JP2009286899A - Polypropylene resin foamed particle and in-mold foaming molded product - Google Patents

Polypropylene resin foamed particle and in-mold foaming molded product Download PDF

Info

Publication number
JP2009286899A
JP2009286899A JP2008140911A JP2008140911A JP2009286899A JP 2009286899 A JP2009286899 A JP 2009286899A JP 2008140911 A JP2008140911 A JP 2008140911A JP 2008140911 A JP2008140911 A JP 2008140911A JP 2009286899 A JP2009286899 A JP 2009286899A
Authority
JP
Japan
Prior art keywords
polypropylene resin
particles
mold
expanded
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008140911A
Other languages
Japanese (ja)
Other versions
JP5298642B2 (en
Inventor
Fuminobu Hirose
文信 廣瀬
Shinobu Ochikoshi
忍 落越
Koji Tsuneishi
浩司 常石
Kiyotaka Nakayama
清敬 中山
Atsushi Fukuzawa
淳 福澤
Kenichi Senda
健一 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2008140911A priority Critical patent/JP5298642B2/en
Publication of JP2009286899A publication Critical patent/JP2009286899A/en
Application granted granted Critical
Publication of JP5298642B2 publication Critical patent/JP5298642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide polypropylene resin foamed particles fusible comparatively excellently even at low temperature for allowing molding at wide-ranged temperature when the polypropylene resin foamed particles are loaded inside a mold to be heat-molded with steam into an in-mold foaming molded product and capable of giving an in-mold foaming molded product, which has excellent surface characteristics because few clearances are formed between the foamed particles on the surface and the in-mold foaming molded product has few wrinkles. <P>SOLUTION: The polypropylene resin foamed particles obtained by foaming a polypropylene resin with a melting point of 125-160&deg;C have a true magnification ranging from 20-40 times. In the polypropylene resin foamed particles, internal mean cell diameters of the foamed particles are 150-1,000 &mu;m, a maximum cell diameter of surface thin-film cells is 500 &mu;m or less, and an area occupancy of the surface thin-film cells on the polypropylene resin foamed particle surface is 0-40%. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、ポリプロピレン系樹脂発泡粒子に関する。詳しくは、緩衝包装材、通函、断熱材、自動車のバンパー芯材などに用いられるポリプロピレン系樹脂型内発泡成形体の製造に好適に使用し得るポリプロピレン系発泡粒子およびそれからなる型内発泡成形体に関する。   The present invention relates to expanded polypropylene resin particles. Specifically, polypropylene-based foamed particles that can be suitably used for the production of polypropylene-based resin-molded in-mold foam molded articles used for buffer packaging materials, boxes, heat insulating materials, automobile bumper core materials, and the like, and in-mold foam-molded articles comprising the same About.

ポリプロピレン系樹脂発泡粒子を金型内に充填し、水蒸気で加熱成形して得られる型内発泡成形体は、型内発泡成形体の長所である形状の任意性、軽量性、断熱性などの特徴を持つ。また同様の合成樹脂発泡粒子を用いる型内発泡成形体と比較すると、ポリスチレン系樹脂発泡粒子を用いて得られる型内発泡成形体に比べて、耐薬品性、耐熱性、圧縮後の歪回復率(力学特性)に優れており、またポリエチレン系樹脂発泡粒子を用いる型内発泡成形体と比べて、寸法精度、耐熱性、圧縮強度が優れている。これらの特徴により、ポリプロピレン系樹脂発泡粒子を用いて得られる型内発泡成形体は、断熱材、緩衝包装材、自動車内装部材、自動車バンパー用芯材など様々な用途に用いられている。   In-mold foam moldings obtained by filling polypropylene resin foam particles in molds and heat-molding with water vapor are the advantages of in-mold foam moldings, such as shape flexibility, lightness, and heat insulation. have. Compared to in-mold foam moldings using similar synthetic resin foam particles, compared with in-mold foam moldings obtained using polystyrene resin foam particles, chemical resistance, heat resistance, strain recovery rate after compression It is excellent in (mechanical characteristics) and has excellent dimensional accuracy, heat resistance, and compressive strength as compared with an in-mold foam molded article using polyethylene resin expanded particles. Due to these characteristics, in-mold foam molded articles obtained using polypropylene resin foam particles are used in various applications such as heat insulating materials, shock-absorbing packaging materials, automobile interior members, and automobile bumper core materials.

