JPS6012158B2 - Heat input control method for ERW pipes - Google Patents
Heat input control method for ERW pipesInfo
- Publication number
- JPS6012158B2 JPS6012158B2 JP4374081A JP4374081A JPS6012158B2 JP S6012158 B2 JPS6012158 B2 JP S6012158B2 JP 4374081 A JP4374081 A JP 4374081A JP 4374081 A JP4374081 A JP 4374081A JP S6012158 B2 JPS6012158 B2 JP S6012158B2
- Authority
- JP
- Japan
- Prior art keywords
- output
- current
- heat input
- control method
- input control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K13/00—Welding by high-frequency current heating
- B23K13/01—Welding by high-frequency current heating by induction heating
- B23K13/02—Seam welding
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Induction Heating (AREA)
- Arc Welding Control (AREA)
Description
【発明の詳細な説明】
本発明は電縫管の入熱制御方法に関し、更に詳述すれば
溶接点温度と高周波電源装置の出力変圧器の2次電流と
によるカスケード式フィードバック制御を行い、制御精
度が高く、且つ応答性に優れた入熱制御方法を提案する
ものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat input control method for an electric resistance welded pipe, and more specifically, it performs cascade feedback control based on the welding point temperature and the secondary current of the output transformer of a high frequency power supply. This paper proposes a heat input control method with high accuracy and excellent responsiveness.
霞総督は金属帯を幅方向に順次的に曲成して筒状となし
、対向両側綾部を高周波電流にて加熱し、これをスクイ
ズロールに通して側圧を加えて衝合溶接して製造される
。Kasumi Governor is manufactured by sequentially bending a metal strip in the width direction to make it into a cylindrical shape, heating the opposing twills on both sides with high-frequency current, passing it through a squeeze roll, applying lateral pressure, and butt welding. Ru.
而して熔接品質を高めた高信頼度の雷総管を製造するた
めには溶接の入熱量の制御が不可欠であるが、従来はオ
ペレータが溶接部の火色、フラッシュ火花の勢い、ビー
ド余盛量等を観察し、これらから溶接部温度を推定して
、高周波電源装置に設けられた誘導電圧調整器を手動議
節していた。このような方法による場合はオペレータに
高い熟練度が要求されることは勿論であるが、安定した
入熱制御は望むべくもなく、不良品の発生は避けられな
かった。このために、また霞縫管の高級化という需要動
向のために種々の自動入熱制御方法、装置が提案されて
いる。例えば特開昭53一140265号の露総鋼管の
ヒート制御方法は製管速度信号から溶接温度の設定値を
得、これと溶接温度実測値とから得た予測信号とを基に
溶接電源を制御するものであるが、この方法による場合
は溶接部残熱の熱伝導等により温度検出が遅れ(フィー
ドバック制御でのむだ時間となる)、また鋼帯(鋼管)
の熱容量のために制御の1次遅れを生じ、要するに応答
性が悪いために制御精度が低く、特に製管速度の高速化
が要求される昨今の状況では実用的ではない。また筒状
とした鋼帯つまりオープンパイプ部の対向側綾部又は溶
接シーム部上にブロープコィルを配し、溶倭のための高
周波電流を検出する方法(特関昭54−9147)も知
られているが、パイプは左右に振動しつつ送られていく
ために電流検出レベルが変動し、正しく溶接電流を捉え
得ないという難点がある。本発明は斯かる事情に鑑みて
なされたものであって、溶接点温度と溶接電流との複合
監視により応答性に優れ「制御精度が高く「 しかも外
乱にも強い露縫管の入熱制御方法を提供することを目的
とする。In order to manufacture highly reliable lightning tubes with improved weld quality, it is essential to control the amount of heat input during welding, but in the past, operators had to control the color of the weld, the force of the flash spark, and the amount of bead excess. etc., and estimated the welding temperature from these to manually adjust the induced voltage regulator installed in the high-frequency power supply. In the case of such a method, it goes without saying that a high degree of skill is required of the operator, but stable heat input control cannot be expected, and the occurrence of defective products is unavoidable. For this reason, and in response to the demand trend of higher quality woven pipes, various automatic heat input control methods and devices have been proposed. For example, in the heat control method for exposed steel pipes disclosed in JP-A-53-140265, a welding temperature set value is obtained from a pipe manufacturing speed signal, and a welding power source is controlled based on a predicted signal obtained from this and an actual welding temperature measurement value. However, when using this method, temperature detection is delayed due to heat conduction of residual heat in the welding part (dead time in feedback control), and the
