JPS6334893B2 - - Google Patents

Info

Publication number
JPS6334893B2
JPS6334893B2 JP56160148A JP16014881A JPS6334893B2 JP S6334893 B2 JPS6334893 B2 JP S6334893B2 JP 56160148 A JP56160148 A JP 56160148A JP 16014881 A JP16014881 A JP 16014881A JP S6334893 B2 JPS6334893 B2 JP S6334893B2
Authority
JP
Japan
Prior art keywords
particles
propylene
foaming
foamed
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56160148A
Other languages
Japanese (ja)
Other versions
JPS5861128A (en
Inventor
Tsuneo Hogi
Shigeya Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP56160148A priority Critical patent/JPS5861128A/en
Publication of JPS5861128A publication Critical patent/JPS5861128A/en
Publication of JPS6334893B2 publication Critical patent/JPS6334893B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Molding Of Porous Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、実質無架橋の状態で発泡成形された
プロピレン系樹脂発泡成形体及びその製造方法に
関し、更に詳しくは、プロピレン樹脂の持つ特性
(例えば耐熱性、剛性、耐油性等)を充分に生か
した状態で、くり返しの耐久性を備えた緩衝特性
を持つ、改良されたプロピレン系樹脂発泡粒子か
ら成る発泡成形体及びその製造方法に関する。 プロピレン系樹脂発泡粒子及びその粒子から成
る成形体の製造方法は、ポリエチレン発泡粒子の
型内成形方法の発達につれ、多くの文献に紹介さ
れるようになつている。例えば、特公昭51−
22951号公報、特公昭53−33996号公報及び特開昭
56−46735号公報には、要するに (イ) 樹脂を架橋し、それに揮発性発泡剤を含有さ
せて発泡性樹脂粒子にする工程、 (ロ) 該発泡性樹脂粒子を膨張させて、発泡粒子に
する工程、 (ハ) 上記発泡粒子に型内で発揮する発泡能を付与
(粒子の内圧を高めること、粒子を圧縮しその
体積を縮小させること)する工程、 (ニ) 上記発泡能を利用して型内で上記発泡粒子相
互を発泡(膨張)・熱融着させ、型通りの発泡
成形体にする工程、 (ホ) 該発泡成形体を冷却しながら取出す工程、 の上記(イ)〜(ホ)の組合せからなる架橋ポリオレフイ
ン(実は架橋ポリエチレン)の発泡粒子の型内成
形方法が記載されてある。これらは一般に平均気
泡径0.5〜0.05mmの独立気泡率に富んだ成形体が
その用途に合わせて密度0.015〜0.1g/cm3の範囲
の適宜なものとして作られる。従つて、それをそ
のまま応用すれば、ポリオレフインの下位概念に
当るプロピレン系樹脂も、優れた発泡成形体にす
ることができるが如くに紹介されている。 一方、例えば特公昭49−2183号公報、特公昭56
−1344号公報には、上記(イ)、(ロ)迄の工程を無架橋
の状態で発泡させるプロピレン系樹脂発泡粒子の
製造方法が開示されている。よつて上記両者を組
合せれば、文献上では無架橋のプロピレン系樹脂
発泡粒子を用いた型内成形方法は、きわめて容易
に完成することになる。 しかしながら、現実はそうは簡単なものではな
く、実用に供し得る発泡成形体にはならないので
ある。 その証拠の1つには、現在実質的無架橋のプロ
ピレン系樹脂発泡成形体は、新聞等の刊行物でし
ばしばその完成が伝えられているが、その実状は
これを実用的な種々の形状の生産プロセスに移す
ときに、気泡の連通化や気泡の不揃いやひけ、融
着不良等が多発して、カタログ等に示される設計
値通りの諸特性、ことにプロピレン樹脂の持つ特
質を生かした特性を満たした成形体を、安定して
供給することができないので、今だに市販の発泡
体として上場させ得ない実状にある。 この理由は、プロピレン系樹脂は例えばポリエ
チレンに比べ、結晶度が高く高融点で且つ溶融時
の流動的粘弾特性の温度依存性が大きいから、こ
れを発泡させるときは、樹脂が高温の発泡温度に
至るまで発泡能を充分に保持するようにするこ
と、ごく狭い発泡適性温度範囲に調温して発泡さ
せること、溶融樹脂が固化するときに生じる結晶
化熱を処理すること等を巧に調和させねばなら
ず、更にこれを型内に充填されている粒子を水蒸
気等で直接加熱して発泡させ、後、外部から水等
で冷却して成形体にする方式の型内成形法で具現
させようとするときは、例えば、内部温度が不足
するからと云つて水蒸気温を高めると、表面部の
粒子の融着が先に進行して水蒸気の流通を妨げ、
かえつて内部温度が不充分になつてしまうといつ
た面倒な現象が加わつて、その調和を一層困難な
ものにするからである。 一方、上記プロピレン系樹脂の改質手段には、
古くから、架橋を施こす方法、他の単量体及び他
の重合体を、共重合及び混合する方法が知られて
いるが、従来、プロピレン系樹脂の溶融発泡適用
性を充分なものに改質するに足る上記単量体及び
重合体の含有量は、得られる発泡体からプロピレ
ン系樹脂としての特質を消滅させてしまう欠点を
生じるし、逆に該含有量の低減化は、上記溶融発
泡の適用性の各善に結び付かない欠点があり、そ
の中庸点が見出し得ない。 従つて現状は、非経済的なことを承知で架橋を
施こす改質方法に頼るこになつているがこの改質
方法とて容易なものでなく、最も進歩的な技術と
して知られる例えば特公昭46−38716号公報の技
術に於ても、特定のプロピレン−エチレン共重合
体に架橋を併用させ、更に、これを発泡体にする
ときには揮散性の少ない化学発泡剤を採用(実施
例群参照)する等の工夫がなされている。 本発明はこのような現状に鑑みてなされたもの
で、その第1の目的は、実質無架橋のままのプロ
ピレン系樹脂発泡成形体が、熱安定性(熱寸法安
定性)耐油性、剛性等のプロピレン樹脂としての
特質を有し且つ、高水準の緩衝特性がそのくり返
しの耐久性をも兼備した発泡成形体として提供す
ることであり、第2の目的は、上述目的の発泡体
をより経済的に安定して供給し得るプロピレン系
樹脂発泡粒子を使用した発泡成形方法を提供する
ことである。 上記本発明の第1の目的は、微細セル構造で成
るプロピレン系樹脂発泡粒子の多数個が、相隣れ
る粒子相互の表面を接し融着集合して構成された
発泡成形体において、 (イ) プロピレン系樹脂は、プロピレン成分が90重
量%以上、エチレン成分が10重量%以下のプロ
ピレン−エチレンランダム共重合体であつて、
ランダム係数(R)が0.7以下、プロピレンセ
グメントの立体規則性()が40%未満、5Kg
荷重のビカツト軟化点が約50〜35℃、の値を示
す共重合体であること、 (ロ) 該樹脂発泡体が実質無架橋のものであるこ
と、 (ハ) 上記融着集合して生じた融着膜は、該粒子内
部にあるセル膜に対して約8倍以上の部厚い膜
厚みであること、 を特徴とするポリプロピレン系樹脂発泡粒子から
なる発泡成形体を採用することによつて、又本発
明の第2の目的はプロピレン成分が90重量%以
上、エチレン成分が10重量%以下のプロピレン−
エチレンランダム共重合体であつて、ランダム係
数(R)が0.7以下、プロピレンセグメントの立
体規則性()が40%未満、5Kg/cm2荷重のビカ
ツト軟化点が約50〜35℃、の値を示す共重合体
に、沸点が−50〜110℃の揮発性有機発泡剤を含
有させて発泡性樹脂粒子となし、次に該発泡性樹
脂粒子の表面部に存在する発泡剤を優先的に揮散
せしめた後、該粒子全体を発泡させて肉厚の表皮
部を有した発泡粒子となし、次いでこの発泡粒子
に発泡能を付与せしめて型内で無架橋の状態のま
ま加熱発泡させ粒子相互の表面を融着せしめて一
体化した成形体となし、成形体内部の粒子を構成
するセル膜に対し、上記融着で生じた融着膜が約
8倍以上になるようにしたことを特徴とする、プ
ロピレン系樹脂発泡粒子からなる成形体の製造方
法を採用することによつて、共に容易に達成する
ことができる。 以下、本発明の内容を図面等を用いて、先ず第
2発明(製造方法)の発明から詳述することにす
る。しかし、この説明はあくまで本発明の内容の
理解を深めてもらうための便宜上の手段であつ
て、この説明によつて第1発明(成形体)が第2
発明の制約を受けるものでない。 何故ならば、本発明で何が無架橋のプロピレン
系樹脂の型内発泡を可能ならしめ且つその成形体
が、従来には認められなかつた諸特性を何故兼備
えるようになつたかの説明は、本発明の製造方法
がもたらす発泡粒子の構造及びその構造の粒が果
す方法上での役割及びそれが発泡成形体になつた
ときに具備する構造、作用機能の順に説明された
方が、順序立つてこれ等の関係を理解し、本発明
の技術思想の真の理解に継がると考えただけだか
らである。一方、本発明の技術思想を深く理解し
たものは、本発明の達成を他の方法で完成するこ
とは容易になるであろうからでもある。 第1図は本発明に用いる発泡粒子を第2図は比
較(従来)の発泡粒子を、各々に代表する顕微鏡
写真の例図である。 又第1,2図の比較は、本第2発明部分に当る
「該発泡性樹脂粒子の表面部に存在する発泡剤を
優先的に揮発せしめた後、該粒子全体を発泡さ
せ」ると云う要件を満たした第1図と、同種の樹
脂を用いながら上記要件特に「粒子の表面部に存
在する発泡剤を優先的に揮散せしめる」段階を経
ない通常の発泡粒子の製法による第2図との対比
をも意味する。 この差は、第1図に於ては、第2図のそれと対
比して、第1図の方がより微細セルの独立セル構
造を形成しているし、内部の平均的セル膜2に比
べて肉厚の表皮部1が形成されている事実を客観
的に直視することができる。 即ち、第1図の肉厚の表皮部は、優先的に揮散
せしめられた揮発性有機発泡剤がもたらす表皮部
の軽度の発泡不良によつて形成されるものと考え
られる。この肉厚の表皮部は、先ず発泡粒子その
ものに膨張能(これを自己膨張能という)を付与
する。自己膨張能の確認は、生成後の発泡粒子を
大気中に数日放置してその内部の発泡剤を充分に
揮散させた後、これを143℃の水蒸気で5秒間加
熱し、90℃の室温下に15Hrおいた後さらに25℃
で24hr放置した粒子の体積を、元の発泡粒子の体
積で除した値の大小で評価し論じられるが、例え
ば第1図の場合の発泡粒子は1.3倍〜1.6倍もの自
己膨張能を示すのに対し、第2図の如きものはせ
いぜい1.1倍未満の値しか示さない。 次に本第2発明では、該発泡粒子に型内での発
泡をより完全なものにするために更に「発泡能を
付与せしめ」られる。この発泡能付与は、前述の
自己膨張能にプラスして付与されるもので、具体
的には、発泡粒子の内圧が、0.5〜3Kg/cm2(ゲ
ージ圧)の範囲内の揃つた値になるように空気等
の無機ガス(発泡剤ガス)を充填するか、或は、
発泡粒子を元の嵩容積の95〜50%の嵩容積になる
ように圧縮する等のいずれか又は双方の組合せの
操作を行なうことで達成し得る。しかし本発明で
は、高い値の付与条件を選ぶ必要はなくせいぜい
0.5〜2Kg/cm2(ゲージ圧)、95〜70%の範囲で充
分である。 この際、肉厚の表皮部は、その内部に保有する
微細セルと共同して、上記付与した内圧を長時間
維持する作用或いは、上記圧縮で生じる単位圧縮
当りの反発力を高める作用を司どる。又この作用
は、発泡粒子が型内で加熱膨張する迄の過程で受
ける経時的変動要因、或は均一な型内加熱の困難
さが生む温度的変動要因等によつて、型内での発
泡能が変化し、局部的に発泡能が不足気味になる
ことを防ぐと共に、発泡性発泡粒子の管理や成形
条件の設定管理を容易にする。 上述したように型内で発泡することについて、
幾重にも改質された発泡粒子を用いる本発明の方
法では、これを「型内で無架橋の状態のまま加熱
発泡させ」るだけでも「粒子相互の表面を融着せ
しめて一体化した成形体」となり、従来、誰もが
達成し得なかつた内部融着の完全な、ひけのな
い、表面美れいな成形体が無架橋の状態で完成す
るのである。 その経緯は、前述した発泡粒子の肉厚の表皮部
は、後述する本発明の特定の樹脂の持つ熱特性と
相乗して、例えば従来その樹脂では型内表面側の
粒子の溶融流動が先行してしまつて採用すること
が出来なかつた高温(即ち高圧)側の水蒸気が利
用できるといつた成形条件の相対的な範囲の移動
を可能にし、又このことが、粒子間の間隔を通
り、型内部に位置する発泡粒子迄をも加熱する水
蒸気の昇温機能を高めることに継がつて、結果的
に型内を極めて短時間により均一に加熱すること
を可能にする。 又、型内で加熱された発泡粒子は上述したよう
に付与された発泡能を発揮し易い状態で保有し、
更にその上に自己膨張能をも有しているから従来
にはみられない段階的挙動の発泡を生じ、余裕の
ある発泡力で粒子間のすみずみを埋め、密な粒子
間融着が完成するものと推察される。 第3図は本発明(第1図)にいう発泡粒子を、
第4図は比較(第2図)の発泡粒子を各々成形体
にしたときの成形体断面を例示する顕微鏡写真図
である。 第3、4図の比較に於て、第3図(本発明)の
ものは、本発明の共通した構成要件、即ち「融着
集合して生じた融着膜4が、該粒子内部にあるセ
ル膜3に対し、約8倍以上の部厚い膜厚み」とな
つて成形体を形成している要件を満している様子
が直視できる。 この融着膜4は云うまでもなく、本願でいう発
泡粒子の肉厚の表皮部1が膨張によつて変形し且
つ融合せしめられて形成したものである。 しかしながら、上述の様に有効な発泡粒子の肉
厚の表皮部は、本発明の方法でいう「該発泡性樹
脂粒子の表面部に存在する発泡剤を優先的に揮散
せしめる」操作を採用したからといつてプロピレ
ン系樹脂のすべてが型内発泡成形に供し得るもの
ではないのである。本発明者等の知見によると、
むしろこれ等の大部分は、発泡斑、発泡不足現象
が生じるもの、肉厚の表皮部を持つ発泡粒子を形
成し難いもの、無架橋の状態ではどうしても型内
発泡成形に供し得ないもの、仮に発泡成形体にな
り得たとしても、期待通りの特性が発揮できない
もの、等に分類される不良原因が生じるので、樹
脂の選定には注意が必要である。 本発明に用いられるプロピレン系樹脂も、幾多
のプロピレン系樹脂の改質と厳選の繰返しの中か
らようやく抽出し得たものである。その経緯のあ
らましは、例えばプロピレンホモポリマーや他の
単量体との共重合体では、肉厚表皮部の形成が困
難な上に、無架橋の状態でこれを発泡させるとき
は、発泡斑が生じて目標とする良質の発泡体には
なり難い欠点がある。 又、同じプロピレン−エチレン系共重合体を用
いるときも、ブロツク共重合のものは、これを均
一に発泡させることが困難である。一方、ランダ
ム共重合のものでもエチレン成分が10重量%を起
えて大きいときは、エチレンがブロツク的に共重
合する傾向が顕著にあらわれ、又、共重合体の軟
化温度が低下し、プロピレン系重合体としての特
性が無くなり好ましくない、逆に2重量%未満の
少量では改質の効果が得られない。又エチレン成
分が本発明の範囲のプロピレンエチレンランダム
共重合体を採用するに当つても、ランダム度
(R)が0.7を越えて大きいもの(すなわち、ブロ
ツク共重合体に近いもの)は、均質発泡が行なわ
れ難く発泡倍率が上らない。 ランダム度(R)が0.7以下のものであつても
本発明ではその中で、立体規則性()の低いも
のを選ぶことが必要である。即ち立体規則性
()が例えば40%以上と大きいものは、無架橋
の状態でこれを発泡体にし、樹脂の持つ特質を発
泡体に活用することが難かしいからである。その
上で本発明では、5Kg荷重のビカツト軟化点が、
50〜35℃の範囲のものが選ばれる。この必要性
は、肉厚表皮部を持つ発泡粒子にしてこれを型内
成形するとき、加熱発泡で生じる樹脂の流動変形
の微妙なバランスを調整するためのもので、例え
ば、35℃未満のものでは、型内表面部の樹脂の流
動変形が進行し易く、逆に50℃を越えて大きいも
のは、全体的に流動変形が緩慢で成形体表面部の
粒子間にくぼみが残つたり融着不良が生じ易く、
いずれの場合も、採用できる成形適性温度範囲を
狭めることになり、良質の成形体になり得ない。 このようにして厳選されたプロピレン−エチレ
ンランダム共重合体は、融点が約140〜120℃程度
の値のものとなり、発泡粒子にする際の肉厚の表
皮部の形成を容易にし、その上で無架橋のままの
発泡で従来にない均質発泡の、内部までもが良く
融着した表面平滑な成形体の成形条件の設定を可
能にするのである。 しかし実体的には、ランダム係数(R)が0.7、
立体規則性()が40%と大きくなるほど、均一
発泡は難かしくなる傾向を示すので、これ等値の
大きいものは表面架橋等、全体に対して数%程度
に当る程度の架橋を施こした方が良質の発泡体が
得られる。 完全な無架橋品を安定して供給する上での樹脂
の望ましくは、上記樹脂範囲の中からランダム係
数(R)が0.4、立体規則性()が15%以下の
ものを厳選した方が良い。 又発泡粒子の表皮部はあまりに厚くなりすぎる
と、発泡時に粒子が割れたり、発泡不良が生じた
り、或は、成形体に異常な硬さを与えたりする場
合があるので成形体とした時の発泡粒子内部にあ
るセル膜に対して約15倍程度の融着膜が形成され
る様に止めておいた方が有利である。 次に本発明の第1発明(成形体)について説明
する。 第1発明に特定されたプロピレンエチレンラン
ダム共重合体は、上述した製造方法上の利点の他
に発泡体となつたとき、具体的には例えば耐油
性、耐熱性(熱経時の寸法安定性)に優れてい
る。この利点は、プロピレン系樹脂の持つ本質特
性を、共重合体の発泡体の中にそのまま活用でき
るようにしたものである。 又、無架橋である特長は、製造工程の簡素化に
ともなう発泡体の経済性の他に、例えば発泡体を
プロピレン系樹脂として再利用することを可能に
し、廃棄することによる公害問題、省資源問題の
対策に貢献し得る利点がある。 次に、本第1発明の特長的な利点としては、動
的緩衝特性、耐圧縮永久歪、耐繰返し圧縮永久
歪、成形体の粒子融着度などが揃つて高水準に兼
備されることである。 この利点は、例えば本発明の成形体を通い容器
としてくり返して使用する緩衝用成形容器に応用
するときは、充分な緩衝能が持続でき、且つ破損
することの少ない堅牢な容器となし得る効果を有
する。 この利点は、従来プロピレン系樹脂は、剛性が
ありすぎて且つもろい発泡体になり易いと考えら
れ勝ちであつたものが、本発明の特定の共重合体
を選択する事に加え本発明によつて第3図に示す
如くに比較的均質な微細なセル構造のものに発泡
されていて、その上に部厚い融着膜3がほぼ立体
規則的に成形体内部に多数配備され且つそれが強
固に密に結合されているために到着し得たものと
推定される。 ちなみに第5図イ,ロは緩衝特性を示す図で、
イは静的応力に対する、最大減速度Gとの関係
を、ロは瞬間最大歪との関係を市販の発泡体と比
較して示している。 この第5図の本発明の成形体の他の特性は実施
例4に示されていて、良質の発泡体であることを
良く証明している。 本発明(方法)でいう「発泡性樹脂粒子の表面
部に存在する発泡剤を優先的に揮散せしめた後、
該粒子全体を発泡させ」る方法の代表的なものと
しては、揮発性有機発泡剤を所定量含有した発泡
性樹脂粒子を、発泡釜に収容し熱媒(例えば水蒸
気)を吹き込んでこれを昇温発泡させる。この
際、通常では、発泡効率を高めるために発泡温度
迄への昇温時間を、より短かくすることに心掛け
るわけであるが、本方法ではこれとは逆に、発泡
温度迄への昇温時間を長くとつて、この間で粒子
表面部に存在する発泡剤を優先的に揮散させ、次
いで到達する発泡温度で、粒子全体を発泡させる
方法を採用するのが実用的である。 この際、発泡温度及び昇温時間の設定は、使用
する発泡剤に応じて適宜設定することになるが、
昇温時間を長くとりすぎると、粒子内部の発泡剤
までをも揮散させ、結果的に発泡不良の現象が生
じるので、あらかじめ、予備実験を行なつて、そ
の発泡釜、発泡剤に合つた条件を見出しておくこ
とが必要である。 要するにこの方法は、発泡剤を含有した状態に
より近い発泡性樹脂粒子の表面部の発泡剤を、全
体の粒子発泡に先だつて、発泡温度より幾分低い
温度条件下あるいは平衡圧力より幾分低い圧力条
件下で揮散させることで完成するものであるか
ら、気体中、液体中を問わず、種々の方法で再現
することができる。 本第2発明の製造方法の記載に当り、発泡性粒
子の製法、発泡粒子の発泡方法、型内で生じしめ
る発泡能の付与方法、型内への充填・型内成形方
法及び内圧の測定方法等については、その基本的
内容は例えば本文に引用した公報類にも記載され
ており、又そのこと自体は、オレフイン類、架橋
オレフイン類の製法条件として周知なものであ
り、これ等は各自の工程に適したものを採用すれ
ば良いだけのことであるからその記載を省略し
た。 本発明に用いられるプロピレン系樹脂は触媒と
して一般式TiXn(ただしXは塩素、臭素または
ヨウ素を表わし、nは2又は3である)で示され
るハロゲン化チタン化合物を第1成分として、周
期律表第A族の金属又は周期律表第A〜A
族金属の有機金属化合物を第2成分、場合によ
り、電子供与性のN、P、O、Sなどを含む有機
化合物又はアルカリ金属ハロゲン化物、アルカリ
金属の酸素酸塩などの無機塩類を第3成分とす
る、2成分または3成分系のものを使用し、エチ
レンとプロピレンを一定の比率で連続的に供給
し、気相のエチレン濃度を調整することによつて
所望のエチレン含有率のランダム共重合体になる
様に40〜90℃で重合させる事によつて製造され
る。 本発明に用いられる適切なランダム度、アイソ
タクチツク度、軟化温度を有する共重合体が得ら
れるものであれば使用する触媒、重合温度、重合
媒体、重合方式、生成物の後処理方法等は特に限
定されない。 本発明でいうランダム係数(R)は、赤外吸収
スペクトルの測定による計算値で、JIS K6758に
記載の試験片調整法で250〜300μの範囲の揃つた
厚みに注意深くプレスして作成した樹脂フイルム
について赤外分光器(例えばパーキンエルマー
521型)を用い、ブロツク的に共重合したエチレ
ン成分に相当する722cm-1部分の吸収と、エチレ
ンの733cm-1部分に当る吸収との波形が、正確に
計測されるように走査速度を調整して25℃の室温
下で測定、ベースライン法で透過率を求めて、
722cm-1における吸光度(A722)と733cm-1におけ
る吸光度(A733)を計算し、その比R、(R=