使用者の目に触れる場所に使用される一般緩衝包材、自動車内装部材、通い箱と言った用途に使用される型内発泡成形体は、表面性が重要視されるものが多い。これらの用途では、型内発泡成形体に通常求められる剛性、軽量性、断熱性などの物性に加え、良好な表面性が求められる。型内発泡成形体は、発泡粒子同士を融着させ型内発泡成形体とするため、型内発泡成形体の発泡粒子同士間に隙間が発生したり、もしくは型内発泡成形体表面に細かい皺が見られたりすることがあり、外観を重視する製品にはこれらを嫌うものも多い。発泡粒子間の隙間を目立たなくさせるためには、一般に型内発泡成形時に予め発泡粒子内の空気圧を大気圧以上に加圧し、及び/または、成形機の加熱蒸気圧力を高くし、発泡粒子の膨張力を高めて発泡粒子同士の隙間がなくなるようにして融着を促進させるなどの方法が採られるが、このような方法を用いると、隙間はなくなるものの、逆に型内発泡成形体表面に細かい皺が発生する傾向がある。型内発泡成形体の「表面粒子隙間」と「表面小皺」は一般的には相反する関係にあると考えられる。   In-mold foam moldings used for applications such as general cushioning packaging materials, automobile interior members, and returnable boxes that are used in places where the user can see, often have surface properties as important. In these applications, good surface properties are required in addition to physical properties such as rigidity, lightness, and heat insulating properties normally required for in-mold foam molded products. Since the in-mold foam molded body is made by fusing the foam particles together to form an in-mold foam molded body, there is a gap between the foam particles in the in-mold foam molded body, or there is a fine wrinkle on the surface of the in-mold foam molded body. May be seen, and many products that emphasize the appearance dislike these. In order to make the gaps between the expanded particles inconspicuous, generally, the air pressure in the expanded particles is previously increased to an atmospheric pressure or higher at the time of in-mold expansion molding, and / or the heating steam pressure of the molding machine is increased, A method such as increasing the expansion force to eliminate the gap between the expanded particles and promoting fusion is adopted, but if such a method is used, the gap disappears, but conversely on the surface of the in-mold foam molded body There is a tendency to generate fine wrinkles. In general, the “surface particle gap” and the “surface wrinkle” of the in-mold foam molded product are considered to have a contradictory relationship.

従来の発泡粒子では両方のバランスにより加熱条件を定め成形してきたが、このような成形温度幅は狭く、成形機や金型を変更する毎に条件を調査して最適条件を定める煩雑さがあった。また、金型によっては蒸気の通り易い部位や通りにくい部位が存在するため実際には金型内での温度を均質化することが困難で、型内発泡成形体の特定の部位に「表面粒子隙間」や「表面小皺」が発生するという問題があり、幅広い成形温度で「表面粒子隙間」と「表面小皺」が存在しない型内発泡成形体が望まれていた。   Conventional foamed particles have been molded with the heating conditions determined by a balance between the two, but such a molding temperature range is narrow, and each time the molding machine or the mold is changed, the conditions are investigated and the optimum conditions are complicated. It was. In addition, depending on the mold, there is a part that is easy to pass steam and a part that is difficult to pass, so in practice it is difficult to homogenize the temperature in the mold. There has been a problem that “gaps” and “surface wrinkles” occur, and there has been a demand for an in-mold foam molded product in which “surface particle gaps” and “surface wrinkles” do not exist at a wide range of molding temperatures.

