JPS5861128A - Foamed molded propylene resin article and its preparation - Google Patents

Foamed molded propylene resin article and its preparation

Info

Publication number
JPS5861128A
JPS5861128A JP56160148A JP16014881A JPS5861128A JP S5861128 A JPS5861128 A JP S5861128A JP 56160148 A JP56160148 A JP 56160148A JP 16014881 A JP16014881 A JP 16014881A JP S5861128 A JPS5861128 A JP S5861128A
Authority
JP
Japan
Prior art keywords
particles
foamed
propylene
foaming
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56160148A
Other languages
Japanese (ja)
Other versions
JPS6334893B2 (en
Inventor
Tsuneo Hogi
恒夫 保木
Shigeya Sato
佐藤 栄也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Dow Ltd
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Dow Ltd
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Dow Ltd, Asahi Chemical Industry Co Ltd filed Critical Asahi Dow Ltd
Priority to JP56160148A priority Critical patent/JPS5861128A/en
Publication of JPS5861128A publication Critical patent/JPS5861128A/en
Publication of JPS6334893B2 publication Critical patent/JPS6334893B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

PURPOSE:To obtain the titled molded article having improved dynamic buffering characteristics, permanent compression set resistance, etc., by foaming a specific propylene resin under specific conditions, foaming the resultant uncrosslinked foamed particles in a mold, and fusing and integrating the surfaces of the particles together. CONSTITUTION:(B) A volatile organic foaming agent having -50-+110 deg.C boiling point in the surface parts of foamable resin particles containing (A) propylene-ethylene random copolymer, consisting of 90wt% or more propylene component and 10wt% or less ethylenic component, and having <=0.7 randomness factor (R), <40% stereoregularity (II) and 50-35 deg.C Vicat softening point under 5kg/cm<2> load and (B) the volatile organic foaming agent is preferentially volatilized, and the whole particles are then foamed to give foamed particles having a thick-wall skin. The foaming ability is then given to the foamed particles, which are in an uncrosslinked state foamed under heating in a mold to fuse and integrate the surfaces of the particles together so that the thickness of the fused film may be 8 times or more that of the cellular wall of the particles in the molded article. Thus, the aimed molded article is obtained.

Description

【発明の詳細な説明】 本発明は、実質無架橋の状態で発泡成形されたプロピレ
ン系樹脂発泡成形体及びその製造方法に関し、史に詳し
くは、プロピレン樹脂の持つ特性(例えば耐熱性、剛性
、耐油性等)を充分に生かした状態で、く5−り返しの
耐久性を備えた緩衝特性を備えた緩衝特性を持つ、改良
されたプロピレン系樹脂発泡粒子から成る発泡成形体及
びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a propylene resin foam molded article that is foam-molded in a substantially non-crosslinked state and a method for producing the same. A foamed molded article made of improved propylene-based resin foam particles and a method for producing the same, which has a cushioning property that is durable over 5 cycles while making full use of its oil resistance, etc. Regarding.

プロピレン系樹脂発泡粒子及びその粒子から成る成形体
の製造方法は、ポリエチレン発泡粒子の型内成形方法の
発達につれ、多くの文献に紹介されるようになっている
。例えば、特公昭51−22951号公報、特公昭53
−33996号公報及び特開昭56−467・35号公
報には、要するにイ)樹脂を架橋し、それに揮発性発泡
剤を含有させて発泡性樹脂粒子にする工程。
BACKGROUND ART With the development of in-mold molding methods for polyethylene foam particles, expanded propylene resin particles and methods for producing molded articles made from the particles have been introduced in many documents. For example, Japanese Patent Publication No. 51-22951, Japanese Patent Publication No. 53
33996 and JP-A-56-467.35, in short, a) a step of crosslinking a resin and incorporating a volatile foaming agent therein to form expandable resin particles.

口)骸発泡性樹脂粒子を膨張させて1発泡粒子にする工
程。
Mouth) A step of expanding the shell foamable resin particles to form one foamed particle.

ハ)上記発泡粒子に型内で発揮する発泡能を付与(粒子
の内圧を高めること1粒子を圧縮しその体積を縮小させ
ること)する工程、 二)上記発泡能を利用して型内で上記発泡粒子相互を発
泡・熱融着させ、型通りの発泡成形体にする工程。
c) A step of imparting foaming ability to the foamed particles in the mold (increasing the internal pressure of the particles, compressing one particle and reducing its volume), 2) Using the foaming ability to produce the foaming ability in the mold. A process in which foam particles are foamed and heat-fused to each other to form a foam molded product.

ホ)該発泡成形体を冷却しながら取出す工程、の上記イ
)〜ホ)の組合せからなる架橋ポリオレフィン(実は架
橋ポリエチレン)の発泡粒子の型内成形方法が記載され
である。そしてそれをそのまま応用すれば、ポリオレフ
ィンの下位概念に当るプロピレン系樹脂も、優れた発泡
成形体にすることができるが如くに紹介されている。
A method for in-mold molding of foamed particles of crosslinked polyolefin (actually crosslinked polyethylene) is described, which comprises a combination of the above steps (a) to (e), e) removing the foamed molded product while cooling it. The book also introduces the idea that, if applied directly, propylene-based resins, which are a subordinate concept of polyolefins, can be made into excellent foam molded products.

一方1例えば特公昭49−2183号公報、特公昭56
−1344号公報には、上記イ)90)迄の工程を無架
橋の状態で発泡させるプロピレン系樹脂発泡粒子の製造
方法が開示されている。よって上記両者を組合せれば、
文献上では無架橋のプロピレン系樹脂発泡粒子を用いた
型内成形方法Fi、きわめて容易に完成することになる
On the other hand, 1, for example, Japanese Patent Publication No. 49-2183, Japanese Patent Publication No. 56
JP-A-1344 discloses a method for producing expanded propylene resin particles in which the steps up to (a) 90) are foamed in a non-crosslinked state. Therefore, if you combine the above two,
According to the literature, the in-mold molding method Fi using non-crosslinked propylene resin foam particles is extremely easy to complete.

しかしながら、現実はそうは簡単なものではなく、実用
に供し得る発泡成形体に杜ならないのである。
However, in reality, it is not so simple, and it is not possible to produce a foam molded product that can be put to practical use.

その証拠の1つには、現在実質的無架橋のプロピレン系
樹脂発泡成形体祉、新聞等の刊行物でしはしはその完成
が伝えられているが、その実状はこれを実用的な種々の
形状の生産プロセスに移すときに、気泡の連通化や気泡
の不拘いやひけ、融着不良等が多発して、カタログ叫に
示される設計値通りの緒特性、ことにプロピレン樹脂の
持つ特質を生かしたを柱を満たした成形体を、安定して
供給することができないので、今だに市販の発泡体とし
て上場させ得ない実状にある。
One of the proofs is that there are reports of the completion of virtually non-crosslinked propylene resin foam moldings in newspapers and other publications; When transferring the shape to the production process, problems such as communication of air bubbles, unresponsiveness of air bubbles, sinkage, and poor adhesion occurred frequently, resulting in failure to maintain the properties as designed in the catalog, especially the characteristics of propylene resin. Because it is not possible to stably supply a molded body that fills the pillars with the foam, it is still not possible to list it as a commercially available foam.

この理由は、プロピレン系樹脂は例えばポリエチレンに
比べ、結晶度が高く高融点で且つ溶融時の流動的粘弾特
性の温度依存性が大きいから、これを発泡させるときは
、樹脂が尚温の発泡温度に至るまで発泡能を充分に保持
するようにすること。
The reason for this is that propylene resin has a higher degree of crystallinity and a higher melting point than, for example, polyethylene, and its fluid viscoelastic properties when melted have a greater temperature dependence. The foaming ability should be sufficiently maintained up to the temperature.

ごく狭い発泡適性温度範囲に調温して発泡させること、
溶融樹脂が固化するときに生じる結晶化熱を処理するこ
と等を巧に調和させねばならず、史にこれを型内に充填
されている粒子を水蒸気等で直接加熱して発泡させ、後
、外部から水等で冷却して成形体にする方式の型内成形
法で具現させようとするときは、例えば、内部温度が不
足するからと云って水蒸気源を高めると、表面部の粒子
の融着が先に進行して水蒸気の流通を妨け、かえって内
部温度が不充分になってしまうといった面倒な現象が加
わって、その調和を一層困難なものにするからである。
Foaming is carried out by controlling the temperature within a very narrow foaming temperature range.
The heat of crystallization generated when the molten resin solidifies must be carefully balanced, and in history, the particles filled in the mold are heated directly with steam or the like to foam, and then When trying to achieve a molded product using an in-mold molding method that uses external cooling with water or the like to form a molded product, for example, if the water vapor source is increased because the internal temperature is insufficient, the melting of particles on the surface will be reduced. This is because the deposition progresses first, obstructing the circulation of water vapor, and the troublesome phenomenon that the internal temperature becomes insufficient is added, making it even more difficult to maintain this balance.

一方・上記プロピレン系樹脂の改質手段には、古くから
、架橋を施こす方法、他の単量体及び他の重合体を、共
重合及び混合する方法が知られているが、従来、プロピ
レン系樹脂の溶融発泡適用性を充分なものに改質するに
足る上記単量体及び重合体の含壱量は、得られる発泡体
からプロピレン系樹脂としての特質を消滅させてしまう
欠点を生じるし、逆に皺含有量の低減化は、上記溶融発
泡の適用性の改善に結び付がない欠点があり、その中庸
点が見出し得ない。
On the other hand, as means for modifying the above propylene resin, methods of crosslinking and methods of copolymerizing and mixing other monomers and other polymers have been known for a long time. The content of the above-mentioned monomers and polymers is sufficient to sufficiently modify the melt-foaming applicability of the resin, but this results in the disadvantage that the resulting foam loses its properties as a propylene resin. On the other hand, reducing the wrinkle content has the disadvantage that it does not lead to improvement in the applicability of melt foaming, and a middle ground cannot be found.

従って現状は、非経済的なことを承知で架橋を施こす改
質方法に頼るこになっているがこの改質方法とて容易な
ものでなく、最も進歩的な技術として知られる例えば特
公昭46−38716号公報の技術に於ても、特定のプ
ロピレン−エチレン共重合体に輩橋を併用させ、更に、
これを発泡体にするときには揮散性の少ない化学発泡剤
を採用(実施例解参照)する等の工夫がなされている。
Therefore, at present, we are relying on a modification method that involves crosslinking, even though we are aware that it is uneconomical. In the technique of 46-38716, a specific propylene-ethylene copolymer is used in combination with a bridge, and further,
When making this into a foam, efforts have been made to use chemical blowing agents with low volatility (see examples).