A722/A733)をもつてランダム係数とする。 計算式の原理は、A=−LogI/Ioよつて、(A733 =−LogI733/Io733)、(A722=−LogI722/Io722)で
ある。 本発明でいうプロピレンセグメントの立体規則
性()は、樹脂又は発泡体を熱プレスで約
100μ厚みのシート状に成形し、このシートを3
mm角の小片に切断しサンプルとした。成形条件、
後処理条件はJIS K6758に記載の試験片調製方法
に準じて行なつた。 精秤したサンプルをクマガワ式抽出器を使用
し、n−ヘプタンの沸点で8時間抽出し、真空乾
燥機で2mmHgの減圧下80℃、8時間乾燥し残渣
を精秤し、その抽出残渣重量の元の重量に対する
割合を(%)で示し、これをプロピレンセグメン
トの立体規則性()とした。 本発明でいうビカツト軟化点はASTM D1525
に準じ荷重5Kgの条件で測定した場合の値をい
う。 以下、本発明で評価する特性の評価方法、評価
基準を述べる。 発泡粒子の表皮部及び粒子内部の気泡膜の厚みの
測定 ほぼ球形の発泡粒子サンプル20ケについてその
中心断面で切断したそれぞれのサンプル切断片20
ケの切断面について、その面中心から0.25R、
0.75Rおよび0.9R(Rは切断面の平均半径)の位
置にある気泡及び表皮部の膜厚の電子顕微鏡写真
(450倍)を撮り、切断気泡膜の長さが0.34D(D
は平均気泡直径)以上である膜断面部分を、それ
ぞれの粒子内部位から2、18、26個所、表皮部か
ら32個所ランダムに選びそれぞれの気泡膜切断面
の中央部の膜厚を測定した。 発泡粒子内の気泡膜については重ミツキ平均値
をその膜厚とし、表皮部については算術平均値を
その膜厚とした。 又、表皮膜厚比は、表皮部平均膜厚/気泡膜平
均厚を計算して求めた。 成形品の発泡粒子融着膜厚比 成形品の切断面内で、ほぼ発泡粒子の中心断面
で切断されている粒子20ケについて、その各々の
粒子断面の最大内接円(当該円半径R)内及び粒
子融着膜について上記の方法と同様の方法で顕微
鏡写真を撮り、気泡膜平均厚み及び粒子融着膜平
均厚みを求めてその比を求めた。 気泡の均一性 発泡粒子サンプル約20ケについて、その中心断
面で切断したサンプル断片について50倍に拡大し
目視観察した。
The present invention relates to a propylene-based resin foam molded product that is foam-molded in a substantially non-crosslinked state and a method for producing the same, and more specifically, the present invention relates to a propylene-based resin foam molded product that is foam-molded in a substantially non-crosslinked state, and more specifically, to a method that fully utilizes the properties of propylene resin (e.g., heat resistance, rigidity, oil resistance, etc.). The present invention relates to an improved foamed molded article made of expanded propylene resin particles, which has a cushioning property with repeated durability in a state where the article is held in place, and a method for manufacturing the same. With the development of in-mold molding methods for polyethylene foam particles, expanded propylene resin particles and methods for producing molded articles made from the particles have been introduced in many documents. For example, the
Publication No. 22951, Japanese Patent Publication No. 53-33996, and Japanese Patent Application Publication No.
Publication No. 56-46735 basically describes the steps of (a) crosslinking a resin and incorporating a volatile foaming agent therein to form foamable resin particles, and (b) expanding the foamable resin particles to form foamed particles. (c) A step of imparting foaming ability to the foamed particles to be exhibited in the mold (increasing the internal pressure of the particles, compressing the particles to reduce their volume), (d) utilizing the foaming ability. Step of foaming (expanding) and heat-sealing the foamed particles to each other in a mold to form a foamed molded product according to the mold; (e) Taking out the foamed molded product while cooling; A method for in-mold molding of expanded particles of crosslinked polyolefin (actually crosslinked polyethylene) comprising a combination of (e) is described. These are generally produced as molded articles with an average cell diameter of 0.5 to 0.05 mm and a high closed cell ratio, with a density in the range of 0.015 to 0.1 g/cm 3 depending on the intended use. Therefore, propylene resins, which are a subordinate concept of polyolefins, are introduced as if they could be used to make excellent foam molded products if applied as they are. On the other hand, for example, Japanese Patent Publication No. 49-2183, Japanese Patent Publication No. 56
JP-A-1344 discloses a method for producing expanded propylene resin particles in which the steps (a) and (b) above are performed in a non-crosslinked state. Therefore, if the above two methods are combined, an in-mold molding method using non-crosslinked propylene resin foam particles can be completed very easily according to the literature. However, in reality, it is not so simple, and a foam molded product that can be put to practical use cannot be obtained. One of the proofs is that although the completion of substantially non-crosslinked propylene resin foam molded products is often reported in newspapers and other publications, the reality is that they are being developed into various shapes for practical use. When transferring to the production process, there were many problems such as communication of bubbles, unevenness of bubbles, sink marks, poor fusion, etc., and the characteristics were as per the design values shown in catalogs etc., especially the characteristics that took advantage of the characteristics of propylene resin. Because it is not possible to stably supply molded bodies that meet these requirements, the current situation is that they still cannot be listed as commercially available foams. The reason for this is that propylene resin has a higher degree of crystallinity and a higher melting point than, for example, polyethylene, and its fluid viscoelastic properties during melting have a greater temperature dependence. It is necessary to maintain sufficient foaming ability up to the temperature range, to control the temperature within a very narrow temperature range suitable for foaming, and to handle the crystallization heat generated when the molten resin solidifies. Furthermore, this can be realized using an in-mold molding method in which the particles filled in the mold are directly heated with steam or the like to foam, and then cooled with water or the like from the outside to form a molded product. For example, if you raise the water vapor temperature because the internal temperature is insufficient, particles on the surface will begin to fuse together, blocking the flow of water vapor.
This is because the troublesome phenomenon of an insufficient internal temperature is added, making the harmonization even more difficult. On the other hand, the means for modifying the propylene resin mentioned above include
Methods of crosslinking and methods of copolymerizing and mixing other monomers and other polymers have been known for a long time. If the content of the above-mentioned monomers and polymers is sufficient to increase the quality of the melt-foamed material, the resulting foam will lose its properties as a propylene-based resin. There are drawbacks that do not lead to each good in applicability, and a middle ground cannot be found. Therefore, at present, we are relying on a modification method that involves crosslinking, even though we are aware that it is uneconomical. In the technique disclosed in Publication No. 46-38716, a specific propylene-ethylene copolymer is cross-linked, and when this is made into a foam, a chemical blowing agent with low volatility is used (see Examples). ). The present invention has been made in view of the current situation, and its first purpose is to provide a substantially non-crosslinked propylene resin foam molded product with improved thermal stability (thermal dimensional stability), oil resistance, rigidity, etc. The purpose is to provide a foam molded product that has the characteristics of a propylene resin and also has a high level of cushioning properties and repeated durability.The second purpose is to make the foam for the above purpose more economical. An object of the present invention is to provide a foam molding method using foamed propylene resin particles that can be stably supplied. The first object of the present invention is to provide a foam molded article constituted by a large number of propylene resin foam particles having a fine cell structure, which are fused and aggregated with the surfaces of adjacent particles in contact with each other, (a) The propylene resin is a propylene-ethylene random copolymer with a propylene component of 90% by weight or more and an ethylene component of 10% by weight or less,
Random coefficient (R) is 0.7 or less, stereoregularity of propylene segment () is less than 40%, 5Kg
The copolymer has a softening point under load of approximately 50 to 35°C, (b) the resin foam is substantially non-crosslinked, and (c) the resin foam formed by the above fusion aggregation By employing a foam molded product made of polypropylene resin foam particles, the fused film is about 8 times or more thicker than the cell membrane inside the particles. , and the second object of the present invention is to produce propylene containing 90% by weight or more of propylene component and 10% by weight or less of ethylene component.
An ethylene random copolymer with a random coefficient (R) of 0.7 or less, a stereoregularity of propylene segments ( A volatile organic blowing agent with a boiling point of -50 to 110°C is added to the copolymer shown to form expandable resin particles, and then the blowing agent present on the surface of the expandable resin particles is preferentially volatilized. After this, the entire particle is foamed to form a foamed particle having a thick skin, and then the foamed particle is given foaming ability and is heated and foamed in a non-crosslinked state in a mold, so that the particles bond with each other. The surfaces are fused to form an integrated molded body, and the fused film produced by the fusion is approximately 8 times or more larger than the cell membrane that constitutes the particles inside the molded body. Both of these can be easily achieved by employing a method for producing a molded body made of expanded propylene resin particles. Hereinafter, the contents of the present invention will be explained in detail using drawings and the like, starting with the second invention (manufacturing method). However, this explanation is merely a convenient means for deepening the understanding of the content of the present invention, and this explanation explains how the first invention (molded article) can be understood from the second invention.