また、昨今のエネルギー消費による二酸化炭素排出削減要望や、成形加工コスト減という意味での蒸気ユーティリティーコスト減、成形サイクル減の要望から、なるべく低温の蒸気で成形可能である発泡粒子が望まれている。また、高温蒸気での成形が必要な場合、耐圧仕様の高い成形機や金型を用いる必要が生じ、設備コストが高くなるといった問題もあるため、やはり低温蒸気での成形が望まれている。   In addition, expanded particles that can be molded with steam as low as possible are desired because of recent demands for reducing carbon dioxide emissions due to energy consumption, reducing steam utility costs in terms of reducing molding processing costs, and reducing molding cycles. . Further, when molding with high-temperature steam is required, there is a problem that it is necessary to use a molding machine or a mold having a high pressure resistance specification, and there is a problem that the equipment cost becomes high. Therefore, molding with low-temperature steam is also desired.

ポリプロピレン系樹脂の発泡粒子の表面膜に関する検討としては、特許文献1〜2にポリプロピレン系樹脂発泡粒子表皮部のセル膜厚を発泡粒子内部のセル膜厚よりも2〜4倍以上厚くすることで、型内発泡成形体の繰り返し圧縮強度が向上することや、自己膨張能が付与されることが記載されている。成形に関しては、殆どが3.2〜3.3kgf/cm(ゲージ圧)の比較的高温蒸気でのみの成形結果が開示されているものの皺に関しての言及はなく、また成形温度幅に関する記載はない。
特開昭58−61128号公報 特開平2−14225号公報
As a study on the surface film of polypropylene resin expanded particles, Patent Documents 1 and 2 show that the cell thickness of the polypropylene resin expanded particle skin is made 2 to 4 times or more thicker than the cell thickness inside the expanded particles. Further, it is described that the repeated compression strength of the in-mold foam molded article is improved and the self-expanding ability is imparted. Regarding molding, most of the molding results are disclosed only with relatively high-temperature steam of 3.2 to 3.3 kgf / cm 2 (gauge pressure), but there is no mention of defects, and there is no description regarding the molding temperature range. Absent.
JP 58-61128 A Japanese Patent Laid-Open No. 2-14225

本発明の目的は、ポリプロピレン系樹脂発泡粒子を金型内に充填し、水蒸気で加熱成形して型内発泡成形体とする際に、ポリプロピレン系樹脂発泡粒子の融着が低温であっても比較的良好であり、成形温度幅が広く、また、得られた型内発泡成形体表面の発泡粒子同士の隙間が少なく、かつ、型内発泡成形体に皺が少ない、表面性の優れた型内発泡成形体を得ることができるポリプロピレン系樹脂発泡粒子を提供することにある。   The purpose of the present invention is to compare the foamed polypropylene resin foam particles even when the fusion temperature of the polypropylene resin foam particles is low when filling the polypropylene resin foam particles in a mold and heat-molding with water vapor to form an in-mold foam molded product. In the mold with excellent surface properties, wide molding temperature range, few gaps between the foamed particles on the surface of the in-mold foam molded product, and few in-mold foam molded products An object of the present invention is to provide polypropylene-based resin expanded particles capable of obtaining an expanded molded article.

上述の問題に対して、本発明者らが鋭意検討した結果、ポリプロピレン系樹脂の高倍率の型内発泡成形体を得ようとするときの表面性について、発泡粒子表層に存在する薄膜セルのセル径や薄膜セルの占有面積、内部平均セル径(以下、平均セル径と呼ぶ)が関係していることがわかった。   As a result of intensive studies by the present inventors with respect to the above-mentioned problems, the surface properties when trying to obtain a high-magnification in-mold foam molded product of a polypropylene-based resin, the cell of a thin-film cell existing on the surface of the foamed particle It was found that the diameter, the area occupied by the thin film cell, and the internal average cell diameter (hereinafter referred to as the average cell diameter) are related.