本発明はこのような現状に鑑みてなされたもので、その
第1の目的は、実質無架橋のままのプロピレン系樹脂発
泡成形体が、熱安定性(熱寸法安定性)耐油性、剛性等
のプロピレン樹脂としての特質を有し且つ、高水準の緩
衝特性がそのくり返しの耐久性をも兼備した発泡成形体
として提供することであり、第2の目的は、上述目的の
発泡体をより鮭済的に安定して供給し得るプロピレン系
樹脂発泡粒子を使用した発泡成形方法を提供することで
ある。
The present invention has been made in view of the current situation, and its first purpose is to provide a substantially non-crosslinked propylene resin foam molded product with improved thermal stability (thermal dimensional stability), oil resistance, rigidity, etc. The purpose is to provide a foam molded product that has the characteristics of a propylene resin and also has high-level cushioning properties and repeated durability.The second purpose is to make the above-mentioned foam even more durable. An object of the present invention is to provide a foam molding method using foamed propylene resin particles that can be economically stably supplied.

上記本発明の第1の目的は、微細セル構造で成るプロピ
レン系樹脂発泡粒子の多数個が、相隣れる粒子相互の表
面を接し融着集合して構成された発泡成形体において、 イ)プロピレン系樹脂Fi、プロピレン成分が90重量
X以上、エチレン成分が10重量%以下のプロピレン−
エチレンランダム共重合体であって、ランダム係数(R
)が0.7以下、プロピレンセグメントの立体規則性(
II)が40比未満。
The first object of the present invention is to provide a foam molded article constituted by a large number of propylene-based resin foam particles having a fine cell structure, the surfaces of which are in contact with each other and fused and aggregated. System resin Fi, propylene with a propylene component of 90% by weight or more and an ethylene component of 10% by weight or less
An ethylene random copolymer having a random coefficient (R
) is 0.7 or less, the stereoregularity of the propylene segment (
II) is less than 40 ratio.

51cf荷重のビカット軟化点が約50〜35℃、の値
を示す共重合体であること。
The copolymer has a Vicat softening point of about 50 to 35°C under a load of 51 cf.

口)該樹脂発泡体が実質無架橋のものであること。(a) The resin foam is substantially non-crosslinked.

ハ)上記融着集合して生じた融着膜は、核粒子内部にあ
るセル膜に対して約8倍以上の部厚い膜厚みであること
c) The fused film produced by the above-mentioned fusion aggregation is about 8 times or more thicker than the cell film inside the core particle.

を%徴とするポリプロピレン系樹脂発泡粒子からなる発
泡成形体を採用することによって、又本発明の第2の目
的はプロピレン成分が90重量%以上、エチレン成分が
10重量%以下のプロピレン−エチレンランダム共重合
体であって、ランダム係数(R)が0.7以下、プロピ
レンセグメントの立体規則性(II)が4(1%未満、
5 Kg/cs”荷重のビカット軟化点が約50〜35
℃、の値を示す共重合体に、沸点が一50〜110℃の
揮発性有機発泡剤を含廟させて発泡性樹脂粒子となし1
次に該発泡性樹脂粒子の表面部に存在する発泡剤を優先
的に揮散せしめた後、該粒子全体を発泡させて肉厚の表
皮部を有した発泡粒子となし、次いでこの発泡粒子に発
泡能を付与せしめて型内で無架橋の状態のまま加熱発泡
させ粒子相互の表面を融着せしめて一体化した成形体と
なし、成形体内部の粒子を構成するセル膜に対し、上記
融着で生じた融着膜が約8倍以上になるようにし九こと
を特徴とする。プロピレン系樹脂発泡粒子からなる成形
体の製造方法を採用することによって、共に容易に達成
することができる。
The second object of the present invention is to form a propylene-ethylene random product having a propylene component of 90% by weight or more and an ethylene component of 10% by weight or less. A copolymer with a random coefficient (R) of 0.7 or less and a stereoregularity (II) of propylene segments of 4 (less than 1%,
5 Kg/cs” load Vicat softening point is approximately 50-35
℃, is impregnated with a volatile organic blowing agent having a boiling point of 150 to 110℃ to form foamable resin particles 1
Next, after the foaming agent present on the surface of the foamable resin particles is preferentially volatilized, the entire particle is foamed to form foamed particles having a thick skin, and then the foamed resin particles are foamed. The particles are heated and foamed in a non-crosslinked state in a mold to fuse the surfaces of the particles to form an integrated molded body. The fused film formed in the method is characterized in that the size of the fused film formed in the method is about 8 times or more. Both of these can be easily achieved by employing a method for producing a molded body made of expanded propylene resin particles.

以下、本発明の内容を図面等を用いて、先ず第2発明(
製造方法)の発明から詳述することにする。しかし、こ
の説明はあくまで本発明の内容の理解を深めてもらうた
めの便宜上の手段であって。
Hereinafter, the content of the present invention will be explained first using the drawings etc.
The invention will be explained in detail starting from the invention (manufacturing method). However, this explanation is merely a convenient means for deepening the understanding of the content of the present invention.

この説明によって第1発明(成形体)が第2発明の制約
を受けるものでない。
According to this explanation, the first invention (molded object) is not subject to the restrictions of the second invention.

伺故ならば、本発明で何が無架橋のプロピレン系樹脂の
型内発泡を可能ならしめ且つその成形体が、従来には認
められなかった緒特性を何故兼備えるようになったかの
説明は1本発明の製造方法がもたらす発泡粒子の構造及
びその構造の粒が果す方法上での役割及びそれが発泡成
形体になったときに具備する構造、作用機能の順に説明
された方が、順序立ってこれ等の関連を理解し、本発明
の技術思想の真の理解に継がると考えただけだからであ
る。一方、本発明の技術思想を深く理解したものは、本
発明の達成を他の方法で完成することは容易になるであ
ろうからでもある。
If so, the explanation as to why the present invention enables in-mold foaming of non-crosslinked propylene-based resin and why the molded product has characteristics that have not been recognized in the past is as follows. It would be better to explain in order the structure of the foamed particles brought about by the production method of the present invention, the role played by the particles of that structure in the method, and the structure and function that it has when it becomes a foamed molded product. This is because I understood these relationships and thought that this would lead to a true understanding of the technical idea of the present invention. On the other hand, once the technical idea of the present invention is deeply understood, it will be easier to accomplish the present invention in other ways.

第1図は本発明に用いる発泡粒子を第2図は比較(従来
)の発泡粒子を、各々に代表する顕微鏡写真の例図であ
る。
FIG. 1 is a representative photomicrograph of the foamed particles used in the present invention, and FIG. 2 is a representative photomicrograph of the foamed particles used for comparison (conventional).

又第192図の比較は、本第2発明部分に当る「該発泡
性樹脂粒子の表面部に存在する発泡剤を優先的に揮発せ
しめた後、該粒子全体を発泡させ」ると云う要件を満た
した第1図と、同糧の樹脂を用いながら上記要件特に「
粒子の表面部に存在する発泡剤を優先的に揮散せしめる
」段階を経ない通常の発泡粒子の製法による第2図との
対比をも意味する。
In addition, the comparison in Figure 192 shows that the requirement of "foaming the entire particle after preferentially volatilizing the foaming agent present on the surface of the foamable resin particles" corresponds to the second invention part. While using the same resin as shown in Figure 1, the above requirements, especially "
It also means a comparison with FIG. 2, which is a conventional process for manufacturing expanded particles that does not involve the step of "preferentially volatilizing the blowing agent present on the surface of the particles."

この差は、第1図に於ては、第2図のそれと対比して、
第1図の方がより微細セレの独立セル構かを形成してい
るし、内部の平均的セル膜2に比べて肉厚の表皮部1が
形成されている事実を客観的に直視することができる。
This difference can be seen in Figure 1 compared to Figure 2.
It is important to look objectively at the fact that the one in Figure 1 has an independent cell structure with finer cells and has a thicker skin part 1 than the average cell membrane 2 inside. I can do it.

即ち、第1図の肉厚の表皮部は、優先的に揮散せしめら
れた揮発性有機発泡剤がもたらす表皮部の軽度の発泡不
良によって形成されるものと考えられる。この肉厚の表
皮部は、先ず発泡粒子そのものに膨張能(これを自己膨
張能という)を付与する。自己膨張能の確認は、生成後
の発泡粒子を大気中に数日放置してその内部の発泡剤を
充分に揮散させた後、これを143℃の水蒸気で5秒間
加熱し、90℃の室温下に15 Hrおいた後さらに2
5℃で24hr放置した粒子の体積を、九の発泡粒子の
体積で除した値の大小で評価し論じられるが。
That is, it is thought that the thick skin part in FIG. 1 is formed by slight foaming failure in the skin part caused by the volatile organic foaming agent that is preferentially volatilized. This thick skin portion first imparts expansion ability (this is called self-expansion ability) to the foamed particles themselves. Self-expansion ability can be confirmed by leaving the foamed particles in the air for several days to fully volatilize the foaming agent inside them, then heating them with steam at 143°C for 5 seconds, and heating them at room temperature at 90°C. After 15 hours below, add 2 more
This can be discussed by evaluating the value obtained by dividing the volume of the particles left at 5° C. for 24 hours by the volume of the foamed particles.

例えば第1図の場合の発泡粒子は1.3倍〜1.6倍も
の自己膨張能を示すのに対し、第2図の如きものはせい
ぜい1.1倍未満の値しか示さない。    ′−次に
本第2発明では、該発泡粒子に型内での発泡をより完全
なものにするために巣に「発泡能を付与せしめ」られる
。この発泡能付与は、前述の自己膨張能にグラスして付
与されるもので、具体的にFi、発泡粒子の内圧が、0
.5〜3?/is”(ゲージ圧)の範囲内の揃った値に
なるように空気等の無機ガス(発泡剤ガス)を充填する
か、或は1発泡粒子を丸の嵩容積の95〜50%の嵩容
積になるように圧縮する等のいずれか又は双方の組合せ
の操作を行なうことで達成し得る。しかし本発明では、
高い値の付与条件を選ぶ必要けなくせいぜい0.5〜2
14/m” (ゲージ圧)、95〜70Xの範囲テ充分
である。
For example, the foamed particles shown in FIG. 1 exhibit a self-expansion capacity of 1.3 to 1.6 times, while those shown in FIG. 2 exhibit a value of less than 1.1 times at most. '-Next, in the second invention, in order to make the expanded particles more complete in foaming in the mold, the nests are "imbued with foaming ability." This foaming ability is added to the above-mentioned self-expanding ability, and specifically Fi, the internal pressure of the foamed particles is 0.
.. 5-3? /is” (gauge pressure), fill with inorganic gas such as air (foaming agent gas), or fill one foamed particle with a volume of 95 to 50% of the bulk volume of the circle. This can be achieved by performing one or a combination of operations such as compressing to a volume.However, in the present invention,
There is no need to choose a high value granting condition, at most 0.5 to 2
14/m'' (gauge pressure), a range of 95 to 70X is sufficient.