It is not subject to the restrictions of the invention. This is because the explanation of what makes in-mold foaming of non-crosslinked propylene resin possible in the present invention and why the molded product has come to have various properties not previously recognized is beyond the scope of this book. It would be better to explain in order the structure of the foamed particles brought about by the production method of the invention, the role played by the particles in the method, and the structure and function that it has when it becomes a foamed molded product. This is because I thought that understanding these relationships would lead to a true understanding of the technical idea of the present invention. On the other hand, once the technical idea of the present invention is deeply understood, it will be easier to accomplish the present invention in other ways. FIG. 1 is a representative photomicrograph of the foamed particles used in the present invention, and FIG. 2 is a representative photomicrograph of the foamed particles used for comparison (conventional). In addition, the comparison between Figures 1 and 2 shows that "the foaming agent present on the surface of the foamable resin particles is preferentially volatilized, and then the entire particles are foamed", which corresponds to the second invention part. Figure 1, which satisfies the requirements, and Figure 2, which uses the same type of resin but does not go through the above requirements, especially the step of "preferentially volatilizing the blowing agent present on the surface of the particles", using a normal foam particle manufacturing method. It also means the comparison between This difference is that in FIG. 1, an independent cell structure with finer cells is formed compared to that in FIG. 2, and compared to the average cell film 2 inside. The fact that a thick skin portion 1 is formed can be directly observed objectively. That is, the thick skin part in FIG. 1 is considered to be formed by slight foaming failure in the skin part caused by the volatile organic foaming agent that was preferentially volatilized. This thick skin portion first imparts expansion ability (this is called self-expansion ability) to the foamed particles themselves. Self-expansion ability can be confirmed by leaving the foamed particles in the air for several days to fully volatilize the foaming agent inside them, then heating them with steam at 143°C for 5 seconds, and heating them at room temperature at 90°C. After leaving it for 15 hours, further heat it to 25℃.
The volume of the particles left for 24 hours is divided by the volume of the original expanded particles. On the other hand, the one shown in Fig. 2 shows a value less than 1.1 times at most. Next, in the second invention, the foamed particles are further "imbued with foaming ability" in order to more completely foam within the mold. This foaming ability is added to the above-mentioned self-expansion ability, and specifically, the internal pressure of the foamed particles is adjusted to a uniform value within the range of 0.5 to 3 Kg/cm 2 (gauge pressure). Fill with inorganic gas (foaming agent gas) such as air, or
This can be achieved by compressing the expanded particles to a bulk volume of 95 to 50% of the original bulk volume, or by performing one or a combination of both operations. However, in the present invention, it is not necessary to choose a condition for giving a high value, and at most
A range of 0.5 to 2 Kg/cm 2 (gauge pressure) and 95 to 70% is sufficient. At this time, the thick skin part, in cooperation with the fine cells held inside, controls the function of maintaining the applied internal pressure for a long time or the function of increasing the repulsion force per unit compression generated by the compression. . In addition, this effect is caused by factors such as temporal fluctuations that the foamed particles undergo during the process of heating and expansion in the mold, or temperature fluctuations caused by the difficulty of uniform heating in the mold. This prevents the foaming performance from changing and becoming locally insufficient, and also facilitates the management of expandable foam particles and the setting of molding conditions. Regarding foaming in the mold as mentioned above,
In the method of the present invention, which uses foamed particles that have been modified multiple times, simply by ``heating and foaming them in a non-crosslinked state in a mold'', it is possible to ``fuse the surfaces of the particles to create an integrated mold.'' This results in a non-crosslinked molded product with perfect internal fusion, no marks, and a beautiful surface, something that no one has ever been able to achieve before. The reason for this is that the thick skin of the foamed particles described above works in conjunction with the thermal properties of the specific resin of the present invention, which will be described later. This allows for a relative range of molding conditions, such as the availability of high-temperature (i.e. high-pressure) water vapor, which previously could not be employed, and this also allows the mold to pass through the interparticle spaces and In addition to increasing the temperature-raising function of the steam that heats even the foamed particles located inside, this makes it possible to uniformly heat the inside of the mold in an extremely short period of time. In addition, the foamed particles heated in the mold are held in a state where they can easily exhibit the foaming ability imparted as described above,
Moreover, it has self-expansion ability, which allows it to foam in a stepwise manner that is not seen before, filling every nook and cranny between particles with its generous foaming power, completing dense interparticle fusion. It is presumed that Figure 3 shows the expanded particles according to the present invention (Figure 1),
FIG. 4 is a microscopic photograph illustrating a cross section of a molded product obtained by molding the expanded particles of comparison (FIG. 2). In comparing FIGS. 3 and 4, the one shown in FIG. 3 (present invention) has a common feature of the present invention, namely, "the fused film 4 produced by fusion aggregation is inside the particles. It can be seen directly that the film thickness is approximately 8 times or more thicker than the cell film 3, and satisfies the requirements for forming a molded body. Needless to say, this fused film 4 is formed by the thick skin part 1 of the foamed particles referred to in the present application being deformed and fused by expansion. However, as mentioned above, the thick skin part of the foamed particles is effective because the method of the present invention adopts the operation of "preferentially volatilizing the blowing agent present on the surface part of the foamable resin particles". However, not all propylene resins can be subjected to in-mold foam molding. According to the findings of the present inventors,
Rather, most of these are those that cause uneven foaming or insufficient foaming, those that are difficult to form foamed particles with a thick skin, those that cannot be subjected to in-mold foam molding in a non-crosslinked state, and those that Even if the product can be made into a foamed molded product, there will be causes of failure, such as those that do not exhibit the expected properties, so care must be taken when selecting the resin. The propylene resin used in the present invention was finally extracted through repeated modifications and careful selection of propylene resins. The outline of the process is that, for example, with propylene homopolymers and copolymers with other monomers, it is difficult to form a thick skin, and when foaming without crosslinking, foaming spots occur. However, there is a drawback that it is difficult to obtain a foam of the desired high quality. Furthermore, even when using the same propylene-ethylene copolymer, it is difficult to uniformly foam the block copolymer. On the other hand, even in random copolymers, when the ethylene component is as high as 10% by weight, there is a marked tendency for ethylene to copolymerize in blocks, and the softening temperature of the copolymer decreases, resulting in propylene-based copolymerization. This is undesirable because it loses its properties as a coalesce, and conversely, if the amount is less than 2% by weight, no modification effect can be obtained. In addition, even when using a propylene ethylene random copolymer with an ethylene component within the range of the present invention, one with a random degree (R) exceeding 0.7 (that is, one close to a block copolymer) is not suitable for homogeneous foaming. is difficult to carry out, and the foaming ratio cannot be increased. Even if the degree of randomness (R) is 0.7 or less, in the present invention, it is necessary to select one with low stereoregularity (). That is, if the stereoregularity ( ) is large, for example, 40% or more, it is difficult to make it into a foam in a non-crosslinked state and utilize the characteristics of the resin in the foam. In addition, in the present invention, the Vikatsu softening point at a load of 5 kg is
A temperature range of 50 to 35°C is selected. This necessity is to adjust the delicate balance of the flow deformation of the resin that occurs during heat foaming when foamed particles with a thick skin are molded in a mold. In this case, the flow deformation of the resin on the inner surface of the mold progresses easily, and on the other hand, if the temperature exceeds 50℃, the flow deformation is slow overall, leaving depressions or fusion between particles on the surface of the mold. Defects are likely to occur,
In either case, the applicable molding temperature range is narrowed, and a molded article of good quality cannot be obtained. The propylene-ethylene random copolymer carefully selected in this way has a melting point of approximately 140 to 120°C, which facilitates the formation of a thick skin when forming foamed particles, and This makes it possible to set the molding conditions for a molded product that is foamed without crosslinking and has a smooth surface that is well fused even to the inside, with unprecedented homogeneous foaming. However, in reality, the random coefficient (R) is 0.7,