すなわち、ポリプロピレン系樹脂発泡粒子の型内発泡成形は、加熱によりポリプロピレン系樹脂を軟化させた状態で行うものであるが、ポリプロピレン系樹脂が結晶性ポリマーであるため、結晶と非晶混在した状態、半溶融状態での発泡、すなわちセル膜の膨張延伸をさせるものであるが、平均セル径が小さすぎるとセル膜全体に延伸歪が発生し、発泡時に収縮力が働きやすい。成形時に加熱不足の場合は、粒子隙間を埋めることは出来ず、加熱過剰の場合でも、成形時にセル膜に歪が生じやすく養生工程や経時により緩和され発泡粒子間の間隙が生じる場合がある。   That is, in-mold foam molding of the polypropylene resin expanded particles is performed in a state where the polypropylene resin is softened by heating, but because the polypropylene resin is a crystalline polymer, a state in which crystals and amorphous are mixed, Although foaming in a semi-molten state, that is, expansion and stretching of the cell membrane, if the average cell diameter is too small, stretching strain occurs in the entire cell membrane, and shrinkage force tends to work during foaming. In the case of insufficient heating at the time of molding, the particle gap cannot be filled, and even in the case of excessive heating, the cell film is likely to be distorted at the time of molding, and may be relaxed by the curing process or aging, resulting in a gap between the expanded particles.

また、薄膜セル部分は、成形加熱時に軟化して伸びやすく、限界まで伸びて永久歪となり、その薄膜セルのセル径が大きかったり、占有面積が大きいと、型内発泡成形体全体でみると発泡粒子のセルがだぶついたり薄膜セルを欠陥として型内発泡成形体の構造体としての強度が弱まり、皺などの発生に繋がりやすい。   In addition, the thin-film cell part softens and stretches easily during molding and heating, stretches to the limit and becomes a permanent strain, and if the cell diameter of the thin-film cell is large or occupies a large area, the entire foamed molded body in the mold is foamed. The cell of the particles is loose or the strength of the in-mold foam molded body is weakened due to the defect of the thin film cell, which easily leads to generation of wrinkles.

以上のことから、型内発泡成形体の表面性の悪化を生じさせないためには、表面性に関係する、発泡粒子の表面セル膜について、成形時のセル膜延伸時にセル膜に延伸される余力があり(厚膜であり)、抵抗無くよく伸び、且つセル膜が比較的均一であり、また、低い成形圧で成形するためには低融点のポリプロピレン系樹脂を使用する必要があることが分かり、本発明の完成にいたった。本発明は、特開昭58−61128号公報、特開平2−14225号公報に記載されるような発泡粒子の表皮部(表面部)と内部のセル膜厚の比は関係せず、表皮部(表面部)に存在する薄膜の分布状態を特定の状態に制御することにより幅広い成形温度で美麗な発泡成形体を得る点で技術的に異なるものである。   From the above, in order not to cause deterioration of the surface property of the in-mold foam molded article, the surface cell membrane of the foamed particles related to the surface property, the remaining force to be stretched to the cell membrane at the time of cell membrane stretching at the time of molding (Thick film), stretches well without resistance, the cell film is relatively uniform, and it is necessary to use a low melting point polypropylene resin to mold at a low molding pressure. The present invention has been completed. In the present invention, the ratio of the skin part (surface part) of the foamed particles and the internal cell thickness as described in JP-A-58-61128 and JP-A-2-14225 is not related, and the skin part This is technically different in that a beautiful foamed molded article is obtained at a wide range of molding temperatures by controlling the distribution state of the thin film present on the (surface portion) to a specific state.