この際、肉厚の表皮部は、その内部に保肩する微細セル
と共同して、上記付与した内圧を長時間維持する作用或
いは、上記圧縮で生じる単位圧縮当りの反発力を高める
作用を司どる。又この作用は1発泡粒子が型内で加熱膨
張する迄の過程で受ける経時的変動要因、或は均一な型
内加熱の困難さが生む温度的変動要因等によって、型内
での発泡能が賛化l〜1局部的に発泡能が不足気味にな
ることを防ぐと共に1発泡性発泡粒子の管理や成形条件
の設定管理を容易にする。
At this time, the thick skin part, in cooperation with the fine cells held inside, has the function of maintaining the applied internal pressure for a long time, or the function of increasing the repulsion force per unit compression generated in the compression. Doru. Also, this effect is caused by factors such as temporal fluctuations that occur during the process of heating and expanding one foamed particle in the mold, or temperature fluctuations caused by the difficulty of uniform heating in the mold, etc. To prevent the foaming ability from becoming locally insufficient, and to facilitate the management of expandable foam particles and the setting of molding conditions.

上述したように型内で発泡することについて。Regarding foaming in the mold as mentioned above.

81にも改質された発泡粒子を用いる本発明の方法では
、これをL型内で無架橋の状態のまま加熱発泡させ」る
だけでも「粒子相互の表面を融着せt7めて一体化した
成形体」となり、従来、誰もが達成し得なかった内部融
着の完全な、ひけのない。
In the method of the present invention using foamed particles modified in accordance with No. 81, even if the particles are heated and foamed in an uncrosslinked state in an L-shape, the surfaces of the particles are fused together and integrated. The result is a complete and unrivaled internal fusion that has never been achieved by anyone before.

表面美れいな成形体が無架橋の状態で完成するのである
A molded article with a beautiful surface is completed without crosslinking.

イーの軽緯は、前述した発泡粒子の肉厚の表皮部は、後
述する本発明の特定の樹脂の持つ熱特性と相乗し7て1
例えば従来その樹脂では型内表面側の粒子の溶融流動が
先行してしまって採用することが出来なかった高!(即
ち高圧)fillの水蒸気が利用できるといった成形条
件の相対的な範囲の移動を可能にし、又このことが1粒
子間の間隔を通り。
The light latitude of E is due to the fact that the thick skin of the foamed particles described above is synergistic with the thermal properties of the specific resin of the present invention, which will be described later.
For example, conventional resins could not be used because the particles on the inner surface of the mold would melt and flow first. This allows for a relative range of molding conditions such as the availability of (i.e. high pressure) fill water vapor, which also passes through the interparticle spacing.

型内部に位置する発泡粒子迄をも加熱する水蒸気の昇温
橡能を高めることに継がって、結果的に型内を極めて短
時間により均一に加熱することを可能にする。
In addition to increasing the temperature raising ability of the steam that heats even the foamed particles located inside the mold, it is possible to uniformly heat the inside of the mold in an extremely short period of time.

又、型内で加熱された発泡粒子は上述したように付与さ
れた発泡能を発揮し易い状態で保有し、更にその上に自
己膨張能をも有しているから従来にけみられない段階的
挙動の発泡を生じ、余裕のある発泡力で粒子間のすみず
みを埋め、密な粒子間融着が完成するものと推察される
In addition, the foamed particles heated in the mold retain the foaming ability imparted to them as described above in a state where they are easy to exhibit, and furthermore, they also have self-expansion ability, which is a stage unprecedented in the past. It is presumed that foaming occurs with a certain behavior, filling the nooks and crannies between particles with sufficient foaming force, and completing dense interparticle fusion.

第3図は本発明(第1図)Kいう発泡粒子を。Figure 3 shows the foamed particles of the present invention (Figure 1) K.

第4図は比較(第2図)の発泡粒子を各々成形体にした
ときの成形体断面を例示する顕微鏡写真図である。
FIG. 4 is a microscopic photograph illustrating a cross section of a molded product obtained by molding the expanded particles of comparison (FIG. 2).

第324図の比較に於て、第3図(本発明)のものは1
本発明の共通した構成要件、即ち[融着集合して生じた
融着W4が、#、粒子内部にあるセル[3に対1−1約
8倍以上の部厚い膜厚み」となって成形体を形成してい
る要件を満している様子が直視できる。
In comparing Fig. 324, the one in Fig. 3 (invention) is 1
The common constituent features of the present invention are that [the fused W4 produced by the fused aggregation becomes #, the film thickness of the cell inside the particle [about 8 times or more of 1-1 compared to 3], and is formed. You can directly see how the body meets the requirements.

この融着膜4「云うまでもなく1本願でいう発泡粒子の
肉厚の表皮部lが膨張によって変形し且つ融合せしめら
れて形成したものである。
This fused film 4 is, needless to say, formed by the thick skin portion l of the foamed particles referred to in this application being deformed and fused by expansion.

しかしながら、上述の様に有効な発泡粒子の肉厚の表皮
部は、本発明の方法でいう[該発泡性樹脂粒子の表面部
に存在する発泡剤を優先的に揮散せしめる」操作を採用
したからといってプロピレン系樹脂のすべてが型内発泡
成形に供し得るものではないのである。本発明者等の知
見によると、むしろこれ等の大部分は1発泡斑5発泡不
足現象が生じるもの、肉厚の表皮部を持つ発泡粒子を形
成し難いもの、無架橋の状態ではどうしても型内発泡成
形に供し得ないもの、仮に発泡成形体になり−74+た
としても1期待通シの特性が発揮できないもの、等に分
類される不良原因が生じるので、樹脂の選定には注意が
必要である。
However, as mentioned above, the thick skin of the foamed particles is effective because the method of the present invention adopts the operation of "preferentially volatilizing the foaming agent present on the surface of the foamable resin particles." However, not all propylene resins can be used for in-mold foam molding. According to the findings of the present inventors, the majority of these are those that cause 1 foaming spots 5 insufficient foaming phenomena, those that are difficult to form foamed particles with a thick skin, and those that are difficult to form in the mold in a non-crosslinked state. Care must be taken when selecting resins, as there are causes of defects that can be classified as those that cannot be subjected to foam molding, or those that cannot exhibit the expected characteristics even if they become -74+ foam molded products. be.

本発明に用いられるプロピレン系樹脂も、幾多のプロピ
レン系樹脂の改質と厳選の繰返しの中からようやく抽出
し得たものである。その経緯のあらましは、例えばプロ
ビレンホモボリマーや他の単蓋体との共重合体では2肉
厚表皮部の形成が困難な上に、無架橋の状態でこれを発
泡させるときは、発泡斑が生じて目標とする良質の発泡
体にはなり難い欠点がある。
The propylene resin used in the present invention was finally extracted through repeated modifications and careful selection of propylene resins. The outline of the process is that, for example, it is difficult to form a 2-wall thick skin part with propylene homopolymer or a copolymer with other single caps, and when foaming it in a non-crosslinked state, foaming It has the disadvantage that spots occur and it is difficult to obtain a foam of the desired quality.

又、同じプロピレン−エチレン系共重合体を用いるとき
も、ブロック共重合のものは、これを均一に発泡させる
ことが困難である。一方、ランダム共重合の本のでもエ
チレン成分が10重量%を起えて大きいときは、エチレ
ンがブロック的に共重合する傾向が顕著にあられれ、又
、共重合体の軟化温度が低下し、プロピレン系重合体と
しての特性が無くなり好ましくない、逆に21E1%未
満の少量では改質の効果が得られない。又エチレン成分
が本発明の範囲のプロピレンエチレンランダム共重合体
を採用するに当っても、ランダム& (R)が0.7を
越えて大きいもの(すなわち、ブロック共重合体に近い
もの)は、均質発泡が行なわれ難く発泡倍率が上らない
Furthermore, even when using the same propylene-ethylene copolymer, it is difficult to uniformly foam the block copolymer. On the other hand, according to books on random copolymerization, when the ethylene component is as large as 10% by weight, there is a marked tendency for ethylene to copolymerize in block form, and the softening temperature of the copolymer decreases, causing propylene to It is undesirable because the properties as a system polymer are lost, and conversely, if the amount is less than 1% of 21E, no modification effect can be obtained. In addition, even when using a propylene ethylene random copolymer whose ethylene component is within the range of the present invention, those with random & (R) exceeding 0.7 (that is, those close to block copolymers) Homogeneous foaming is difficult to achieve and the foaming ratio cannot be increased.

ランダム度(R)が0.7以)のものであっても本発明
ではその中で、立体規則性(II)の低いものを選ぶこ
とが必要である。即ち立体規則性(0)が例えば40比
以上と大きいものは、無架橋の状態でこれを発泡体にし
、樹脂の持つ特質を発泡体に活用することが難かしいか
らである。その上で本発明では、5q荷重のビカット軟
化点が、50〜35℃の範囲のものが選ばれる。この必
要性は、肉厚表皮部を持つ発泡粒子にしてこれを型内成
形するとき、加熱発泡で生じる樹脂の流動変形の微妙な
バランスを調整するためのもので、例えに。
Even if the degree of randomness (R) is 0.7 or more), in the present invention, it is necessary to select one with low stereoregularity (II). That is, if the stereoregularity (0) is large, for example, a ratio of 40 or more, it is difficult to make it into a foam in a non-crosslinked state and utilize the characteristics of the resin in the foam. In addition, in the present invention, a material having a Vicat softening point under a 5q load of 50 to 35°C is selected. This necessity is to adjust the delicate balance of the flow deformation of the resin that occurs during heat foaming when foamed particles with a thick skin are molded in a mold.