This causes a first-order delay in control due to the heat capacity of the pipe, and in other words, the response is poor, resulting in low control accuracy, making it impractical, especially in the current situation where high-speed pipe manufacturing is required. Also known is a method (Tokukan Sho 54-9147) in which a blow coil is placed on the opposite side twill or weld seam of a cylindrical steel strip, that is, an open pipe section, and detects the high-frequency current for welding. However, since the pipe is sent vibrating from side to side, the current detection level fluctuates, making it difficult to accurately capture the welding current. The present invention has been made in view of the above circumstances, and provides a heat input control method for open-welded pipes that has excellent responsiveness through combined monitoring of welding point temperature and welding current, has high control accuracy, and is resistant to external disturbances. The purpose is to provide
本発明に係る露縫管の入熱制御方法は、溶接点又は熔接
点近傍の温度を検出する手段と、高周波電源装置の出力
変圧器の2次電流を検出する手段とを用い、高周波電源
装置の出力を調整するカスケード式のフィードバック制
御系を構成し、温度検出手段の出力を主帰還情報、2次
電流検出手段の出力を幅帰還情報とすることを特徴とす
る。The heat input control method for a welded pipe according to the present invention uses means for detecting the temperature at or near the welding point and means for detecting the secondary current of the output transformer of the high frequency power supply. The present invention is characterized in that a cascade type feedback control system is configured to adjust the output of the temperature detecting means, and the output of the temperature detecting means is used as main feedback information, and the output of the secondary current detecting means is used as width feedback information.
以下図面に基き具体的に説明する。図面は本発明方法に
係る電気回路のブロック図である。図示しない商用電源
は降圧変圧器11を介してサィリスタを用いてなる出力
制御回路12に連なっている。出力制御回路’2はサィ
リスタの導通位相角を制御することにより実効電力を調
整するものであり、各サィリス夕のトリガ電流が位相器
20から与えられるようになっている。出力制御回路1
2の出力は陽極変圧器13へ与えられて、ここで昇圧さ
れ「高周波発振回路14へ給電される。A detailed explanation will be given below based on the drawings. The drawing is a block diagram of an electric circuit according to the method of the present invention. A commercial power source (not shown) is connected via a step-down transformer 11 to an output control circuit 12 using a thyristor. The output control circuit '2 adjusts the effective power by controlling the conduction phase angle of the thyristor, and the trigger current of each thyristor is given from the phase shifter 20. Output control circuit 1
The output of 2 is given to the anode transformer 13, where it is boosted and fed to the high frequency oscillation circuit 14.
高周波発振回路14は整流回路及びマグネトロン等の発
振管等よりなり、発振管出力は出力変圧器15の1次電
線に接続されており、該変圧器にて降圧された電力はそ
の2次電線からオ−プンパィプ30を挿通させるべき誘
導コイル(ワークコイル)16に与えられるようにして
ある。誘導コイル16を流れる高周波電流によりオープ
ンパイプ30の両側端緑には熔接点Vを折返し点とする
誘導電流が流れ、そのジュール熱により両側端縁が加熱
され、スクイズロール31によって与えられる側圧によ
り衝合せ溶接されて管32となる。而して本発明方法で
は出力変圧器15の2次電流及び溶接点V(又はその近
傍)の温度を検出して制御情報とするが2次電流検出の
ために変流器21を2次電流回路、例えば出力リード部
に介装してあり、また熔接部Vの温度検出のために赤外
綾放射温度計22を設けている。次に制御系について説
明すると、計算器23は管サイズ、材質、製管速度、誘
導コイル等の入力により、予め与えてある演算式に従し
・トこの条件に最適の溶接点温度を演算し、これを設定
基準値として差動増幅器24の一入力端子に与える。The high-frequency oscillation circuit 14 consists of a rectifier circuit, an oscillation tube such as a magnetron, etc., and the oscillation tube output is connected to the primary wire of the output transformer 15, and the power stepped down by the transformer is transferred from the secondary wire. It is applied to the induction coil (work coil) 16 through which the open pipe 30 is inserted. Due to the high frequency current flowing through the induction coil 16, an induced current flows through the green ends of the open pipe 30 with the welding point V as the turning point. They are welded together to form a tube 32. In the method of the present invention, the secondary current of the output transformer 15 and the temperature of the welding point V (or its vicinity) are detected and used as control information, but in order to detect the secondary current, the current transformer 21 is A circuit, for example, an output lead part is interposed therein, and an infrared ray radiation thermometer 22 is provided to detect the temperature of the welded part V. Next, to explain the control system, the calculator 23 calculates the optimal welding point temperature for these conditions according to a predetermined calculation formula using inputs such as pipe size, material, pipe manufacturing speed, induction coil, etc. , which is applied to one input terminal of the differential amplifier 24 as a set reference value.