As the stereoregularity () increases to 40%, uniform foaming tends to become more difficult, so for products with a large stereoregularity () of 40%, crosslinking, such as surface crosslinking, which accounts for several percent of the total was applied. Better quality foam can be obtained. In order to stably supply a completely non-crosslinked product, it is preferable to carefully select a resin with a random coefficient (R) of 0.4 and a stereoregularity () of 15% or less from the above resin range. . Also, if the skin part of the foamed particles becomes too thick, the particles may crack during foaming, foaming defects may occur, or the molded product may have abnormal hardness. It is advantageous to form a fused film that is about 15 times larger than the cell film inside the expanded particles. Next, the first invention (molded body) of the present invention will be explained. The propylene ethylene random copolymer specified in the first invention has, in addition to the above-mentioned advantages in the manufacturing method, when formed into a foam, it has, for example, oil resistance and heat resistance (dimensional stability over time). Excellent. This advantage is that the essential properties of the propylene resin can be utilized as they are in the copolymer foam. In addition, the non-crosslinking feature not only makes the foam more economical due to the simplification of the manufacturing process, but also makes it possible to reuse the foam as a propylene resin, reducing pollution problems caused by disposal and saving resources. It has the advantage of contributing to countermeasures for the problem. Next, as a characteristic advantage of the first invention, dynamic buffering properties, compression set resistance, repeated compression set resistance, degree of particle fusion of the molded body, etc. are all at a high level. be. For example, when the molded article of the present invention is applied to a buffer molded container that is used repeatedly as a returnable container, it can maintain sufficient buffering capacity and can be made into a robust container that is less likely to break. have This advantage is due to the fact that in addition to selecting the specific copolymer of the present invention, propylene resins were conventionally considered to be too rigid and easily formed into brittle foams. As shown in Fig. 3, it is foamed into a relatively homogeneous fine cell structure, on which a large number of thick fused films 3 are arranged almost three-dimensionally regularly inside the molded body, and it is strong. It is presumed that this was possible due to the close coupling between the two. By the way, Figure 5 A and B are diagrams showing the buffer characteristics.
A shows the relationship between the static stress and the maximum deceleration G, and B shows the relationship between the instantaneous maximum strain in comparison with commercially available foams. Other characteristics of the molded product of the present invention shown in FIG. 5 are shown in Example 4, and it is well proven that it is a high quality foam. In the present invention (method), after preferentially volatilizing the blowing agent present on the surface of the expandable resin particles,
A typical method for "foaming the entire particle" is to place expandable resin particles containing a predetermined amount of a volatile organic blowing agent in a foaming pot and blow a heat medium (e.g., steam) into the foam to raise the temperature. Foam at a warm temperature. At this time, normally, in order to increase the foaming efficiency, one tries to shorten the heating time to the foaming temperature, but in this method, on the contrary, the temperature is raised to the foaming temperature. It is practical to adopt a method in which the foaming agent present on the surface of the particles is preferentially volatilized by increasing the time, and then the entire particle is foamed at the foaming temperature reached. At this time, the foaming temperature and heating time should be set appropriately depending on the foaming agent used.
If the heating time is too long, the blowing agent inside the particles will also evaporate, resulting in poor foaming. Therefore, it is necessary to conduct preliminary experiments in advance to determine the conditions that are suitable for the blowing pot and blowing agent. It is necessary to find out. In short, in this method, the blowing agent on the surface of the expandable resin particles, which is closer to the foaming agent-containing state, is removed at a temperature somewhat lower than the foaming temperature or at a pressure somewhat lower than the equilibrium pressure, prior to the foaming of the entire particle. Since it is completed by volatilization under certain conditions, it can be reproduced in various ways, whether in gas or liquid. In describing the manufacturing method of the second invention, a method for manufacturing expandable particles, a method for foaming expanded particles, a method for imparting foaming ability to occur in a mold, a method for filling into a mold and molding in a mold, and a method for measuring internal pressure. For example, the basic contents are described in the publications cited in the main text, and these are well known as the manufacturing process conditions for olefins and crosslinked olefins. Since it is only necessary to adopt a method suitable for the process, its description has been omitted. The propylene resin used in the present invention uses a halogenated titanium compound represented by the general formula TiXn (where X represents chlorine, bromine or iodine, and n is 2 or 3) as a catalyst as the first component, and Metals of Group A or Periodic Table A to A
The second component is an organometallic compound of group metal, and optionally, the third component is an organic compound containing electron-donating N, P, O, S, etc. or an inorganic salt such as an alkali metal halide or an alkali metal oxyacid. Random copolymerization with the desired ethylene content can be achieved by continuously supplying ethylene and propylene at a fixed ratio and adjusting the ethylene concentration in the gas phase. It is produced by polymerizing at 40 to 90°C so that it coalesces. The catalyst, polymerization temperature, polymerization medium, polymerization method, product post-treatment method, etc. to be used are particularly limited as long as a copolymer with appropriate randomness, isotacticity, and softening temperature can be obtained for use in the present invention. Not done. The random coefficient (R) referred to in the present invention is a calculated value based on the measurement of infrared absorption spectrum, and is a resin film made by carefully pressing it to a uniform thickness in the range of 250 to 300μ using the test piece preparation method described in JIS K6758. For infrared spectrometers (e.g. PerkinElmer
521 type), and adjusted the scanning speed so that the waveforms of the absorption at 722 cm -1 corresponding to the block-copolymerized ethylene component and the absorption at 733 cm -1 of ethylene were accurately measured. Measure at room temperature of 25℃, calculate the transmittance using the baseline method,
Calculate the absorbance at 722 cm -1 (A 722 ) and the absorbance at 733 cm -1 (A 733 ), and calculate the ratio R, (R=
A 722 /A 733 ) is the random coefficient. The principle of the calculation formula is A=-LogI/Io, so ( A733 = -LogI733 / Io733 ), ( A722 = -LogI722 / Io722 ). The stereoregularity ( ) of the propylene segment in the present invention is approximately
Form into a sheet with a thickness of 100μ, and fold this sheet into 3
Samples were cut into small pieces of mm square. Molding condition,
Post-treatment conditions were conducted in accordance with the test piece preparation method described in JIS K6758. The accurately weighed sample was extracted using a Kumagawa extractor at the boiling point of n-heptane for 8 hours, dried in a vacuum dryer at 80°C under a reduced pressure of 2 mmHg for 8 hours, and the residue was accurately weighed. The ratio to the original weight was expressed as (%), and this was defined as the stereoregularity () of the propylene segment. The Vikatsu softening point in the present invention is based on ASTM D1525.
This is the value when measured under the condition of 5 kg load according to . The evaluation method and evaluation criteria for the characteristics evaluated in the present invention will be described below. Measurement of the thickness of the skin part of foamed particles and the bubble film inside the particles 20 pieces of 20 roughly spherical foamed particle samples were cut at the center cross section of each sample.
Regarding the cut surface of ke, 0.25R from the center of the surface,
Electron micrographs (450x) of the film thickness of the bubbles and skin at positions of 0.75R and 0.9R (R is the average radius of the cut surface) were taken, and the length of the cut bubble film was 0.34D (D
2, 18, and 26 membrane cross-sectional areas with a diameter greater than or equal to the average cell diameter were randomly selected from 2, 18, and 26 locations within each particle, and 32 locations from the epidermis, and the film thickness at the center of the cut surface of each bubble membrane was measured. For the cell membrane within the foamed particles, the thickness was determined by Mitsuki's average value, and for the skin portion, the arithmetic average value was determined as the thickness. The skin thickness ratio was determined by calculating the average skin thickness/average bubble film thickness. Foamed particle fused film thickness ratio of molded product For 20 particles that are cut approximately at the center cross section of the foamed particles within the cut surface of the molded product, the maximum inscribed circle of each particle cross section (radius R of the circle) Microscopic photographs of the inner and particle fused films were taken in the same manner as described above, the average thickness of the bubble film and the average thickness of the particle fused film were determined, and the ratio thereof was determined. Uniformity of bubbles Approximately 20 foam particle samples were cut at the center cross section and visually observed under 50x magnification.