35℃未満のものでは、型内表面部の樹脂の流動変形が
進行し易く、逆に50℃を越えて大きい本のは、全体的
に流動変形がM慢で成形体表面部の粒子間にくほみが残
ったり融着不良が主じ易く。
If the temperature is lower than 35°C, the flow deformation of the resin on the inner surface of the mold will progress easily, while if the temperature exceeds 50°C, the flow deformation will be slow overall, and the resin will be easily deformed between the particles on the surface of the molded product. It tends to leave dark spots and cause poor adhesion.

いずれの場合も、採用できる成形適性温#範囲を狭める
ことになシ、良質の成形体になシ得ない。
In either case, it is necessary to narrow the applicable molding temperature range, and it is impossible to produce a molded product of high quality.

このようにして厳選されたプロビレンーエチレンランダ
ム共重合体Fi、融点が約140〜120℃程度の値の
ものとなり、発泡粒子にする際の肉厚の表皮部の形成を
容易にし、その上で無架橋のままの発泡で従来にない均
質発泡の、内部までもが良く融着した表面平滑な成形体
の成形粂件の設定を可能にするのである。
In this way, the carefully selected propylene-ethylene random copolymer Fi has a melting point of about 140 to 120°C, which facilitates the formation of a thick skin when forming foamed particles, and By foaming without crosslinking, it is possible to set the molding condition of a molded product with unprecedented homogeneous foaming and a smooth surface with good fusion even on the inside.

しかし実体的には、ランダム係数(R)が0.7.立体
規則性(II)が40%と大きくなるほど、均一発泡は
難かしくなる傾向を示すので、これ等値の大きいものは
表面架橋等、全体に対して数%程度に当る軽度の架橋を
施こした方が良質の発泡体が得られる。
However, in reality, the random coefficient (R) is 0.7. As the stereoregularity (II) increases to 40%, uniform foaming tends to become more difficult. Therefore, for products with a large stereoregularity (II) of 40%, mild crosslinking, which accounts for several percent of the total, such as surface crosslinking, is applied. This will result in a higher quality foam.

完全な無架橋品を安定して供給する上での樹脂の望まし
くけ、上記樹脂範囲の中からランダム係数(R)が0.
4、立体規則性(II)が15%以下のものを厳選した
方が良い。
In order to stably supply a completely non-crosslinked product, it is desirable to use a resin with a random coefficient (R) of 0.
4. It is better to carefully select those with stereoregularity (II) of 15% or less.

又発泡粒子の表皮部はあまシに厚くなりすぎると1発泡
時に粒子が割れ九り5発泡不良が生じたシ、或蝶、成形
体に異常な硬さを与えたシする場合があるので成形体と
した時の発泡粒子内部にあるセル膜に対して約15倍相
度の融着層が形成される様に止めておいた方が有利であ
る。
In addition, if the skin of the foamed particles becomes too thick, the particles may crack during one foaming process, resulting in poor foaming, or may give abnormal hardness to the molded product. It is advantageous to form a fusion layer that is about 15 times as thick as the cell membrane inside the foamed particles when they are made into a body.

次に本発明の第1発明(成形体)について説明する。Next, the first invention (molded body) of the present invention will be explained.

第1発明に特定されたプロピレンエチレンランダム共重
合体は、上述した製造方法上の利点の他に発泡体となっ
たとき、具体的には例えば耐油性、耐熱性(熱経時の寸
法安定性に優れている。この利点は、プロピレン系樹脂
の持つ本質特性を、共重合体の発泡体の中にそのまま活
用できるようにしたものである。
The propylene ethylene random copolymer specified in the first invention has, in addition to the above-mentioned advantages in terms of the manufacturing method, when formed into a foam, it has, for example, oil resistance, heat resistance (dimensional stability over time), etc. This advantage is that the essential properties of propylene resin can be utilized as they are in the copolymer foam.

又、無架橋である轡長は、製造工程の簡素化にともなう
発泡体の経済性の他に5例えば発泡体をプロピレン系樹
脂として再利用することを可能にし、廃棄することによ
る公害問題、省資源問題の対策に貢献し得るオリ点があ
る。
In addition to the economic efficiency of foams due to the simplification of the manufacturing process, the non-crosslinked material also makes it possible to reuse the foams as propylene resin, reducing pollution problems caused by disposal. There is a starting point that can contribute to countermeasures against resource problems.

次に1本第1発明の符長的な利点としては、動的緩衝特
性、耐圧動永久歪、耐繰返し圧縮永久歪。
Next, the advantages of the first invention include dynamic buffering properties, pressure dynamic permanent set resistance, and repeated compression set resistance.

成形体の粒子融着度などが揃って烏水準に兼備されるこ
とである。
The degree of particle fusion of the molded body is to be on par with the standard.

この利点Fi、例えば本発明の成形体を通い容器として
くり返して使用する緩衝用成形容器に応用するときは、
充分な緩衝能が持続でき、且つ破損することの少ない堅
牢な容器となし得る効果を有する。
This advantage Fi, for example, when applying the molded article of the present invention to a buffer molded container that is used repeatedly as a returnable container,
It has the effect of being a robust container that can maintain sufficient buffering capacity and is less likely to be damaged.

この利点は、従来プロピレン系樹脂は、剛性がありすぎ
て且つもろい発泡体になシ易いと考えられ勝ちであった
ものが、本発明の特定の共重合体を選択する事に加え本
発明によって第3図に示す如くに比較的均質な微細なセ
ル構造のものに発泡されていて、その上に部厚い融着膜
3が#′!!は立体規則的に成形体内部に多数配備され
且つそれが強固に密に結合されているために到着し得た
ものと推定される。
This advantage is due to the fact that in addition to selecting the specific copolymer of the present invention, propylene-based resins were conventionally considered to be too rigid and easy to break into brittle foams. As shown in FIG. 3, it is foamed into a relatively homogeneous fine cell structure, and a thick fused film 3 is formed on top of it. ! It is presumed that they were able to arrive because they were stereoregularly arranged in large numbers inside the molded body and were tightly and tightly bonded.

ちなみに第5図イ)90)Fi緩衝特性を示す図で、イ
)は静的応力に対する1大減速1t(G)との関係を1
口)は−間最大歪との関係を市販の発泡体と比較して示
している。
By the way, Figure 5 A)90) is a diagram showing the Fi buffer characteristics, and A) shows the relationship between 1 large deceleration 1t (G) and static stress.
Figure 3) shows the relationship between the maximum strain and the commercially available foam.

この第5図の本発明の成形体の他の特性は実施肖4に示
されていて、良質の発泡体であることを良く証明してい
る。
Other characteristics of the molded product of the present invention shown in FIG. 5 are shown in Example 4, and it is well proven that it is a high quality foam.

本発明(方法)でいう「発泡性樹脂粒子の表面部に存在
する発泡剤を優先的に揮散せしめた後、該粒子全体を発
泡させ」る方法の代表的なものとしてFi、揮発性有機
発泡剤を所定量含有した発泡性樹脂粒子を、発泡釜に収
容し熱媒(例えば水蒸気)を吹き込んでこれを昇温発泡
させる。この際、通常では、発泡効率を高めるために発
泡温度迄への昇温時間を、より短かくすることに心掛り
るわゆであるが1本方法ではこれとは逆に、発泡温度迄
への昇温時間を長くとって、この間で粒子表面部に存在
する発泡剤を優先的に揮散させ1次いで到達する発泡温
度で、粒子全体を発泡させる方法を採用するのが実用的
である。
Fi, volatile organic foaming, is a typical method of "foaming the entire particle after preferentially volatilizing the foaming agent present on the surface of the foamable resin particles" in the present invention (method). Expandable resin particles containing a predetermined amount of the agent are placed in a foaming pot, and a heating medium (for example, water vapor) is blown thereto to raise the temperature and foam the particles. At this time, normally, in order to increase the foaming efficiency, one tries to shorten the heating time to the foaming temperature, but in the single method, on the contrary, the heating time to the foaming temperature is shortened. It is practical to adopt a method in which the temperature is increased for a long time, during which time the foaming agent present on the surface of the particles is preferentially volatilized, and then the entire particle is foamed at the foaming temperature reached.

この際、発泡温度及び昇温時間の設定は、使用する発泡
剤に応じて適宜設定することになるが、昇温時間を長く
とりすぎると、粒子内部の発泡剤まで表も揮散きぜ、結
果的に発泡不良の現象が生じるので、あらかじめ、予備
実験を行なって、その発泡釜、発泡剤に合った条件を見
出しておくことが必要である。
At this time, the foaming temperature and heating time should be set appropriately depending on the blowing agent used, but if the heating time is too long, the foaming agent inside the particles will also volatilize, resulting in Since the phenomenon of insufficient foaming may occur, it is necessary to conduct preliminary experiments in advance to find conditions suitable for the foaming pot and foaming agent.

要するにこの方法Fi、発泡剤を含有した状態により近
い発泡性樹脂粒子の表面部の発泡剤を、全体の粒子発泡
に先だって、発泡温度より幾分低いOA度条件下あるい
は平衡圧力より幾分低い圧力条件下で揮散させることで
完成するものであるから、気体中、9体中を問わず、抛
々の方法で貴現することができる。
In short, in this method Fi, the blowing agent on the surface of the expandable resin particles that is closer to the blowing agent-containing state is removed prior to the entire particle foaming under an OA degree that is somewhat lower than the foaming temperature or at a pressure that is somewhat lower than the equilibrium pressure. Since it is completed by volatilization under certain conditions, it can be manifested in a variety of ways, whether in gas or in the form of nine substances.

本第2発明の製造方法の記−に当り、発泡性粒子の製法
、発泡粒子の発泡方法、型内で生じしめる発泡能の付与
方法、型内への充填・型内成形方法及び内圧の測定方法
等については、その基本的内容は例えば本文に引用した
公報類にも記載されており、又そのこと自体は、オレフ
ィン類・架橋オレフィン類の製法条件として周知なもの
であり、これ等は各自の工程に適した本のを採用すわば
良いだけのことであるからその記載を省略した。
In describing the manufacturing method of the second invention, a method for manufacturing expandable particles, a method for foaming the expanded particles, a method for imparting foaming ability generated in a mold, a method for filling the mold and molding in the mold, and measurement of internal pressure. The basic contents of the methods, etc. are also described in the publications cited in the main text, and these are well known as the manufacturing process conditions for olefins and crosslinked olefins. Since it is only necessary to adopt a book suitable for the process, we have omitted its description.