なお計算器23としてディジタル回路を使用する場合は
A/D変換器を介して差敷増幅器24へ設定基準値を入
力するのは勿論である。温度計22の出力は絶縁アンプ
25を介して差動増幅器24の他入力端子に与える。差
動増幅器24は両入力の差、即ち設定基準値と温度実測
値との偏差に応じた信号を出力する。この増幅器24出
力は上記偏差を零にすることを可能とする出力変圧器1
5の2次電流に相当する内容となっており、差動増幅器
26の一入力端子へ与えられる。変流器21の検出電流
は絶縁アンプ27を介して差動増幅器26の池入力端子
へ与えられる。従って差動増幅器26の出力は両入力の
差、即ち前記温度偏差を解消し得る電流値と、2次電流
実測値との電流偏差に応じた信号となっており、該出力
信号は位相器20へ与えられ、位相器2川ま上記電流偏
差を零にする方向に出力制御回路12のサィリスタの導
通位相角を変更調節する。なお図中に2点鎖線にて示す
ように差動増幅器26に電流フオーシング設定器28を
接続して差動増幅器24側からの入力を強制的に変更し
得るように構成してもよい。斯かる構成とする場合は起
動時、製管速度変更時等、特殊状況下での追随性を高め
ることが可能になる。以上のように本発明方法は溶接点
V又はその近傍の温度と高周波電源装置の出力変圧器の
2次電流とをフィ−ドバック情報とし、これらによるカ
スケード制御を、前者をメジャ−ループ、後者をマイナ
ーループとするようにして行うこととしたものであり、
次のような効果が奏される。Note that when a digital circuit is used as the calculator 23, it goes without saying that the set reference value is input to the differential amplifier 24 via an A/D converter. The output of the thermometer 22 is applied to the other input terminal of the differential amplifier 24 via an isolation amplifier 25. The differential amplifier 24 outputs a signal corresponding to the difference between the two inputs, that is, the deviation between the set reference value and the actual temperature measurement value. The output of this amplifier 24 is connected to the output transformer 1 which makes it possible to reduce the above deviation to zero.
The content corresponds to the secondary current of No. 5, and is applied to one input terminal of the differential amplifier 26. The detection current of the current transformer 21 is applied to an input terminal of a differential amplifier 26 via an isolation amplifier 27. Therefore, the output of the differential amplifier 26 is a signal corresponding to the difference between the two inputs, that is, the current deviation between the current value that can eliminate the temperature deviation and the actual measured value of the secondary current. , and the phase shifter 2 changes and adjusts the conduction phase angle of the thyristor of the output control circuit 12 in the direction of zeroing the current deviation. As shown by the two-dot chain line in the figure, a current forcing setter 28 may be connected to the differential amplifier 26 to forcibly change the input from the differential amplifier 24 side. With such a configuration, it is possible to improve followability under special circumstances such as when starting up or changing the pipe manufacturing speed. As described above, the method of the present invention uses the temperature at or near the welding point V and the secondary current of the output transformer of the high frequency power supply as feedback information, and performs cascade control based on these, with the former as a measure loop and the latter as feedback information. We decided to do it as a minor loop,
The following effects are produced.
即ち温度のみによる制御の場合は前述の如くむだ時間と
1次遅れによる応答性の悪さは避けられないが、電流制
御ループ、即ち差動増幅器26一位相器20−出力制御
回路12〜出力変圧器15の電源回路一変流器21一絶
縁アンプ27におけるステップ応答は遅れがなく更に温
度と2次電流との間には1次相関が成立するので応答性
、制御精度ともに大幅に向上する。また電流を制御しな
い場合には電流波形にリツプルが含まれる。In other words, in the case of control based only on temperature, poor responsiveness due to dead time and first-order delay is unavoidable as described above, but the current control loop, that is, differential amplifier 26 single-phase shifter 20 - output control circuit 12 - output transformer There is no delay in the step response in the power supply circuit 15, current transformer 21, and isolation amplifier 27, and since there is a first-order correlation between temperature and secondary current, both responsiveness and control accuracy are greatly improved. Furthermore, when the current is not controlled, the current waveform includes ripples.
このリップル周期はスクイズロールの回転周期に一致し
ており、従ってロール偏芯に起因するものとされるが、
このリップルによる短い周期的温度変動も、本発明の電
流制御により吸収できる。更にまた本発明では出力変圧
器2次電流を制御情報としているのでブローブコィルを
使用する場合の如く徒らに検出電流レベルが変動するこ
とがなく、また高周波発振回路14にて電流変化を捉え
る場合と異り、アーク発生等の場合は敏感に追随するか
ら、外乱による影響も制御因子とできる等、本発明は優
れた効果を奏する。なお本発明は高周波加熱手段として
コンタクトチップを用いる場合にも全く同様に適用でき
る。This ripple period corresponds to the rotation period of the squeeze roll, and is therefore attributed to roll eccentricity.