【表】 成形品の諸特性 (1) 融着度 成形品の厚さ20mm以上の部分から100×100mm
正方形状の試験片を切り出し、その中央部に深
さ2mmの切れ目を入れ、切れ目にそつて折り曲
げ成形品を開裂させ、切開断面に存在する全粒
子数に対する材料破断して切裂している粒子数
の百分率を求めた。
[Table] Characteristics of the molded product (1) Degree of fusion 100 x 100 mm from the part of the molded product with a thickness of 20 mm or more
Cut out a square test piece, make a cut with a depth of 2 mm in the center, bend it along the cut, and split the molded product. The percentage of the number was calculated.

【表】 (2) 密度 JIS K6767に準じて測定した。 (3) 動的緩衝特性 JIS Z0234に準じて測定した。測定条件は緩
衝材厚み50mm、落下高さ60cmで行ない、1回目
落下の測定値で示した。 (4) 加熱寸法変化 200mm正方形状に切出した成形体サンプルを
25℃に24時間静置し、その中央部に100×100mm
の正方形と中心十字線を描き各線分の長さを精
測し100±1℃に調温した恒温槽内に96時間静
置し、取り出したのち25℃で1時間放冷し標線
の寸法を精測し元の寸法からの変化率(%)を
求めその平均値を求めた。 評価基準 4%未満………実用上問題なし 4%以上………使用に耐えない (5) 圧縮永久歪 JIS K6767に準じて測定した。試験条件は25
%定圧縮とした。 (6) 繰り返し圧縮永久歪 JIS K6767に準じて測定した。試験条件は、
25%定圧縮、8万回繰り返しとした。 (7) ヒケ 縦、横300mm、厚さ20mmの成形体板状試験片
上面に、その対角線方向に直線定規を当て、試
験片と定規の間に生じた間隙の最大距離を求
め、対角線の長さに対する百分率で評価した。
[Table] (2) Density Measured according to JIS K6767. (3) Dynamic buffer properties Measured according to JIS Z0234. The measurement conditions were a cushioning material thickness of 50 mm and a drop height of 60 cm, and the measured values are shown for the first drop. (4) Heating dimensional change A molded sample cut into a 200mm square shape was
Leave it at 25℃ for 24 hours, and place a 100 x 100 mm in the center.
Draw a square and a crosshair in the center, accurately measure the length of each segment, leave it for 96 hours in a constant temperature bath controlled at 100±1℃, take it out, leave it to cool at 25℃ for 1 hour, and measure the dimensions of the marked line. were measured, the rate of change (%) from the original dimensions was determined, and the average value was determined. Evaluation criteria: Less than 4%: No practical problem More than 4%: Not usable (5) Compression set Measured according to JIS K6767. Test conditions are 25
% constant compression. (6) Repeated compression set Measured according to JIS K6767. The test conditions are
It was set to 25% constant compression and repeated 80,000 times. (7) Sink Place a straight line ruler in the diagonal direction on the top surface of a molded plate-shaped test piece measuring 300 mm in length and width and 20 mm in thickness, find the maximum distance of the gap between the test piece and the ruler, and measure the length of the diagonal line. It was evaluated as a percentage of the

【表】 (8) 吸水率 成形品から50×50×厚みの試験片を3ケ切り
出し、その体積と重量を正確に測定した後、25
℃の水の水面下25mmに24時間浸漬後、表面を素
早く拭き取り重量を正確に測定した。 浸漬前後での重量変化を求め、次式により算
出する。 吸水率(%) =重量の増加分(g)×100/試験片の体積(c.c.
)×水の密度(g/c.c.) 得られた測定結果の平均値で評価した。
[Table] (8) Water absorption rate After cutting three test pieces of 50 x 50 x thickness from the molded product and accurately measuring their volume and weight,
After being immersed 25 mm below the surface of water at ℃ for 24 hours, the surface was quickly wiped off and the weight was accurately measured. The weight change before and after immersion is determined and calculated using the following formula. Water absorption rate (%) = Increase in weight (g) x 100/Volume of test piece (cc
)×density of water (g/cc) Evaluation was made using the average value of the obtained measurement results.