本発明に用いられるプロピレン系樹脂は触媒として一般
式TiXn (ただしXは塩素、臭素オたはヨウ素を表
わし、nは2又は3である)で示されるハロゲン化チタ
ン化合物を第1成分として、周期律表第1A族の金属又
は周期律表第iA〜mA族金輌の有機綱属化合物を第2
成分、場合により、電子供与性のN9P*Ot8などを
含む有機化合物又はアルカリ金属ハロゲン化物、アルカ
リ全綱の酸素酸塩などの無機塩類を第3#:分とする%
 2成分または3成分糸のものを使用し、エチレンとプ
ロピレンを一足の比率で連続的に供給し、気相のエチレ
ン嬢度を調整することによってカ1望のエチレン含有率
のランタム共重合体になる様に40〜90℃で1合畑せ
る事によって製造される。
The propylene resin used in the present invention uses a halogenated titanium compound represented by the general formula TiXn (where X represents chlorine, bromine or iodine, and n is 2 or 3) as a catalyst as the first component, and periodically Metals in group 1A of the Table of Contents or compounds of the organic class of metals of groups iA to mA of the periodic table are
Ingredients, depending on the case, organic compounds containing electron-donating N9P*Ot8, etc. or inorganic salts such as alkali metal halides, oxyacids of all alkali classes, etc. as 3rd #:%
By using two-component or three-component yarn, continuously supplying ethylene and propylene at a ratio of one foot to the other, and adjusting the ethylene content in the gas phase, it is possible to produce a lantum copolymer with a desired ethylene content. It is produced by cultivating one field at 40 to 90 degrees Celsius.

本発明に用いられる適切なランダム度、アインタクチッ
ク度、軟化温度を有する共重合体が得られるものであれ
ば使用する触媒、夏合混度、1合媒体%重合方式、生成
物の後処理方法等は特に限定はれない。
Catalysts to be used, summer mixture, 1% polymerization method, and post-treatment of the product, as long as a copolymer with appropriate randomness, intacticity, and softening temperature can be obtained for use in the present invention. There are no particular limitations on the method.

本発明でいうランダム係数(R)は、赤外吸収スペクト
ルの側足によるtl算値で、JIS K6758 Kl
α載の試験片調整法で250〜300μの範囲の揃うf
c犀みに注意深くプレスして作成した#J脂フィルムに
ついて赤外分光器(例えばパーキンエルマー521型)
を用い、ブロック的に共1合したエチレン成分に相当す
る7 223−”部分の吸収と、エチレンの733ct
n−’部分に当る吸収との波形が、正確にぎ1側される
ように走査速度を調整して25℃の室温下で測定、ベー
スライン法で透過率を求めて。
The random coefficient (R) referred to in the present invention is a tl calculated value based on the side legs of an infrared absorption spectrum, and is a tl value according to JIS K6758 Kl.
f of 250 to 300μ is obtained using the α-based test piece adjustment method.
Infrared spectrometer (e.g. Perkin Elmer model 521) on the #J resin film made by carefully pressing c.
was used to absorb the 7223-'' part corresponding to the ethylene component co-united blockwise, and to absorb the 733ct of ethylene.
The scanning speed was adjusted so that the absorption waveform corresponding to the n-' portion was accurately aligned with the edge 1 side, and the measurement was performed at a room temperature of 25° C., and the transmittance was determined using the baseline method.

? 22cIR−’ IICおける吸光度(Aytt)
と733ay+’における吸光度(Ayns)を計算し
、その比R%(R=A72t/Ayss)をもってラン
ダム係数とする。
? Absorbance at 22cIR-' IIC (Aytt)
The absorbance (Ayns) at and 733ay+' is calculated, and the ratio R% (R=A72t/Ayss) is used as a random coefficient.

■ 計算式の原理は、 A=−Log −よって、■0 る。■ The principle of the calculation formula is A = -Log - Therefore, ■0 Ru.

本発明でいうプロピレンセグメントの立体規則性(II
) Fi、樹脂又は発泡体を熱7レスで約100μ厚み
のシート状に成形し、このシートを3−角の小片に切断
しサンプルとした。成形条件、後処理条件FiJIS 
K6758に記載の試験片調整法に準じて行なった。
Stereoregularity (II) of the propylene segment in the present invention
) Fi, resin, or foam was molded into a sheet with a thickness of about 100 μm by heating at 7°C, and this sheet was cut into 3-square pieces to prepare samples. Molding conditions, post-processing conditions FiJIS
The test was carried out according to the test piece preparation method described in K6758.

精秤したサンプルをクマガワ式抽出器を使用し。Precisely weigh the sample using a Kumagawa extractor.

n−へブタンの沸点で8時間抽出し、真空乾燥機で2m
Hgの減圧下80℃98時間乾燥し残渣を精秤し、その
抽出残渣重量の元の重量に対する割合を〜で示し、これ
をプロピレンセグメントの立体規則性(■1)とした。
Extracted at the boiling point of n-hebutane for 8 hours and dried in a vacuum dryer for 2 m
The residue was dried under reduced pressure of Hg at 80° C. for 98 hours, and the residue was accurately weighed. The ratio of the weight of the extracted residue to the original weight was expressed as ~, and this was taken as the stereoregularity of the propylene segment (1).

本発明でいうビカット軟化点はASTM D 1525
に準じ荷11[5〜の条件で#1足した場合の値をいう
The Vicat softening point referred to in the present invention is based on ASTM D 1525.
This is the value when #1 is added under the condition of load 11[5~.

以下1本発明で評価する特性の評価方法、評価基準を述
べる。
The evaluation method and evaluation criteria for the characteristics evaluated in the present invention will be described below.

発泡粒子の表皮部及び粒子内部の気泡膜の厚みの創建 はぼ球形の発泡粒子サンプル20ケについてその中心断
面で切断したそれぞれのサンプル切断片20ケの切断面
について、その面中心から0.25Rν0,7S Rお
よび0.9R(Rは切断面の平均半径)の位置にある気
泡及び表皮部の膜厚の電子顕微鏡写真(450倍)を撮
り、切断気泡膜の長さが0.34D(D#′i平均気泡
直径)以上である膜断面部分を、それぞれの粒子内部位
から2*18r26個所1表皮部から32個所ランダム
に選びそれぞれの気泡膜切断面の中央部の膜厚を一測定
した。
The thickness of the skin part of the foamed particles and the bubble film inside the particles is determined by 0.25Rν0 from the center of the cut surface of each of the 20 sample cut pieces cut at the center cross section of 20 roughly spherical foamed particle samples. , 7S R and 0.9R (R is the average radius of the cut surface), and the length of the cut bubble film was 0.34D (D The film thickness at the center of the cut surface of each cell membrane was measured by randomly selecting 2*18r 26 points from the inner part of each particle and 32 points from the skin part. .

発泡粒子内の気泡膜については重ミツキ平均値をその膜
厚とし、表皮部については算術平均値をその膜厚とした
For the cell membrane within the foamed particles, the thickness was determined by Mitsuki's average value, and for the skin portion, the arithmetic average value was determined as the thickness.

又1表皮膜厚比け1表皮部平均膜厚/気泡膜平均厚を計
算して求めた。
In addition, the average film thickness of one skin part/average bubble film thickness was determined by calculating the ratio of one skin film thickness.

成形品の発泡粒子融着膜厚比 成形品の切断面内で、#tぼ発泡粒子の中心断面で切断
されている粒子20ケについて、その各々の粒子断面の
最大内接円(当該円半径几)内及び粒子融着膜について
上記の方法と同様の方法で顕微鏡写真を撮り、気泡膜平
均厚み及び粒子融着膜平均厚みを求めその比を求め友。
Foamed particle fusion film thickness ratio of molded product For 20 particles cut at the center cross section of #t foamed particles within the cut surface of the molded product, the maximum inscribed circle of each particle cross section (the radius of the circle Take microscopic photographs of the inside of the container and the particle-fused film using the same method as above, find the average thickness of the bubble film and the average thickness of the particle-fused film, and calculate the ratio.

気泡の均一性 発泡粒子サンプル約20ケについて、その中心断面で切
断したサンプル断片について50倍に拡大し目視観察し
た。
Uniformity of Cells Approximately 20 foamed particle samples were visually observed using sample fragments cut at their central cross-sections and magnified 50 times.

成形品の諸物件 1)融着度 成形品の厚さ20−以上の部分から100X100箇正
方の試験片を切り出し、その中央部に保さ2mの切れ目
を入れ、切れ目にそって折り曲は成形品を開裂させ、切
開断面に存在する全粒子数に対する材料破断して切裂し
ている粒子数の百分率を求めた。
Various properties of molded products 1) Degree of fusion Cut a 100 x 100 square test piece from a part of the molded product with a thickness of 20 or more, make a 2 m cut in the center, and bend it along the cut. The article was cleaved and the percentage of the number of particles breaking and cutting the material relative to the total number of particles present in the cut cross section was determined.

評価基準 2)密度 JIS K6767に準じて測定した。Evaluation criteria 2) Density Measured according to JIS K6767.

3)動的緩衝特性 JIS Z0234に準じて測定した。測定条件は緩衡
材厚み50■、落下高さ60口で行ない、1回目落下の
測定値で示L7た。
3) Dynamic buffer properties Measured according to JIS Z0234. The measurement conditions were a buffering material thickness of 50 cm and a drop height of 60 mouths, and the measured value of the first drop was L7.

4)加熱寸法費化 200■正方に切出した成形体サンプルを25℃に24
時間靜装し、その中央部に100X100簡の正方形と
中心十字線を描き各線分の長さを精側し100℃±1℃
に調温した恒温槽内に96時間靜装し、取シ出したのち
25℃で1時間放冷し標線の寸法を精濁し元の寸法から
の変化率%を求めその平均値を求めた。
4) Heating size cost: 200 ■ A molded sample cut into squares was heated to 25°C for 24 hours.
Draw a 100x100 square and a central cross in the center of the time frame, measure the length of each line segment, and measure the length to 100℃±1℃.
The sample was placed in a constant temperature bath for 96 hours, taken out, and left to cool at 25℃ for 1 hour. The dimensions of the marked lines were refined, and the percent change from the original dimensions was determined, and the average value was determined. .