Even short periodic temperature fluctuations caused by this ripple can be absorbed by the current control of the present invention. Furthermore, in the present invention, since the output transformer secondary current is used as control information, the detected current level does not fluctuate unnecessarily as in the case where a blow coil is used. On the other hand, the present invention exhibits excellent effects, such as the fact that the occurrence of an arc or the like can be tracked sensitively, so that the influence of external disturbances can also be used as a control factor. Note that the present invention can be applied in exactly the same manner to the case where a contact chip is used as the high-frequency heating means.
【図面の簡単な説明】 図面は本発明方法に係る電気回路のブロック図である。[Brief explanation of drawings] The drawing is a block diagram of an electric circuit according to the method of the present invention.
Claims (1)
により加熱して両側縁部を衝合溶接して製造される電縫
管の入熱制御方法において、溶接点又は溶接点近傍の温
度を検出する手段と、高周波電源装置の出力変圧器の2
次電流を検出する手段とを用い、高周波電源装置の出力
を調整するカスケード式のフイードバツク制御系を構成
し、温度検出手段の出力を主帰還情報、2次電流検出手
段の出力を副帰還情報とすることを特徴とする電縫管の
入熱制御方法。1. In a heat input control method for an electric resistance welded pipe manufactured by heating both opposing edges of a cylindrical bent metal strip with high-frequency current and butt-welding the edges, 2. Means for detecting temperature and output transformer of high frequency power supply
A cascade type feedback control system is configured to adjust the output of the high frequency power supply using the secondary current detecting means, and the output of the temperature detecting means is used as main feedback information, and the output of the secondary current detecting means is used as sub feedback information. A heat input control method for an electric resistance welded pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4374081A JPS6012158B2 (en) | 1981-03-24 | 1981-03-24 | Heat input control method for ERW pipes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4374081A JPS6012158B2 (en) | 1981-03-24 | 1981-03-24 | Heat input control method for ERW pipes |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57156880A JPS57156880A (en) | 1982-09-28 |
JPS6012158B2 true JPS6012158B2 (en) | 1985-03-30 |
Family
ID=12672166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4374081A Expired JPS6012158B2 (en) | 1981-03-24 | 1981-03-24 | Heat input control method for ERW pipes |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6012158B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111570963B (en) * | 2020-04-14 | 2022-09-02 | 深圳欣旺达智能科技有限公司 | Hot-press welding method and device, computer equipment and storage medium |
-
1981
- 1981-03-24 JP JP4374081A patent/JPS6012158B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS57156880A (en) | 1982-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8383978B2 (en) | Steel pipe material weld zone heating apparatus and method | |
US5223683A (en) | High frequency electronic welding system | |
US4289948A (en) | Automatic voltage compensation for digital welder control system | |
US4125759A (en) | Method and apparatus for shortcircuiting arc welding | |
JPS6317032B2 (en) | ||
US4408114A (en) | Resistance welding with pressure control in response to deviation between welding voltage and time varying reference values therefor | |
GB2074348A (en) | Method and system for controlling resistance | |
JPS6264483A (en) | Method and device for adjusting welding current | |
US2817747A (en) | Method and apparatus for electric resistance welding | |
JPS6012158B2 (en) | Heat input control method for ERW pipes | |
US4387289A (en) | Control system for resistance welding | |
US2260510A (en) | Automatic electric welding | |
JP3320509B2 (en) | High frequency heating equipment | |
JPH03155479A (en) | Welding control method for resistance welded tube | |
JPH02255283A (en) | Method for controlling welding of seam welded pipe | |
JPS60121086A (en) | Device for controlling temperature at which electric welded pipe is formed | |
SU1348118A1 (en) | Method of automatic control of high-frequency welding of tubes | |
US2046712A (en) | Automatic control system | |
JPS6024748B2 (en) | High frequency electric resistance welding phenomenon monitoring and monitoring control device | |
JPH0699287A (en) | Method for controlling welding electric power of high frequency welding equipment | |
JPS6335357B2 (en) | ||
JPS5819032Y2 (en) | V-seam welding equipment for ERW pipes | |
JPS58157578A (en) | Controlling method of flash welding speed | |
US2769887A (en) | High speed induction welding | |
SU1641546A1 (en) | Method for control of flash-butt resistance welding |