即ち、本発明の第1は、融点が125℃以上160℃以下のポリプロピレン系樹脂を発泡させて得られる、真倍率が20倍以上40倍以下のポリプロピレン系樹脂発泡粒子において、該発泡粒子の内部平均セル径が150μm以上1000μm以下であり、表面薄膜セルの最大セル径が500μm以下であり、且つ、表面薄膜セルのポリプロピレン系樹脂発泡粒子表面における面積占有率が0%以上40%以下であることを特徴とするポリプロピレン系樹脂発泡粒子に関する。   That is, the first aspect of the present invention is a polypropylene resin foamed particle having a true magnification of 20 times to 40 times obtained by foaming a polypropylene resin having a melting point of 125 ° C. or higher and 160 ° C. or lower. The average cell diameter is 150 μm or more and 1000 μm or less, the maximum cell diameter of the surface thin film cell is 500 μm or less, and the area occupation ratio of the surface thin film cell on the surface of the expanded polypropylene resin particles is 0% or more and 40% or less. It is related with the polypropylene resin expanded particle characterized by these.

好ましい態様としては、ポリプロピレン系樹脂の170℃での溶融粘度が7500poise以上12000poise以下、溶融張力が0.5g以上1.8g以下であるポリプロピレン系樹脂を発泡させて得られた前記記載のポリプロピレン系樹脂発泡粒子に関する。   As a preferable embodiment, the polypropylene resin described above obtained by foaming a polypropylene resin having a melt viscosity at 170 ° C. of 7500 poise or more and 12000 poise or less and a melt tension of 0.5 g or more and 1.8 g or less. Relates to expanded particles.

本発明の第2は、前記記載のポリプロピレン系樹脂発泡粒子を、型内に充填して加熱し、粒子相互を融着せしめて得られる、発泡倍率が30〜50倍のポリプロピレン系樹脂型内発泡成形体に関する。   The second aspect of the present invention is that the above-mentioned polypropylene resin foamed particles are filled in a mold and heated to fuse the particles with each other, and the foaming ratio in the polypropylene resin mold is 30 to 50 times. It relates to a molded body.

本発明のポリプロピレン系樹脂発泡粒子は、比較的低圧の加熱成形圧であっても融着性が良好であり、また、広い成形温度において得られた型内発泡成形体の表面の粒子間隙や皺が少なく、表面性に優れる型内発泡成形体が得られる。   The polypropylene resin foamed particles of the present invention have good fusion properties even at relatively low heat molding pressures, and the particle gaps and wrinkles on the surface of the in-mold foam molded product obtained at a wide molding temperature. An in-mold foam-molded article having a low surface property and excellent surface properties can be obtained.

本発明に基材樹脂として使用するポリプロピレン系樹脂は、モノマーとしてプロピレンが50mol%以上含まれる樹脂である。プロピレン以外に使用し得るモノマー成分としては、エチレン、1−ブテン、イソブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3,4−ジメチル−1−ブテン、1−ヘプテン、3−メチル−1−ヘキセン、1−オクテン、1−デセンなどの炭素数2または4〜12のα−オレフィン、シクロペンテン、ノルボルネン、テトラシクロ[6,2,11,8,13,6]−4−ドデセンなどの環状オレフィン、5−メチレン−2−ノルボルネン、5−エチリデン−2−ノルボルネン、1,4−ヘキサジエン、メチル−1,4−ヘキサジエン、7−メチル−1,6−オクタジエンなどのジエン、塩化ビニル、塩化ビニリデン、アクリロニトリル、酢酸ビニル、アクリル酸、メタクリル酸、マレイン酸、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、無水マレイン酸、スチレン、メチルスチレン、ビニルトルエン、ジビニルベンゼンなどのビニル単量体などが挙げられる。これらのうち、エチレン、1−ブテンを使用することが耐寒脆性向上、安価等という点で好ましい。   The polypropylene resin used as the base resin in the present invention is a resin containing 50 mol% or more of propylene as a monomer. Examples of monomer components that can be used other than propylene include ethylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, and 3,4-dimethyl-1. Α-olefins having 2 or 4 to 12 carbon atoms such as butene, 1-heptene, 3-methyl-1-hexene, 1-octene and 1-decene, cyclopentene, norbornene, tetracyclo [6,2,11,8, Cyclic olefins such as 13,6] -4-dodecene, 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 1,4-hexadiene, methyl-1,4-hexadiene, 7-methyl-1,6 -Dienes such as octadiene, vinyl chloride, vinylidene chloride, acrylonitrile, vinyl acetate, acrylic acid, methacrylic acid, maleic acid Ethyl acrylate, butyl acrylate, methyl methacrylate, maleic anhydride, styrene, methyl styrene, vinyl toluene, and vinyl monomers such as divinylbenzene. Among these, it is preferable to use ethylene and 1-butene from the viewpoint of improving cold brittleness resistance and low cost.