【表】 実施例 1 プロピレンエチレンランダム共重合体〔エチレ
ン成分6重量%、ランダム係数(R)0.35、プロ
ピレンセグメントの立体規則性()7.5%、5
Kg/cm2荷重のビカツト軟化点48℃、融点135℃〕
を押出し細断方式で粒状にし、耐圧容器内でこれ
に揮発性有機発泡剤(ジクロロフルオロメタン、
B.P.−29.8℃)を樹脂量に対し、所定量含有させ
て発泡性樹脂粒子とした。 この粒子を発泡釜において、135℃の発泡温度
で発泡させるに当り、予め発泡性樹脂粒子を下記
に示す様な発泡温度での発泡剤の平衡圧力以下、
発泡が起る圧力以上の圧力雰囲気(40〜30Kg/cm2
ゲージ)下に数十秒滞留させた後、発泡が完全に
起こる低圧域に放圧して発泡させた。
[Table] Example 1 Propylene ethylene random copolymer [ethylene component 6% by weight, random coefficient (R) 0.35, stereoregularity of propylene segment () 7.5%, 5
Kg/cm 2 load Vikatsu softening point 48℃, melting point 135℃]
The material is extruded and shredded into granules, and volatile organic blowing agents (dichlorofluoromethane, dichlorofluoromethane,
BP-29.8°C) was added in a predetermined amount to the amount of resin to obtain expandable resin particles. When foaming these particles in a foaming pot at a foaming temperature of 135°C, the foamable resin particles are prepared in advance at a pressure below the equilibrium pressure of the foaming agent at the foaming temperature shown below.
Pressure atmosphere higher than the pressure at which foaming occurs (40-30Kg/cm 2
Gauge) for several tens of seconds, and then the pressure was released to a low pressure region where foaming occurs completely to cause foaming.

【表】【table】

【表】 実験No.1の条件で得られた発泡粒子(以下、粒
子A)の断面を顕微鏡(×450)で観察すると、
その表面部に肉厚の表皮部が形成されており、そ
の内部は、比較的揃つた小径の多数の独立気泡群
で形成されている(第1図に示す)ものであつ
た。次にこれら発泡粒子をそれぞれ、90℃、10
Kg/cm2の空気圧で、加圧し、粒子気泡内の内圧が
2Kg/cm2になるように調整して、そのまま空胴部
が300×300×100、厚み20mmの箱形を形成する型
内に充填し、3.2Kg/m2(ゲージ圧)の水蒸気で
加熱して成形体とし、型から取出して後90℃の室
内で8Hr熟成した。 得られた成形体No.11、12、13、14について、本
文記載の評価方法で各種特性を評価し、その結果
を第1表にまとめた。又成形体No.11の断面顕微鏡
写真は第3図に示した。 比較例 1 実施例1において揮発性有機発泡剤を25重量%
含有させた発泡性樹脂粒子を使用し発泡釜での発
泡剤の平衡圧以下における滞留時間のみを10秒及
び5秒に変更(実験No.5及び6)する(表面部発
泡剤の優先的揮散を行なわない意味)こと以外は
実施例1の実験をくり返して得た成形体No.15、16
について、その評価結果をそれぞれ第1表にまと
めた。尚実験No.5で得られた発泡粒子(以下、粒
子B)の断面顕微鏡(×450)図を第2図に、同
成形体No.15のそれを第4図に示した。
[Table] When the cross section of the expanded particles (hereinafter referred to as particles A) obtained under the conditions of Experiment No. 1 was observed with a microscope (×450),
A thick skin was formed on the surface, and the inside was composed of a large number of closed cells of relatively uniform small diameter (as shown in FIG. 1). Next, these foamed particles were heated at 90°C for 10
Inside the mold, pressurize with an air pressure of Kg/cm 2 and adjust the internal pressure within the particle bubble to 2 Kg/cm 2 to form a box shape with a cavity of 300 x 300 x 100 and a thickness of 20 mm. The molded product was heated with steam at 3.2 Kg/m 2 (gauge pressure) to form a molded product, and after being removed from the mold, it was aged in a room at 90° C. for 8 hours. Various properties of the obtained molded bodies No. 11, 12, 13, and 14 were evaluated using the evaluation method described in the text, and the results are summarized in Table 1. A cross-sectional micrograph of compact No. 11 is shown in Fig. 3. Comparative Example 1 25% by weight volatile organic blowing agent in Example 1
The residence time below the equilibrium pressure of the foaming agent in the foaming pot was changed to 10 seconds and 5 seconds (Experiments No. 5 and 6) using the foamable resin particles containing the foaming agent (preferential volatilization of the foaming agent on the surface). Molded objects No. 15 and 16 obtained by repeating the experiment of Example 1 except that
The evaluation results are summarized in Table 1. A cross-sectional microscopic view (×450) of the expanded particles obtained in Experiment No. 5 (hereinafter referred to as particles B) is shown in FIG. 2, and that of the same molded product No. 15 is shown in FIG.

【表】 第1表から発泡粒子融着膜厚が粒子内部の気泡
膜厚より8倍以上の成形品は粒子間の融着度が優
れ、動的緩衝特性において最適応力が高応力側に
あり、その時の最大減速度が小さく、かつ最大歪
が小さい事が明らかである。 又、加熱寸法変化も小さく高温下にさらされた
時の寸法安定性に優れている。 この理由は、第3図に示した様に、表皮膜厚が
厚い粒子Aを使用した成形体に膜厚の粒子融着部
が成形体内に網目状に立体的に形成され、機械的
変形、熱的変形に対し、構造的に補強する作用を
示している為と考えられる。 又、発泡倍率が小さい場合でも粒子融着部が厚
い成形体は優れた性能を示す。 実施例2、比較例2 実施例1No.1の発泡粒子(粒子A)及び比較例
1No.5の発泡粒子(粒子B)の双方について、下
記(1)、(2)に示す二つの実験を行つた。 (1) それぞれこれを自然下の室内に3日間及び7
日間放置しておいた後、これを143℃の水蒸気
で5秒間加熱して後、90℃の室内に15時間保持
して取出し、25℃で24時間放置して該加熱処理
で生じた発泡粒子の嵩体積の膨張を体積比で示
す。 (2) 元のA、B両者の発泡粒子群の各々の内部に
空気を圧入(含浸)し、粒子内圧が約1.5Kg/
cm2(ゲージ圧)になるように調整する。その後
その粒子を自然下の室内に放置しておく。 (イ) 約3日間放置した時点でA、B双方の発泡
粒子の一部を取出し、その粒子を用いて
各々、実施例1で実施した型内成形を行ない
成形体を得る。 (ロ) 約7日間放置した時点で、A、B双方の発
泡粒子の残りを用い、上記と同じ型内成形を
行ない成形体を得る。 これ等(1)、(2)、(イ)、(ロ)実験の結果の評価を、第
2表及び第3表にまとめ掲載した。
[Table] Table 1 shows that molded products in which the foam particle fusion film thickness is 8 times or more greater than the bubble film thickness inside the particles have excellent interparticle fusion degree, and the optimum stress in terms of dynamic buffer properties is on the high stress side. , it is clear that the maximum deceleration at that time is small and the maximum strain is small. In addition, dimensional changes due to heating are small and dimensional stability when exposed to high temperatures is excellent. The reason for this is that, as shown in Fig. 3, in a molded body using particles A with a thick skin thickness, a three-dimensional network-like fused part of the particles is formed in the molded body, resulting in mechanical deformation and This is thought to be because it exhibits a structural reinforcement effect against thermal deformation. Further, even when the expansion ratio is small, a molded product having a thick particle fusion portion exhibits excellent performance. Example 2, Comparative Example 2 Two experiments shown in (1) and (2) below were conducted for both the expanded particles (particles A) of Example 1 No. 1 and the expanded particles (particles B) of Comparative Example 1 No. 5. I went. (1) Store this indoors under natural conditions for 3 days and 7 days, respectively.
After leaving it for a day, it was heated with steam at 143°C for 5 seconds, kept in a room at 90°C for 15 hours, taken out, and left at 25°C for 24 hours to form expanded particles produced by the heat treatment. The expansion of the bulk volume of is expressed as a volume ratio. (2) Air is pressurized (impregnated) into each of the original expanded particle groups of both A and B, and the internal pressure of the particles is approximately 1.5 kg/
Adjust so that the pressure is cm 2 (gauge pressure). The particles are then left indoors under natural conditions. (b) After being left for about 3 days, a portion of both foamed particles A and B are taken out, and the particles are subjected to in-mold molding as in Example 1 to obtain a molded article. (b) After being left to stand for about 7 days, the remaining foamed particles of both A and B are used to perform in-mold molding in the same manner as above to obtain a molded article. Evaluations of the results of these experiments (1), (2), (a), and (b) are summarized in Tables 2 and 3.

