乗算
器18の出力と利得設定器19の出力とを加減算
する。この加減算によつて速度Spの検出値が板厚
補正量に相当する演算器18の速度補正量で補正
される。加算器20の加減算結果は、前記の関数
発生器11の入力、すなわち板厚補正した速度Sp
の出力にする。従つて、板厚が標準板厚より厚い
部分の溶接には検出速度Spが標準板厚の速度に比
べて早い値にあると見なして入熱量を上げる方向
に制御し、溶接部の単位体積当りの入熱量を一定
にして溶接温度を一定に制御する。逆に、板厚が
標準板厚よりも薄い部分の溶接には入熱量を下げ
る方向に制御して溶接温度を一定に制御する。 Next, the gain setter 19 of the arithmetic unit 10 amplifies the speed detection value Sp of the feed speed detector 12 with a set gain to obtain a value proportional to the detection value Sp . This gain setter 19 divides the detection level of the current speed S p using, for example, a potentiometer, and adjusts the ratio with the output of the multiplier 18 . Next, the adder 20 adds or subtracts the output of the multiplier 18 and the output of the gain setter 19. Through this addition and subtraction, the detected value of the speed S p is corrected by the speed correction amount of the calculator 18 that corresponds to the plate thickness correction amount. The addition/subtraction result of the adder 20 is the input of the function generator 11, that is, the plate thickness corrected speed S p
output. Therefore, when welding a part where the plate thickness is thicker than the standard plate thickness, the detected speed S p is assumed to be a faster value than the speed for the standard plate thickness, and the heat input is controlled in the direction of increasing, and the unit volume of the welded part is The welding temperature is controlled to be constant by keeping the amount of heat input per weld constant. Conversely, when welding parts where the plate thickness is thinner than the standard plate thickness, the welding temperature is controlled to be constant by controlling the amount of heat input to be lower.
なお、板厚算出器15は溶接部温度θから算出
するに限らず、帯板の成形前又は成形後の溶接前
に光、超音波、フルイデイツクス、X線、静電容
量、磁気量等を利用した周知の測定器により直接
に板厚を算出するものでも良い。 Note that the plate thickness calculator 15 is not limited to calculating from the welding part temperature θ, but also uses light, ultrasonic waves, fluidics, X-rays, capacitance, magnetic quantity, etc. before forming the strip or after forming and welding. The plate thickness may be directly calculated using a well-known measuring device using
演算器14の弁別器21は電流検出器8が検出
する発振器出力電流iωを入力として該電流iωを
検波し、この検波信号が所定レベル以上になる信
号を抽出する。この信号を入力とするフイルタ2
2は所定周波数以上の成分を抽出する。これら弁
別器21とフイルタ22によつてVシエーブ短絡
等で電流iωが瞬時変化した異常溶接温度発生タ
イミング信号を得、この信号が増幅器で増幅と波
形整形されて位置演算器24の演算指令及び不良
品切断指令器25の切断指令にする。そして、位
置演算器24は速度Spを溶接開始時点から積算し
ており、演算指令が与えられた際の積算値を溶接
不良箇所として数値出力する。また、不良品切断
指令器25は切断指令信号の電力増幅等をして溶
接不良箇所の切断又はマーク打込器を駆動する。 The discriminator 21 of the arithmetic unit 14 receives the oscillator output current iω detected by the current detector 8 as an input, detects the current iω, and extracts a signal whose detected signal exceeds a predetermined level. Filter 2 which receives this signal as input
2 extracts components of a predetermined frequency or higher. The discriminator 21 and the filter 22 obtain an abnormal welding temperature occurrence timing signal in which the current iω changes instantaneously due to a V-shave short circuit, etc., and this signal is amplified and waveform-shaped by an amplifier to provide a calculation command for the position calculator 24 and an error signal. Set the cutting command to the good product cutting command unit 25. The position calculator 24 integrates the speed S p from the time of starting welding, and numerically outputs the integrated value when a calculation command is given as a welding defect location. In addition, the defective product cutting command device 25 amplifies the power of the cutting command signal and drives the cutting or marking device for the defective welding portion.
以上説明した如く、本発明による電縫管溶接装
置は、溶接電流計測による入熱制御において、溶
接温度から又は直接に管材の厚さ変化を検出し、
この検出値に応じて製管速度の検出値を補正して
入熱量設定するため、板厚補正も含めた入熱制御
が可能になり、溶接継目品質の一層の安定化を図
ることができる。特に、帯コイルの巻始め、巻終
りは板厚の変化が大きく、この部分での溶接品質
向上に顕著な効果がある。また、本発明において
は、発振器出力電流のレベルと変化率が所定値を
越えたことを検出して溶接継目の局部不良検出を
可能にしたため、局部的溶接不良発生によるロツ
ト不良の検知が容易になるし、不良箇所の検知も
容易になる。この方式を利用すると高周波電縫管
の信頼性が向上し、オペレーターの調整省力化の
みならず、現在製造できないでいる高級品質の化
学配管用ステンレス鋼管や、ラジエーター用アル
ミオーバル管等の実用化が可能になる。 As explained above, the ERW pipe welding device according to the present invention detects the change in the thickness of the pipe material from the welding temperature or directly in heat input control by measuring the welding current,
Since the detected value of the pipe manufacturing speed is corrected according to this detected value and the heat input amount is set, it is possible to control the heat input including plate thickness correction, and further stabilize the quality of the welded seam. In particular, the plate thickness changes greatly at the beginning and end of the band coil, and this has a significant effect on improving welding quality in these areas. Furthermore, in the present invention, it is possible to detect local failures in welded seams by detecting when the level and rate of change of the oscillator output current exceed a predetermined value, making it easy to detect lot failures due to local welding failures. This also makes it easier to detect defective locations. Using this method not only improves the reliability of high-frequency electric resistance welded pipes and saves the operator's adjustment labor, but also enables the practical use of high-quality stainless steel pipes for chemical piping and aluminum oval pipes for radiators, which cannot currently be manufactured. It becomes possible.