評価基準 4%未満・・・・・実用上問題なし 4%以上・・・・・使用に耐えない 5)圧縮永久歪 JI8 K6767に準じて測定した。試験条件は25
%定圧縮とした。
Evaluation Criteria: Less than 4%: No practical problem 4% or more: Not usable 5) Compression set: Measured according to JI8 K6767. The test conditions are 25
% constant compression.

6)繰シ返し圧縮永久歪 JI8 K6767に準じて測定した。試験条件は%2
5%定圧縮、8万回繰シ返しとした。
6) Repeated compression set Measured according to JI8 K6767. Test conditions are %2
It was subjected to constant compression of 5% and repeated 80,000 times.

7)ヒケ 縦、横300m、厚さ20■の成形体板状試験片上面に
、その吋角線力向に直線定規を当て、試験片と定規の間
に生じた間隙の最大圧lI#を求め、対角線の長さに対
する百分率で評価した。
7) Sink Place a straight ruler in the direction of the force on the upper surface of a plate-shaped test piece of a molded product measuring 300 m in length and width and 20 cm in thickness, and calculate the maximum pressure lI# in the gap created between the test piece and the ruler. It was evaluated as a percentage of the length of the diagonal.

評  価 8)吸水率 成形品から5oxsox厚みの試験片を3ヶ切りb’、
シ、その体積と重量を正確に測定した後。
Evaluation 8) Water absorption rate Cut 3 test pieces of 5oxsox thickness from the molded product b',
After accurately measuring its volume and weight.

25℃の水通水下25簡に24時間浸漬後1表面を素早
く拭き取りNiiを正確に測定した。
After being immersed in a 25°C water tank for 24 hours, one surface was quickly wiped off to accurately measure Nii.

浸漬前後での重量変化を求め5次式により算出する。The change in weight before and after immersion is determined and calculated using a quintic equation.

得られた測定結果の平均値で評価した。Evaluation was made using the average value of the obtained measurement results.

実施例 l プロピレンエチレンランダム共重合体C−r−tvン成
分6重量%、ランダム係数(R) 0.35.プロピレ
ンセグメントの立体規則性(II)7.5%、 5〜X
−荷重のビカット軟化点48℃う融点135℃〕を押出
し細断方式で粒状にし、耐圧容器内でこれに揮発性有機
発泡剤(ジクロロジフルオロメタン、B、P、−29,
8℃)を樹脂量に対し、所定量含有させて発泡性樹脂粒
子とした。
Example 1 Propylene ethylene random copolymer C-r-tv component 6% by weight, random coefficient (R) 0.35. Stereoregularity of propylene segment (II) 7.5%, 5-X
- The Vicat softening point of the load is 48°C, the melting point is 135°C] is made into granules by extrusion and shredding, and in a pressure-resistant container, a volatile organic blowing agent (dichlorodifluoromethane, B, P, -29,
8° C.) was contained in a predetermined amount with respect to the amount of resin to obtain expandable resin particles.

この粒子を発泡釜において、135℃の発泡温度で発泡
させるに当り、予め発泡性樹脂粒子を下記に示す様な発
泡温度での発泡剤の平衡圧力以下。
When these particles are foamed in a foaming pot at a foaming temperature of 135°C, the foamable resin particles are prepared in advance at a pressure equal to or lower than the equilibrium pressure of the foaming agent at the foaming temperature as shown below.

発泡が起る圧力以上の圧力雰囲気(40〜30Q/cs
n”ゲージ)下に数十秒滞留させた後1発泡が完全に起
こる低圧域に放圧して発泡させた。
Pressure atmosphere higher than the pressure at which foaming occurs (40-30Q/cs
n'' gauge) for several tens of seconds, and then the pressure was released to a low pressure region where foaming completely occurred to cause foaming.

実験A1の条件で得られた発泡粒子(以下、粒子A)の
断面を顕微鏡(X450)で観察すると、その表面部に
肉厚の表皮部が形成されており、その内部は、比較的揃
った小径の多数の独立気泡群で形成されている(第1図
に示す)ものであった。
When the cross section of the expanded particles (hereinafter referred to as particles A) obtained under the conditions of Experiment A1 was observed with a microscope (X450), a thick skin was formed on the surface, and the inside was relatively uniform. It was formed of a large number of small-diameter closed cells (as shown in FIG. 1).

次にこれら発泡粒子をそれぞれ、90℃s 1 (IK
4/ex”の空気圧で、加圧し1粒子気泡内の内圧が2
 Kf/m”になるように調整して、そのまま空胴部が
300×300X100.厚み20■の箱形を形成する
型内に充填し%3.2 Q/m” (ゲージ圧)の水蒸
気で加熱して成形体とし、型から取出して後90℃の室
内で8Hr熟成した。
Next, these foamed particles were heated at 90°C s 1 (IK
When pressurized with an air pressure of 4/ex'', the internal pressure within one particle bubble is 2
Kf/m", fill it into a box-shaped mold with a cavity of 300 x 300 The molded product was heated to form a molded product, taken out from the mold, and then aged in a room at 90° C. for 8 hours.

得られた成形体A11t12t13ツ14について。Regarding the obtained molded body A11t12t13t14.

本文記載の評価方法で各種特性を計価し、その結果を第
1表にまとめた。又成形体Allの断面顕微鏡写真は第
3図に示した。
Various properties were evaluated using the evaluation method described in the text, and the results are summarized in Table 1. Further, a cross-sectional microscopic photograph of the molded body All is shown in FIG.

比較例−1 実施例−1において揮発性有機発泡剤を25重量%含有
させた発泡性樹脂粒子を使用し発泡釜での発泡剤の平衡
圧以下における滞留時間のみを10秒及び5秒に変更(
実験A5及び6)する(表面部発泡剤の優先的揮散を行
なわない意味)こと以外は実施例−1の実験をくり返し
て得た成形休息15y16について、その評価結果をそ
れぞれ第1飯にまとめた。尚実験A5で得られた発泡粒
子(以下、粒子B)の断面at*(X450)図を第2
図に、同成形体A15のそれを第4図に示した。
Comparative Example-1 In Example-1, using expandable resin particles containing 25% by weight of a volatile organic blowing agent, only the residence time below the equilibrium pressure of the blowing agent in the foaming pot was changed to 10 seconds and 5 seconds. (
Experiments A5 and 6) The evaluation results for molding rest 15y16 obtained by repeating the experiment of Example-1 except that the surface foaming agent was not volatilized preferentially were summarized in the first article. . The cross section at* (X450) of the expanded particles (hereinafter referred to as particles B) obtained in Experiment A5 is shown in the second figure.
In the figure, that of the same molded body A15 is shown in FIG.

以下余白 第1表から発泡粒子融着膜厚が粒子内部の気泡膜厚より
8倍以上の成形品は粒子間の融着度が優れ、動的緩衝特
性において最適応力が高応力側にあり、その時の最大減
速度が小さく、かつ最大歪が小さい事が明らかである。
From Table 1 in the margin below, molded products in which the foam particle fusion film thickness is 8 times or more than the bubble film thickness inside the particles have excellent interparticle fusion degree, and the optimum stress in terms of dynamic cushioning properties is on the high stress side. It is clear that the maximum deceleration at that time is small and the maximum strain is small.

又、加熱寸法変化も小さく高温下にさらされた時の寸法
安定性に優れている。
In addition, dimensional changes due to heating are small and dimensional stability when exposed to high temperatures is excellent.

この理由は、第3図に示した様に、表皮膜厚が厚い粒子
Aを使用した成形体に厚膜の粒子融着部が成形体内に網
目状に立体的に形成され1機械的変形、熱的変形に対し
、構造的に補強する作用を示している為と考えられる。
The reason for this is that, as shown in FIG. 3, in a molded body using particles A with a thick skin film, thick-film particle fusion parts are formed three-dimensionally in the shape of a mesh inside the molded body, resulting in mechanical deformation and This is thought to be because it exhibits a structural reinforcement effect against thermal deformation.

又1発泡倍率が小さい場合でも粒子融着部が厚い成形体
は優れた性能を示す。
Furthermore, even when the expansion ratio is small, a molded product having a thick particle fusion portion exhibits excellent performance.

実施例2ν比較例2 実施例IAIの発泡粒子(粒子A)及び比較例IJE5
の発泡粒子(粒子B)の双方について、下記1)t2)
K示す二つの実験を行った。
Example 2v Comparative Example 2 Expanded particles of Example IAI (particles A) and Comparative Example IJE5
For both expanded particles (particles B), the following 1) t2)
Two experiments were conducted.

1)それぞれこれを自然下の室内に3日間及び7日間放
置しておいた後、これを143℃の水蒸気で5秒間加熱
して後%90℃の室内に15時間保持して取出し、25
℃で24時間放置して該加熱処理で生じた発泡粒子の嵩
体積の膨張を体積比で示す。
1) After leaving this in a room under natural conditions for 3 days and 7 days, it was heated with steam at 143°C for 5 seconds, and then kept in a room at 90°C for 15 hours and taken out.
The expansion of the bulk volume of the foamed particles caused by the heat treatment after being left at ℃ for 24 hours is shown in terms of volume ratio.

2)元のAνB両者の発泡粒子群の各々の内部に空気を
圧入(含浸)シ1粒子内圧が約1. 、5 Kg/CM
&”(ゲージ圧)Kなるように調整する。その後その粒
子を自然下の室内に放置しておく。
2) Pressure inject (impregnate) air into each of the expanded particle groups of both the original AνB so that the internal pressure of each particle is approximately 1. , 5 Kg/CM
&'' (gauge pressure) K.Then, the particles are left indoors under natural conditions.

(イ)約3日間放置した時点でA>B双方の発泡粒子の
一部を取出し、その粒子を用いて各々。
(b) After leaving it for about 3 days, take out some of the expanded particles of both A>B and use the particles for each.

実施例−1で実施し、た型内成形を行ない成形体を得る
The same procedure as in Example 1 was carried out to obtain a molded article.

(ロ) 約7日間放電した時点で、AνB双方の発泡粒
子の残りを用い、上記と同じ型内成形を行ない成形体を
得る。
(b) After discharging for about 7 days, the remaining foamed particles of both AvB are used to perform in-mold molding in the same manner as above to obtain a molded article.

これ等1) s 2) t(イ)9(ロ)実験の結果の
評価を。
These are: 1) s 2) t (a) 9 (b) Evaluate the results of the experiment.

第2表及び第3表にまとめ掲載した。The results are summarized in Tables 2 and 3.