【表】【table】

【表】 第2表から、本発明の発泡粒子が長期間の間、
膨張比が大きく保持され、膨張能に優れている事
が明らかである。この様な特異的な発泡粒子の生
能は第3表に示した様に成形体に成形する場合に
も現われ、融着に優れ、ヒケの少ない、吸水率が
小さい優れた成形品が得られ、実施例1に示した
様に優れた緩衝性能を発現させる原因となつてい
る。 実施例3、比較例3 第4表−1に示す15種類のプロピレン系樹脂粒
子の各々について、各々これを耐圧容器に収容
し、これに揮発性有機発泡剤(ジクロロジフルオ
ロメタン)を圧入させて、樹脂量に対し発泡剤が
25重量%含有した発泡性樹脂粒子にする。 得られた各発泡性樹脂粒子を発泡釜において
各々の発泡温度に加熱し発泡させるに当り、雰囲
気圧力、40〜35Kg/cm2にして後発泡し、肉厚の表
皮部を持つ本泡粒子を得るように努力した。尚こ
の際、表皮部が得られない粒子や、発泡状態の悪
い樹脂子については、雰囲気圧力、滞留時間を変
更させて見て、その内で最良のものと判じられる
発泡粒子をもつて試験に供する粒子とした。 得られた各発泡粒子について、本文記載の方法
で、発泡倍率、表皮膜比、気泡の均一性、を評価
し、その結果を第4表−2に示した。
[Table] From Table 2, it can be seen that the expanded particles of the present invention last for a long period of time.
It is clear that the expansion ratio is kept high and the expansion ability is excellent. As shown in Table 3, this unique ability of expanded particles is also manifested when molded into molded products, resulting in excellent molded products with excellent fusion bonding, few sink marks, and low water absorption. As shown in Example 1, this is the cause of the excellent buffering performance. Example 3, Comparative Example 3 Each of the 15 types of propylene resin particles shown in Table 4-1 was placed in a pressure-resistant container, and a volatile organic blowing agent (dichlorodifluoromethane) was pressurized into the container. , the amount of foaming agent relative to the amount of resin
It is made into foamable resin particles containing 25% by weight. Each of the obtained foamable resin particles is heated and foamed in a foaming pot to each foaming temperature, and the atmospheric pressure is set to 40 to 35 kg/cm 2 for post-foaming to form foamed particles with a thick skin. I tried my best to get it. At this time, for particles for which a skin cannot be obtained or for resin particles with a poor foaming state, the atmospheric pressure and residence time are varied, and the foamed particles judged to be the best are tested. The particles were then subjected to For each of the obtained expanded particles, the expansion ratio, skin film ratio, and bubble uniformity were evaluated by the method described in the text, and the results are shown in Table 4-2.

【表】【table】

【表】【table】

【表】【table】

【表】 第4表−2から、ランダム係数(R)が0.7よ
り大きくなると発泡粒子の気泡が不均一になり、
表皮膜の厚みも気泡膜厚とほぼ等しくなり、さら
にランダム係数が大きくなり、ブロツク共重合体
になると発泡しなくなる事が明らかである。又、
ランダム係数(R)が0.7以下でも立体期則性
()が40%以上になると発泡しなくなり、ラン
ダム係数(R)が0.7以下、立体規則性()が
40%未満でも軟化点が50℃より大きいか、35℃よ
り小さいと発泡はしても発泡効率が小さく気泡の
均一性も劣つたり、表皮膜厚が薄くなる事が明ら
かである。 実施例4、比較例4 第4表−2に示した実験記号No.イ、ハ、チ、ワ
の発泡粒子を用い、各々その粒子の内圧が1.0
Kg/cm2(ゲージ圧)のものになるように空気を圧
入(含浸)させ、直にその粒子を型内(実施例1
と同じ型)に満たして型内で加熱発泡させ、成形
体を得た。この場合の加熱には2Kg/cm2の水蒸気
を用い、約15秒間の予備加熱と3.2Kg/cm2、15秒
の成形加熱を行ない、後、冷却して取出した。取
出した成形体は90℃の室内で8Hr熟成させた。 得られた各成形体No.21、22、23、24に付いて本
文記載の方法で諸特性を評価し、その結果を第5
表にまとめた。 又、成形体No.21についての静的応力に対する最
大減速度(G)の関係を第5図イに同、瞬間最大
歪との関係を第5図ロに各々示した。
[Table] From Table 4-2, when the random coefficient (R) is larger than 0.7, the bubbles in the expanded particles become uneven;
It is clear that the thickness of the surface film is almost equal to the thickness of the bubble film, the random coefficient becomes larger, and foaming does not occur when the copolymer becomes a block copolymer. or,
Even if the random coefficient (R) is 0.7 or less, foaming will not occur if the stereoregularity () is 40% or more;
Even if it is less than 40%, if the softening point is higher than 50°C or lower than 35°C, it is clear that even if foaming occurs, the foaming efficiency will be low, the uniformity of the bubbles will be poor, and the surface film thickness will become thin. Example 4, Comparative Example 4 Expanded particles with experimental symbols No. A, C, C, and Wa shown in Table 4-2 were used, and the internal pressure of each particle was 1.0.
Kg/cm 2 (gauge pressure) of air was injected (impregnated), and the particles were directly placed in the mold (Example 1).
(the same mold) was heated and foamed in the mold to obtain a molded product. In this case, water vapor of 2 kg/cm 2 was used for preheating for about 15 seconds, followed by heating for forming at 3.2 kg/cm 2 for 15 seconds, and then the product was cooled and taken out. The molded body taken out was aged in a room at 90°C for 8 hours. The various properties of the obtained molded bodies No. 21, 22, 23, and 24 were evaluated using the method described in the text, and the results were reported in the fifth section.
It is summarized in the table. Furthermore, the relationship between the maximum deceleration (G) and the static stress for compact No. 21 is shown in FIG. 5A, and the relationship with the instantaneous maximum strain is shown in FIG. 5B.

【表】【table】

【表】 第5表より、本発明の発泡体は動的緩衝特性、
圧縮特性、加熱寸法安定性に優れた発泡体である
事が明らかである。 本発明で規定するエチレンプロピレンランダム
共重合体以外のポリマーを使用した場合、その発
泡粒子の表皮膜厚が小さくなり、型内成形時の発
泡成形能に劣り融着度が低下するばかりか、得ら
れる成形品の密度も大きく、圧縮永久歪、繰返し
圧縮永久歪、加熱寸法変化等の諸特性も劣る発泡
体しか得られない。 比較例 5 市販の高発泡ポリオレフイン発泡体について本
文記載の方法で諸特性を評価し、その結果を第5
表に示した。 使用した発泡体は No.31………無架橋ポリエチレン押出発泡体(旭ダ
ウ製、エサフオームQ45) No.32………無架橋ポリエチレン押出発泡体(旭ダ
ウ製、エサフオームQ25) No.33………架橋ポリエチレンビーズ成形体(旭ダ
ウ製、メフ) である。 又、静的応力に対する最大減速度(G)の関係
を第5図イに同時間最大歪との関係を第5図ロに
各々示した。 第5表から明らかな様に、本発明の発泡体は、
同じ密度の市販高発泡ポリオレフイン発泡体に比
較し、最適応力が大きく、最大減速度が小きく最
大歪が小さい動的緩衝特性を有し、包装材料とし
て優れた性能を持つている。特に最大歪が小さい
事は凸部を有する被包装品を緩衝包装する時の底
づき現象が起こりにくい特徴を示し少量の緩衝材
で優れた性能を示し、経済的効果が大きい。 又、加熱寸法変化が小さい事は、船積みで輸出
する時の船倉内温度上昇による荷くずれ、緩衝材
のヘタリによる緩衝性能の低下等がなく、信頼性
の高い緩衝材料である事を示す。さらに、従来の
発泡体では使用出来なかつた高温雰囲気下でも使
用出来る利点を有する。 第5図から、本発明の発泡体が、同じ密度のポ
リエチレン系の高発泡フオームよりも最適緩衝応
力が高応力側で最大歪も小さい事が明らかであ
り、ほぼ同じ最適応力を有するポリエチレン系発
泡体と比べても瞬間最大歪が小さく、優れた性能
を有しかつ発泡体の密度を小さく出来る経済的で
ある事が明らかである。
[Table] From Table 5, the foam of the present invention has dynamic cushioning properties,
It is clear that the foam has excellent compression properties and dimensional stability under heating. If a polymer other than the ethylene propylene random copolymer specified in the present invention is used, the skin thickness of the foamed particles will become small, resulting in poor foam molding performance during in-mold molding and a decrease in the degree of fusion. The resulting molded product has a high density, and only foams with inferior properties such as compression set, repeated compression set, and dimensional change upon heating can be obtained. Comparative Example 5 Various properties of a commercially available highly expanded polyolefin foam were evaluated by the method described in the text, and the results were
Shown in the table. The foam used was No. 31... Non-crosslinked polyethylene extruded foam (Asahi Dow, Esaform Q45) No. 32... Non-crosslinked polyethylene extruded foam (Asahi Dow, Esaform Q25) No. 33... ...It is a cross-linked polyethylene bead molded body (manufactured by Asahi Dow, MEF). Further, the relationship between the maximum deceleration (G) and the static stress is shown in Figure 5A, and the relationship with the maximum strain over the same time is shown in Figure 5B. As is clear from Table 5, the foam of the present invention is
Compared to commercially available highly expanded polyolefin foams of the same density, it has dynamic buffering properties with a higher optimum stress, lower maximum deceleration, and lower maximum strain, and has excellent performance as a packaging material. In particular, the small maximum strain means that bottoming out phenomenon is less likely to occur when packaged items with convex portions are cushioned, and exhibits excellent performance with a small amount of cushioning material, resulting in great economic effects. In addition, the small dimensional change due to heating indicates that the material is a highly reliable cushioning material, as it does not cause the cargo to collapse due to the temperature increase in the hold during export, nor does it suffer from deterioration in cushioning performance due to the cushioning material becoming stale. Furthermore, it has the advantage that it can be used in a high temperature atmosphere, which is not possible with conventional foams. From FIG. 5, it is clear that the foam of the present invention has an optimal buffering stress on the high stress side and a smaller maximum strain than the polyethylene foam with the same density, and the polyethylene foam has almost the same optimal stress. It is clear that the instantaneous maximum strain is small compared to the foam body, and it has excellent performance and is economical because the density of the foam can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の表皮膜が厚い発泡粒子の断
面顕微鏡写真図、第2図は、比較となる表皮膜が
薄い発泡粒子の断面顕微鏡写真図、第3図は、第
1図に示す発泡粒子から得られた成形品の粒子融
着膜を示す断面顕微鏡写真図、第4図は、比較と
なる第2図に示す発泡粒子から得られた成形品の
粒子融着膜を示す断面顕微鏡写真図、第5図イ,
ロは、本発明の成形品(曲線1)と、市販の高発
泡ポリエチレン系発泡体(曲線2〜4)の動的緩
衝特性(イ衝撃特性、ロ瞬間最大歪)を示す図で
ある。
FIG. 1 is a cross-sectional microscopic photograph of foamed particles with a thick skin film according to the present invention, FIG. 2 is a cross-sectional microscopic photograph of foamed particles with a thin skin film for comparison, and FIG. 3 is the same as that shown in FIG. FIG. 4 is a cross-sectional micrograph showing the particle fused film of a molded product obtained from expanded particles, and FIG. 4 is a cross-sectional micrograph showing a particle fused film of a molded product obtained from expanded particles shown in FIG. Photographic diagram, Figure 5 A,
B is a diagram showing the dynamic cushioning properties (A impact properties, B instantaneous maximum strain) of the molded article of the present invention (Curve 1) and the commercially available highly foamed polyethylene foam (Curves 2 to 4).