第1図は本発明による電縫管溶接装置の基本構
成を示す図、第2図は第1図における演算器1
0,14の具体的なブロツク図である。
1…電縫管、4…可変電圧高周波発振回路、5
…同調回路、8…発振器出力電流検出器、10…
演算器、11…関数発生器、12…速度検出器、
13…温度検出器、14…演算器、17…比較
器、18…乗算器、20…加算器、21…弁別
器、22…フイルタ、24…位置演算器、25…
不良品切断指令器。
FIG. 1 is a diagram showing the basic configuration of an electric resistance welding pipe welding device according to the present invention, and FIG. 2 is a diagram showing the computing unit 1 in FIG. 1.
0.14 is a concrete block diagram. 1... ERW pipe, 4... Variable voltage high frequency oscillation circuit, 5
...tuned circuit, 8...oscillator output current detector, 10...
Arithmetic unit, 11...function generator, 12...speed detector,
13... Temperature detector, 14... Arithmetic unit, 17... Comparator, 18... Multiplier, 20... Adder, 21... Discriminator, 22... Filter, 24... Position computing unit, 25...
Defective product cutting command device.
Claims (1)
抗発熱により溶接を行う電縫管溶接において、電
縫管の送り速度検出値に応じ溶接電流計測により
入熱制御をし、かつ溶接部温度の計測値から算出
又は直接の板厚計測値から求めた溶接部の板厚変
化に応じて管材送り速度検出値を補正する制御部
を備えたことを特徴とする電縫管溶接装置。 2 上記高周波電流が所定レベル以上かつ所定の
変化率以上になつたことの弁別で溶接不良を検出
し、電縫管の送り速度積分演算から上記溶接不良
位置を算出する演算器を備えたことを特徴とする
特許請求の範囲第1項記載の電縫管溶接装置。[Scope of Claims] 1. In ERW tube welding in which high-frequency current is induced in the end faces to be butt-welded and welding is performed by resistance heat generation, heat input is controlled by measuring the welding current according to the detected value of the feed speed of the ERW tube. and a control unit that corrects the detected value of the pipe material feed rate in accordance with a change in the plate thickness of the welded part calculated from the measured value of the welded part temperature or determined from the directly measured value of the plate thickness. Welding equipment. 2. A computing unit is provided that detects a welding defect by determining that the high-frequency current has exceeded a predetermined level and a predetermined rate of change, and calculates the position of the welding defect from an integral calculation of the feed rate of the ERW pipe. An electric resistance welding pipe welding device according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4959178A JPS54141354A (en) | 1978-04-26 | 1978-04-26 | Electric seam pipe welding machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4959178A JPS54141354A (en) | 1978-04-26 | 1978-04-26 | Electric seam pipe welding machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54141354A JPS54141354A (en) | 1979-11-02 |
JPS6335357B2 true JPS6335357B2 (en) | 1988-07-14 |
Family
ID=12835466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4959178A Granted JPS54141354A (en) | 1978-04-26 | 1978-04-26 | Electric seam pipe welding machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS54141354A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5954188U (en) * | 1982-09-28 | 1984-04-09 | 株式会社明電舎 | ERW pipe high frequency welding equipment |
JP6216622B2 (en) * | 2013-11-15 | 2017-10-18 | 日下部電機株式会社 | Management method of ERW pipe manufacturing equipment |
-
1978
- 1978-04-26 JP JP4959178A patent/JPS54141354A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS54141354A (en) | 1979-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100258535A1 (en) | Steel pipe material weld zone heating apparatus and method | |
KR970004828B1 (en) | Heating power measuring method | |
JPS6335357B2 (en) | ||
US3899651A (en) | Method and apparatus for control of weld temperature in a high frequency electric resistance welded pipe mill | |
JPS6224180B2 (en) | ||
JP3320509B2 (en) | High frequency heating equipment | |
JPS5819032Y2 (en) | V-seam welding equipment for ERW pipes | |
US3253112A (en) | Tube welding | |
JPS54137468A (en) | Heat input control for electric seam pipe welding | |
JPH04147780A (en) | Method for controlling weld heat input of electro-resistance welded pipe | |
SU560716A1 (en) | Method for automatic control of high-frequency welding process of conduit pipes | |
JPH0417984A (en) | Welding heat input control method for electro-resistance-welded tube | |
JPS6024748B2 (en) | High frequency electric resistance welding phenomenon monitoring and monitoring control device | |
JP3523699B2 (en) | Metal material judgment device | |
SU893463A1 (en) | Automatic control method of the high-frequency welding process | |
JPS6012158B2 (en) | Heat input control method for ERW pipes | |
JPH0686020B2 (en) | Heat input control method for ERW pipe welding | |
JPS5940550B2 (en) | Spot welding strength monitoring device | |
SU764899A1 (en) | Method of automatic control of high-frequency welding process | |
JP3241530B2 (en) | Manufacturing method of powder filled tube | |
SU680836A1 (en) | Method for automatically controlling the process of high-frequency welding | |
JPH02255283A (en) | Method for controlling welding of seam welded pipe | |
JPS5924585A (en) | Method and device for measuring electric power in high- frequency butt seam weld zone | |
JP2002028782A (en) | Measuring device for welding heat input | |
JPH0246311B2 (en) |