本発明のポリプロピレン系樹脂は融点が125℃以上160℃以下である。好ましくは、125℃以上150℃以下である。ここで言う融点は、示差走査熱量計(DSC)を用いて、ポリプロピレン系樹脂粒子5〜6mgを10℃/minの昇温速度で40℃から220℃まで昇温する事により樹脂粒子を融解し、その後10℃/minで220℃から40℃まで降温することにより結晶化させた後に、さらに10℃/minで40℃から220℃まで昇温したときに、2回目の昇温時に得られるDSC曲線における融解ピーク温度である。融点が160℃より高い場合、低い加熱成形圧では、ポリプロピレン系樹脂発泡粒子間の融着が不十分となる。融点が125℃より低い場合、用途によっては耐熱性に劣る場合がある。   The melting point of the polypropylene resin of the present invention is 125 ° C. or higher and 160 ° C. or lower. Preferably, it is 125 degreeC or more and 150 degrees C or less. The melting point here refers to melting the resin particles by heating 5 to 6 mg of polypropylene resin particles from 40 ° C. to 220 ° C. at a rate of 10 ° C./min using a differential scanning calorimeter (DSC). Then, after crystallizing by lowering the temperature from 220 ° C. to 40 ° C. at 10 ° C./min, and further raising the temperature from 40 ° C. to 220 ° C. at 10 ° C./min, the DSC obtained at the second temperature rise It is the melting peak temperature in the curve. When the melting point is higher than 160 ° C., the fusion between the polypropylene resin expanded particles becomes insufficient at a low thermoforming pressure. When the melting point is lower than 125 ° C., the heat resistance may be inferior depending on the application.

本発明のポリプロピレン系樹脂発泡粒子に使用されるポリプロピレン系樹脂の170℃での溶融粘度は、好ましくは7500poise以上12000poise以下である。更に好ましくは、8000poise以上12000poise以下である。本発明において融点はDSC曲線により得られた融解ピークの温度としているが、実際は融点よりも低温、高温の結晶成分も存在する「分布」を示している。その為、ポリプロピレン系樹脂にとって170℃という温度は、溶融延伸加工が可能であるが若干結晶の融け残りが存在しているような温度であり、そのときの溶融粘度はポリプロピレン系樹脂発泡粒子製造中や型内発泡成形中の半溶融時の粘度、樹脂の粘り強さを間接的に反映している。溶融粘度が7500poise未満の場合、発泡時の樹脂の粘り強さが不足し、ポリプロピレン系樹脂発泡粒子の独立気泡率が低くなり成形困難となったり、型内発泡成形の際に成形体形状を保てず変形し、養生しても変形時の皺が残る場合がある。溶融粘度が12000poiseを超えては、半溶融時の樹脂に粘りがありすぎて高倍率のポリプロピレン系樹脂発泡粒子が得られにくい場合がある。   The melt viscosity at 170 ° C. of the polypropylene resin used for the expanded polypropylene resin particles of the present invention is preferably 7500 poise or more and 12000 poise or less. More preferably, it is 8000 poise or more and 12000 poise or less. In the present invention, the melting point is the temperature of the melting peak obtained by the DSC curve, but actually shows a “distribution” in which crystal components at lower and higher temperatures exist than the melting point. Therefore, a temperature of 170 ° C. for a polypropylene resin is a temperature at which melt stretching processing is possible but there is a slight unmelted crystal, and the melt viscosity at that time is during the production of polypropylene resin foam particles. It indirectly reflects the viscosity at the time of semi-melting during the foam molding in the mold and the tenacity of the resin. When the melt viscosity is less than 7500 poise, the resin does not have sufficient tenacity at the time of foaming, and the closed cell ratio of the polypropylene resin foam particles becomes low, making molding difficult, and maintaining the shape of the molded body during in-mold foam molding. Even if it is deformed and cured, there may be a case where wrinkles at the time of deformation remain. If the melt viscosity exceeds 12000 poise, the resin at the time of semi-melting may be too sticky to obtain high-magnification polypropylene-based resin expanded particles.