以下余白 第2表 第   3   表 第2表から、本発明の発泡粒子が長期間の間。Margin below Table 2 Table 3 From Table 2, it can be seen that the expanded particles of the present invention last for a long period of time.

膨張比が大きく保持され、膨張能に優れている事が明ら
かである。この様な特異的な発泡粒子の性能は第3表に
示した様に成形体に成、形する場合にも現われ、融着に
優れ、ヒケの少ない、吸水率が小さい優れた成形品が得
られ、実施例1に示した様に優れた緩衝性能を発現させ
る原因となっている。
It is clear that the expansion ratio is kept high and the expansion ability is excellent. As shown in Table 3, this unique performance of expanded particles is also evident when molded into molded products, resulting in excellent molded products with excellent fusion, few sink marks, and low water absorption. This is the cause of the excellent buffering performance as shown in Example 1.

実施例3?比較例3 第4表−1に示す15樵類のプロピレン系樹脂粒子の各
々について、各々己れを耐圧容器に収容し、これに揮発
性禍根発泡剤(ジクロロジフルオロメタン)を圧入させ
て、樹脂量に対し発泡剤が25亜蓋%含肩した発泡性樹
脂粒子にする。
Example 3? Comparative Example 3 Each of the 15 propylene-based resin particles shown in Table 4-1 was placed in a pressure-resistant container, and a volatile blowing agent (dichlorodifluoromethane) was pressurized into the container. The foaming resin particles are made into foamable resin particles containing 25% of the blowing agent based on the amount of the foaming agent.

得られた各発泡性樹脂粒子を発泡釜において各々の発泡
温度に加熱し発泡させるに当り、雰囲気圧力、40〜3
5 K17cm”にして後発泡し、肉厚の表皮部を持つ
本泡粒子を得るように努力した。尚この際、表皮部が得
られない粒子や1発泡状態の悪い樹脂粒子については、
雰囲気圧力、滞留時間を変更させて見て、その内で最良
のものと判じられる発陀・粒子をもって試験に供する粒
子とした。
When heating and foaming each of the obtained expandable resin particles to the respective foaming temperature in a foaming pot, the atmospheric pressure was set at 40 to 3
5K17cm" and then post-foamed the particles in an effort to obtain foamed particles with a thick skin. At this time, for particles for which a skin cannot be obtained or resin particles in a poor foamed state,
The atmospheric pressure and residence time were varied, and the particles that were found to be the best were selected as the particles to be tested.

得られた各発泡粒子について、本文記載の方法で1発泡
倍率1表皮膜比、気泡の均一性、を評価し、その結果を
第4表−2に示した。
Each of the obtained expanded particles was evaluated for 1 expansion ratio, 1 skin film ratio, and bubble uniformity using the method described in the text, and the results are shown in Table 4-2.

第4表−1 使用ボリマー 第4表−2から、ランダム係数(R)が0.7より大き
くなると発泡粒子の気泡が不均一になり1表皮膜の厚み
も気泡膜厚とほど等しくなり、さらにランダム係数が大
きくなり、ブロック共重合体になると発泡しなくなる事
が明らかである。又、ランダム係数(R)が0.7以下
でも立体規則性(II)が405A以上になると発泡し
なくなり、ランダム係数(R)が0.7以下、立体規則
性(II)が40%未満でも軟化点が50℃より太きい
か、35℃より小さいと発泡はしても発泡効率が小さく
気泡の均一性も劣ったり、表皮膜厚が薄くなる事が明ら
かである。
Table 4-1 Polymer used Table 4-2 shows that when the random coefficient (R) is larger than 0.7, the bubbles in the foamed particles become non-uniform, and the thickness of the skin layer becomes approximately equal to the bubble layer thickness. It is clear that foaming does not occur when the random coefficient increases and the block copolymer becomes a block copolymer. In addition, even if the random coefficient (R) is 0.7 or less, foaming will not occur if the stereoregularity (II) is 405A or more, and even if the random coefficient (R) is 0.7 or less and the stereoregularity (II) is less than 40%, foaming will not occur. It is clear that if the softening point is higher than 50°C or lower than 35°C, even if foaming occurs, the foaming efficiency will be low, the uniformity of the bubbles will be poor, and the surface film thickness will become thin.

実施例4ν比較例4 第4表−2に示し、た実験記号ムイt/・+f+ワの発
泡粒子を用い、各々その粒子の内圧が1.0〜/3″(
ゲージ圧)のものになるように空気を圧入(含浸)させ
、直にその粒子を型内(実施例−1と同じ型)に満たし
て型内で加熱発泡させ、成形体を得た。この場合の加熱
にii2 Ky/cm”の水蒸気を用い、約15秒間の
予備加熱と3.2 Kf/cm” t 15秒の成彩加
熱を行ない、後、冷却して取出した。
Example 4 ν Comparative Example 4 Using the expanded particles shown in Table 4-2 and having the experimental symbol Mui t/・+f+wa, the internal pressure of each particle was 1.0 to /3″ (
Air was press-injected (impregnated) to give a pressure (gauge pressure), and the particles were immediately filled into a mold (the same mold as in Example-1) and heated and foamed in the mold to obtain a molded article. In this case, water vapor of ii2 Ky/cm'' was used for preheating for about 15 seconds and color heating for 15 seconds at 3.2 Kf/cm'', and then cooled and taken out.

取出した成形体は90℃の室内で8Hr熟成させた。The molded product taken out was aged in a room at 90° C. for 8 hours.

得られた各成形体421922g23*24に付いて本
文記載の方法で緒特性を評価し、その結果を第5表に1
とめた。
The properties of each of the obtained molded bodies 421922g23*24 were evaluated using the method described in the text, and the results are shown in Table 5.
I stopped it.

又、成形体高21についての静的応力に対する最大減速
& (G)の関係を第5rgU(イ)に同、瞬間最大歪
との関係を第5図(ロ)に各々示した。
Further, the relationship between the maximum deceleration & (G) and the static stress for the molded body height 21 is shown in 5th rgU (a), and the relationship with the instantaneous maximum strain is shown in Figure 5 (b).

以下余白 第5表より1本発明の発泡体は動的緩l1li特性。Margin below From Table 5, the foam of the present invention has dynamic relaxation properties.

圧縮特性、加熱寸法安定性に優れた発泡体である事が明
らかである。
It is clear that the foam has excellent compression properties and dimensional stability under heating.

本発明で規定するエチレンプロピレンランダム共重合体
以外のポリマーを使用し九場合、その発泡粒子の表皮膜
厚が小さくなり、型内成形時の発泡成形能に劣シ融着腹
が低下するばかりか、得られる成形品の密度も大きく、
圧縮永久歪、繰返し圧縮永久歪、加熱寸法変化等の緒特
性も劣る発泡体しか得られない。
If a polymer other than the ethylene propylene random copolymer specified in the present invention is used, the skin thickness of the expanded particles will become smaller, resulting in poor foam molding performance during in-mold molding and a decrease in fusion bond strength. , the density of the molded product obtained is also high,
Only foams with inferior properties such as compression set, repeated compression set, and heating dimensional change can be obtained.

比較例−5 市販の高発泡ポリオレフィン発泡体について本文記載の
方法で緒特性を評価し、その結果を第5表に示した。
Comparative Example 5 A commercially available highly foamed polyolefin foam was evaluated for mechanical properties by the method described in the text, and the results are shown in Table 5.

使用した発泡体は である。The foam used was It is.

又、静的応力に対する最大減速1(G)の関係を第5図
(イ)に同時間最大歪との関係を第5図←)K各々示し
た。
Furthermore, the relationship between the maximum deceleration 1 (G) and the static stress is shown in FIG. 5 (a), and the relationship with the maximum strain at the same time is shown in FIG.

第5表から明らかな様に1本発明の発泡体Fi、四じ密
度の市販高発泡ポリオレフィン発泡体に比較し、最適応
力が大きく、最大減速度が小さく最大歪が小さい動的緩
衝特性を有し、包装材料として優れた・性能を持ってい
る。特に最大歪が小さい事は凸部を有する被包装品を緩
衝包装する時の底づき現象が起こりにくい特徴を示し少
量の緩衝材で優れた性能を示し、経済的効果が太きい。
As is clear from Table 5, the foam Fi of the present invention has dynamic buffering properties with a larger optimal stress, smaller maximum deceleration, and smaller maximum strain than the commercially available highly expanded polyolefin foam of four-dimensional density. It has excellent performance as a packaging material. In particular, the small maximum strain means that the phenomenon of bottoming out is unlikely to occur when packaged items with convex portions are cushioned, and exhibits excellent performance with a small amount of cushioning material, resulting in great economic effects.

又、加熱寸法変化が小さい事は、船積みで輸出する時の
船倉的温度上昇による荷くずれ、緩衝材のへタリによる
緩衝性能の低下等がなく、信頼性の高い緩衝材料である
事を示す。さらに、従来の発泡体では使用出来なかった
高温雰囲気下でも使用出来る利点を有する。
In addition, the small dimensional change due to heating indicates that the material is a highly reliable cushioning material, as it does not cause cargo to collapse due to temperature rises in the cargo hold during export, nor does it suffer from deterioration in cushioning performance due to sagging of the cushioning material. Furthermore, it has the advantage that it can be used in high-temperature atmospheres, which conventional foams cannot be used with.

第5図から1本発明の発泡体が、同じ密度のポリエチレ
ン系の高発泡フオームよりも最適緩衝応力が高応力側で
最大歪本手さい事が明らかであり、はぼ同じ最適応力を
有するポリエチレン糸発泡体と比べても瞬間最大歪が小
さく、優れた性能を有しかつ発泡体の密度を小さく出来
る経済的である事が明らかである。
From Figure 5, it is clear that the foam of the present invention has a lower maximum strain on the high stress side than the polyethylene foam with the same density, and that the foam of the present invention has a lower maximum strain on the high stress side than the polyethylene foam with the same density. It is clear that the instantaneous maximum strain is smaller than that of thread foam, and that it has excellent performance and is economical because the density of the foam can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の表皮膜が厚い発泡粒子の断面顕微鏡
写真図、第2図#′i、比較となる表皮膜が薄い発泡粒
子の断面顕微鏡写真図、第3図は、第1図に示す発泡粒
子から得られた成形品の粒子融着膜を示す断面顕微鏡写
真図、第4図は、比較となる第2図に示す発泡粒子から
得られた成形品の粒子融着膜を示す断面顕微鏡写真図、
第5 plJ K t(ロ)は、本発明の成形品(曲線
l)と、市販の高発泡ポリエチレン系発泡体(曲IN2
〜4)の動的緩衝特性(イ)衝撃特性、口)瞬間最大歪
)を示す図である。
FIG. 1 is a cross-sectional micrograph of foamed particles with a thick skin film according to the present invention, FIG. 2 #'i is a cross-sectional microphotograph of foamed particles with a thin skin film for comparison, and FIG. Figure 4 is a cross-sectional microscopic photograph showing the particle fused film of a molded article obtained from the expanded particles shown in Figure 2, and Figure 4 shows the particle fused membrane of a molded article obtained from the expanded particles shown in Figure 2 for comparison. Cross-sectional micrograph,
5th plJ Kt (b) is a molded article of the present invention (curve l) and a commercially available high-foam polyethylene foam (curve IN2).
FIG. 4 is a diagram showing the dynamic cushioning characteristics (a) impact characteristics, and (b) instantaneous maximum strain) of ~4).