Claims (1)

【特許請求の範囲】 1 微細セル構造で成るプロピレン系樹脂発泡粒
子の多数個が、相隣れる粒子相互の表面を接し融
着集合して構成された発泡成形体において、 (イ) プロピレン系樹脂は、プロピレン成分が90重
量%以上、エチレン成分が10重量%以下のプロ
ピレン−エチレンランダム共重合体であつて、
ランダム係数(R)が0.7以下、プロピレンセ
グメントの立体規則性()が40%未満、5Kg
荷重のビカツト軟化点が約50〜35℃、の値を示
す共重合体であること、 (ロ) 該樹脂発泡体が実質無架橋のものであるこ
と、 (ハ) 上記融着集合して生じた融着膜は、該粒子内
部にあるセル膜に対して約8倍以上の部厚い膜
厚みであること、 を特徴とするポリプロピレン系樹脂発泡粒子から
なる発泡成形体。 2 プロピレン成分が90重量%以上、エチレン成
分が10重量%以下のプロピレン−エチレンランダ
ム共重合体であつて、ランダム係数(R)が0.7
以下、プロピレンセグメントの立体規則性()
が40%未満、5Kg/cm2荷重のビカツト軟化点が約
50〜35℃、の値を示す共重合体に、沸点が−50〜
110℃の揮発性有機発泡剤を含有させて発泡性樹
脂粒子となし、次に該発泡性樹脂粒子の表面部に
存在する発泡剤を優先的に揮散せしめた後、該粒
子全体を発泡させて肉厚の表皮部を有した発泡粒
子となし、次いでこの発泡粒子に発泡能を付与せ
しめて型内で無架橋の状態のまま加熱発泡させ粒
子相互の表面を融着せしめて一体化した成形体と
なし、成形体内部の粒子を構成するセル膜に対
し、上記融着で生じた融着膜が約8倍以上になる
ようにしたことを特徴とする、プロピレン系樹脂
発泡粒子からなる成形体の製造方法。
[Scope of Claims] 1. A foamed molded article constituted by a large number of propylene resin foam particles having a fine cell structure, the surfaces of which are in contact with each other and fused and aggregated: (a) a propylene resin; is a propylene-ethylene random copolymer having a propylene component of 90% by weight or more and an ethylene component of 10% by weight or less,
Random coefficient (R) is 0.7 or less, stereoregularity of propylene segment () is less than 40%, 5Kg
The copolymer has a softening point under load of approximately 50 to 35°C, (b) the resin foam is substantially non-crosslinked, and (c) the resin foam formed by the above fusion aggregation 1. A foam molded article made of polypropylene resin foam particles, characterized in that the fused film is about 8 times or more thicker than the cell membrane inside the particles. 2 A propylene-ethylene random copolymer containing 90% by weight or more of propylene component and 10% by weight or less of ethylene component, with a random coefficient (R) of 0.7
Below, stereoregularity of propylene segment ()
is less than 40%, and the Vikatsu softening point at a load of 5Kg/ cm2 is approximately
The copolymer has a boiling point of -50 to 35℃.
A volatile organic blowing agent at 110°C is contained to form foamable resin particles, and then the foaming agent present on the surface of the foamable resin particles is preferentially volatilized, and then the entire particles are foamed. A molded product obtained by forming foamed particles with a thick skin, then imparting foaming ability to the foamed particles, and heating and foaming them in a mold in a non-crosslinked state to fuse the surfaces of the particles to each other and integrate them. A molded article made of foamed propylene resin particles, characterized in that the fused film produced by the fusion is about 8 times or more larger than the cell membrane constituting the particles inside the molded article. manufacturing method.
JP56160148A 1981-10-09 1981-10-09 Foamed molded propylene resin article and its preparation Granted JPS5861128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56160148A JPS5861128A (en) 1981-10-09 1981-10-09 Foamed molded propylene resin article and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56160148A JPS5861128A (en) 1981-10-09 1981-10-09 Foamed molded propylene resin article and its preparation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP12774089A Division JPH0214225A (en) 1989-05-22 1989-05-22 Production of expansion-molded article of propylene resin

Publications (2)

Publication Number Publication Date
JPS5861128A JPS5861128A (en) 1983-04-12
JPS6334893B2 true JPS6334893B2 (en) 1988-07-12

Family

ID=15708901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56160148A Granted JPS5861128A (en) 1981-10-09 1981-10-09 Foamed molded propylene resin article and its preparation

Country Status (1)

Country Link
JP (1) JPS5861128A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090744A (en) * 1983-10-24 1985-05-21 Japan Styrene Paper Co Ltd Curing method of expanded polypropylene resin molding in molds
JPS60166442A (en) * 1984-02-10 1985-08-29 Kanegafuchi Chem Ind Co Ltd Curing method of polyolefin expansion molded shape
JPS61115940A (en) * 1984-11-09 1986-06-03 Mitsubishi Yuka Badische Kk Polypropylene foam particle
JP5298642B2 (en) * 2008-05-29 2013-09-25 株式会社カネカ Polypropylene resin foam particles and in-mold foam moldings
JP6962716B2 (en) * 2017-06-12 2021-11-05 旭化成株式会社 Fiber complex

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122951A (en) * 1974-08-16 1976-02-24 Yoshio Ihara EAAENJIN
JPS53137170A (en) * 1977-05-06 1978-11-30 Hitachi Ltd Automatic range interchanging system for electromagnetic flow meter converter
JPS561344A (en) * 1979-06-18 1981-01-09 Nishimu Denshi Kogyo Kk Controlling method for optimum wet-quantity in wet-type insulator stain measurement
JPS5770621A (en) * 1980-10-20 1982-05-01 Asahi Chem Ind Co Ltd Foamed polyethylene molded object and manufacture tereof
JPS5790027A (en) * 1980-11-22 1982-06-04 Japan Styrene Paper Co Ltd Prefoamed polypropylene resin particle and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122951A (en) * 1974-08-16 1976-02-24 Yoshio Ihara EAAENJIN
JPS53137170A (en) * 1977-05-06 1978-11-30 Hitachi Ltd Automatic range interchanging system for electromagnetic flow meter converter
JPS561344A (en) * 1979-06-18 1981-01-09 Nishimu Denshi Kogyo Kk Controlling method for optimum wet-quantity in wet-type insulator stain measurement
JPS5770621A (en) * 1980-10-20 1982-05-01 Asahi Chem Ind Co Ltd Foamed polyethylene molded object and manufacture tereof
JPS5790027A (en) * 1980-11-22 1982-06-04 Japan Styrene Paper Co Ltd Prefoamed polypropylene resin particle and its production

Also Published As

Publication number Publication date
JPS5861128A (en) 1983-04-12

Similar Documents

Publication Publication Date Title
JP4859076B2 (en) Method for producing foamed molded product in polypropylene resin mold
EP2072207A1 (en) Expanded polypropylene resin beads and foamed molded article thereof
US3054146A (en) Method for forming thermoplastic resinous materials into expanded foam structures
CN114957772B (en) Expanded beads and method for producing same
KR102010450B1 (en) Manufacturing method of a molded foam article with low density using propylene based polymer
JPH0629334B2 (en) Method for producing linear low-density polyethylene resin in-mold foam molding
JP4157206B2 (en) Polypropylene resin foamed particles and molded polypropylene resin foam particles
CN113045827B (en) Polypropylene resin foam particles and molded article of the foam particles
EP0933389B1 (en) Polypropylene resin pre-expanded particles
JPS6334893B2 (en)
JPH1077359A (en) Expanded resin bead
EP1040902B1 (en) Foamed resin article
US6607682B1 (en) Pre-expanded polypropylene resin beads and process for producing molded object therefrom by in-mold foaming
JPH03254930A (en) Internal die molding method for expandable particle of polypropylene-based resin
CN115427487B (en) Polypropylene resin foam beads and polypropylene resin foam bead molded article
JP4629313B2 (en) Method for producing polypropylene resin in-mold foam molded body and in-mold foam molded body
JPH03152136A (en) Polypropylene resin preliminarily foamed bead and preparation thereof
JP2001162640A (en) Method for manufacturing thermoplastic resin foamed molding
JP3146004B2 (en) Method for producing olefin-based synthetic resin foam molded article
JP3537001B2 (en) Expanded polypropylene resin particles and method for producing the same
JPH0214225A (en) Production of expansion-molded article of propylene resin
JP7323852B2 (en) Expanded polypropylene resin particles, method for producing the same, and expanded polypropylene resin bead molded product
JP7299555B2 (en) POLYPROPYLENE RESIN EXPANDED BEET MOLDED PRODUCT AND METHOD FOR MANUFACTURING THE SAME
JP3763725B2 (en) Polypropylene resin particles for foaming and method for producing the same
JPH0243206A (en) Non-crosslinked, linear, low-density polyethylene resin particle for foaming and manufacture thereof