Claims (1)

【特許請求の範囲】 1、 微細セル構造で成るプロピレン系樹脂発泡粒子の
多数個が、相隣れる粒子相互の表面を接し融着集合して
構成された発泡成形体において。 イ)プロピレン系樹脂は、プロピレン成分が90重量%
以上、エチレン成分が10g量%以下のプロピレン−エ
チレンランダム共重合体であって、ランダム係数(R)
が0.7以1.プロピレンセグメントの立体規則性(I
I)が40%未満、5初荷重のビカット軟化点が約50
〜35℃、の値を示す共1合体であること。 口)該樹脂発泡体が実質無架橋のものであること、 ハ)上記融着集合して生じた融着膜は、該粒子内部にあ
るセル膜に対して約8倍以上の部厚い膜厚みであること
、 を%像とするポリプロピレン系樹脂発泡粒子からなる発
泡成形体 2 プロピレン成分が90重量%以上、エチレン成分が
10重量2以下のプロピレン−エチレンランダム共重合
体であって、ランダム係数(R)が0.7以下、プロピ
レンセグメントの立体規則性(II)が40%未満、5
縁/cII荷重のビカット軟化点が約50〜35℃、の
値を示す共重合体に、沸点が一50〜110℃の揮発性
有機発泡剤を含有させて発泡性樹脂粒子となし、次に該
発泡性樹脂粒子の表面部に存在する発泡剤を優先的に揮
散せしめた後、該粒子全体を発泡させて肉厚の表皮部を
有した発泡粒子となし、次いでこの発泡粒子に発泡能を
付与せしめて型内で無架橋の状態のまま加熱発泡させ粒
子相互の表面を融着せしめて一体化した成形体となし、
成形体内部の粒子を構成するセル族に対し、上記融着で
生じた融着膜が約8倍以上になるようにしたことを特徴
とする、プロピレン系樹脂発泡粒子からなる成形体の製
造方法
[Claims] 1. A foamed molded article constituted by a large number of foamed propylene resin particles having a fine cell structure, which are fused and aggregated with the surfaces of adjacent particles in contact with each other. b) The propylene resin has a propylene component of 90% by weight.
The above is a propylene-ethylene random copolymer having an ethylene component of 10 g% or less, and having a random coefficient (R)
is 0.7 or more1. Stereoregularity of propylene segments (I
I) is less than 40%, Vicat softening point at initial load of 5 is approximately 50
It should be a comonomer showing a value of ~35°C. (1) The resin foam is substantially non-crosslinked; (3) The fused film formed by the above-mentioned fusion aggregation has a thickness that is approximately 8 times or more thicker than the cell membrane inside the particles. A foam molded article 2 made of expanded polypropylene resin particles whose percentage image is a propylene-ethylene random copolymer with a propylene component of 90% by weight or more and an ethylene component of 10% by weight or less, which has a random coefficient ( R) is 0.7 or less, the stereoregularity (II) of the propylene segment is less than 40%, 5
A copolymer having a Vicat softening point of about 50 to 35°C under edge/cII load is mixed with a volatile organic blowing agent having a boiling point of 150 to 110°C to form expandable resin particles, and then After the foaming agent present on the surface of the foamable resin particles is preferentially volatilized, the entire particles are foamed to form foamed particles having a thick skin, and then foaming ability is imparted to the foamed particles. The particles are applied and heated and foamed in a non-crosslinked state in a mold to fuse the surfaces of the particles to each other to form an integrated molded body.
A method for producing a molded body made of expanded propylene resin particles, characterized in that the size of the fused film formed by the above fusion is about 8 times or more as compared to the cell group constituting the particles inside the molded body.
JP56160148A 1981-10-09 1981-10-09 Foamed molded propylene resin article and its preparation Granted JPS5861128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56160148A JPS5861128A (en) 1981-10-09 1981-10-09 Foamed molded propylene resin article and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56160148A JPS5861128A (en) 1981-10-09 1981-10-09 Foamed molded propylene resin article and its preparation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP12774089A Division JPH0214225A (en) 1989-05-22 1989-05-22 Production of expansion-molded article of propylene resin

Publications (2)

Publication Number Publication Date
JPS5861128A true JPS5861128A (en) 1983-04-12
JPS6334893B2 JPS6334893B2 (en) 1988-07-12

Family

ID=15708901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56160148A Granted JPS5861128A (en) 1981-10-09 1981-10-09 Foamed molded propylene resin article and its preparation

Country Status (1)

Country Link
JP (1) JPS5861128A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090744A (en) * 1983-10-24 1985-05-21 Japan Styrene Paper Co Ltd Curing method of expanded polypropylene resin molding in molds
JPS60166442A (en) * 1984-02-10 1985-08-29 Kanegafuchi Chem Ind Co Ltd Curing method of polyolefin expansion molded shape
JPS61115940A (en) * 1984-11-09 1986-06-03 Mitsubishi Yuka Badische Kk Polypropylene foam particle
JP2009286899A (en) * 2008-05-29 2009-12-10 Kaneka Corp Polypropylene resin foamed particle and in-mold foaming molded product
JP2019001004A (en) * 2017-06-12 2019-01-10 旭化成株式会社 Fiber composite

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122951A (en) * 1974-08-16 1976-02-24 Yoshio Ihara EAAENJIN
JPS53137170A (en) * 1977-05-06 1978-11-30 Hitachi Ltd Automatic range interchanging system for electromagnetic flow meter converter
JPS561344A (en) * 1979-06-18 1981-01-09 Nishimu Denshi Kogyo Kk Controlling method for optimum wet-quantity in wet-type insulator stain measurement
JPS5770621A (en) * 1980-10-20 1982-05-01 Asahi Chem Ind Co Ltd Foamed polyethylene molded object and manufacture tereof
JPS5790027A (en) * 1980-11-22 1982-06-04 Japan Styrene Paper Co Ltd Prefoamed polypropylene resin particle and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122951A (en) * 1974-08-16 1976-02-24 Yoshio Ihara EAAENJIN
JPS53137170A (en) * 1977-05-06 1978-11-30 Hitachi Ltd Automatic range interchanging system for electromagnetic flow meter converter
JPS561344A (en) * 1979-06-18 1981-01-09 Nishimu Denshi Kogyo Kk Controlling method for optimum wet-quantity in wet-type insulator stain measurement
JPS5770621A (en) * 1980-10-20 1982-05-01 Asahi Chem Ind Co Ltd Foamed polyethylene molded object and manufacture tereof
JPS5790027A (en) * 1980-11-22 1982-06-04 Japan Styrene Paper Co Ltd Prefoamed polypropylene resin particle and its production

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090744A (en) * 1983-10-24 1985-05-21 Japan Styrene Paper Co Ltd Curing method of expanded polypropylene resin molding in molds
JPS60166442A (en) * 1984-02-10 1985-08-29 Kanegafuchi Chem Ind Co Ltd Curing method of polyolefin expansion molded shape
JPH0365259B2 (en) * 1984-02-10 1991-10-11
JPS61115940A (en) * 1984-11-09 1986-06-03 Mitsubishi Yuka Badische Kk Polypropylene foam particle
JP2009286899A (en) * 2008-05-29 2009-12-10 Kaneka Corp Polypropylene resin foamed particle and in-mold foaming molded product
JP2019001004A (en) * 2017-06-12 2019-01-10 旭化成株式会社 Fiber composite

Also Published As

Publication number Publication date
JPS6334893B2 (en) 1988-07-12

Similar Documents

Publication Publication Date Title
CN101469085B (en) Foamed polyolefin resin beads
TWI444417B (en) Polypropylene resin foamed beads and molded articles
JP5512672B2 (en) Polypropylene resin expanded particles and expanded molded articles
KR101473031B1 (en) Polypropylene resin foam particle and molded article therefrom
JP6620387B2 (en) Propylene-based resin expanded particles and expanded molded articles
JPS58136632A (en) Production of expanded polyolefin resin molding
JP2004068016A (en) Method for manufacturing foamed polypropylene resin particle, and formed polypropylene resin particle
CN114957772A (en) Expanded beads and method for producing same
JPS5861128A (en) Foamed molded propylene resin article and its preparation
KR20200067184A (en) Foamed molded body and method for manufacturing same
JP4144781B2 (en) Method for producing molded polypropylene resin foam particles
JPH0365259B2 (en)
US6607682B1 (en) Pre-expanded polypropylene resin beads and process for producing molded object therefrom by in-mold foaming
JP5841076B2 (en) Polypropylene-based resin foamed particles and polypropylene-based resin in-mold foam molding
JP2022141166A (en) Polyethylene-based resin foam particle, and method for producing polyethylene-based resin foam particle
JP2003340859A (en) Manufacturing method for polypropylene resin in-mold foam molded object and in-mold foam molded object
JPH1045938A (en) Pre-expanded polypropylene resin particle
JP2003201361A (en) Method for manufacturing in-mold molded foam polypropylene particle
JP5808841B2 (en) Method for producing polyethylene resin extruded foam sheet
JPH0214225A (en) Production of expansion-molded article of propylene resin
JP2007084666A (en) Styrenic resin expandable particle, method for producing the same and styrenic resin expansion molded product
EP4079797A1 (en) Multilayer expanded beads and molded article thereof
JP2005325179A (en) Method for producing polypropylene-based resin expanded particle molding
CN117916297A (en) Polyethylene resin foam particles and method for producing same
JP4064811B2 (en) Method for producing expanded polypropylene resin particles