また、本発明のポリプロピレン系樹脂発泡粒子に使用されるポリプロピレン系樹脂の170℃での溶融張力は、好ましくは0.5g以上1.8g以下である。更に好ましくは、0.5g以上1.6g以下である。溶融張力が0.5g未満の場合、ポリプロピレン系樹脂発泡粒子作製の際に気泡を保持する力が不足し、破泡しやすく、独立気泡を保つことが困難となる場合がある。溶融張力が1.8gを越えては、ポリプロピレン系樹脂発泡粒子作製時や発泡成形時にポリプロピレン系樹脂発泡粒子のセル膜に無理な延伸がかかりやすくなり、その結果、セル膜に潜在歪みが発生する傾向がある。これにより発泡直後の収縮や養生時の加熱による収縮がおき、型内発泡成形体の粒子間隙が開いて表面性が悪化したり、寸法精度が悪化したり、養生回復に長時間かかる場合がある。   Moreover, the melt tension at 170 ° C. of the polypropylene resin used for the expanded polypropylene resin particles of the present invention is preferably 0.5 g or more and 1.8 g or less. More preferably, it is 0.5 g or more and 1.6 g or less. When the melt tension is less than 0.5 g, the force for holding the bubbles is insufficient at the time of producing the polypropylene resin foamed particles, the bubbles are easily broken, and it may be difficult to keep the closed cells. When the melt tension exceeds 1.8 g, the cell membrane of the polypropylene resin foamed particles tends to be excessively stretched when the polypropylene resin foamed particles are produced or foamed, and as a result, latent distortion occurs in the cell membrane. Tend. As a result, shrinkage immediately after foaming or shrinkage due to heating during curing occurs, and the particle gap of the in-mold foamed molding may open, resulting in deterioration of surface properties, deterioration of dimensional accuracy, and recovery of curing may take a long time. .

本発明の溶融粘度および溶融張力の測定は、直径1mmφ×ランド長10mmのダイスを使用して170℃、剪断速度122sec−1にて押出を実施し、引取速度6m/min、ダイス先端と溶融張力測定用の滑車の接点距離は35cmの条件下で測定したときの値である。このとき周囲の雰囲気は25℃の湿度50%である。溶融張力はチャート上で振幅をもっているが、本発明では振幅の中央値を溶融張力とする。 The melt viscosity and melt tension of the present invention were measured by using a die having a diameter of 1 mmφ × land length of 10 mm and performing extrusion at 170 ° C. and a shear rate of 122 sec −1 , take-up speed of 6 m / min, die tip and melt tension. The contact distance of the measurement pulley is a value when measured under the condition of 35 cm. At this time, the ambient atmosphere has a humidity of 50% at 25 ° C. The melt tension has an amplitude on the chart, but in the present invention, the median value of the amplitude is the melt tension.

本発明のポリプロピレン系樹脂発泡粒子の内部平均セル径や表面薄膜セルを特定の性状とするためには、ポリプロピレン系樹脂が、半溶融時に適度な強度を持ちつつ且つ延伸に対して抵抗がない、潜在歪みを発生しにくいことが重要な要件のひとつである。このような樹脂としては高分子間の絡み合いが少ない方が好ましいが、溶融張力が適切な範囲にあれば高分子量成分や長鎖分岐、部分架橋がポリプロピレン系樹脂に存在をしていても構わない。この特性はポリプロピレン系樹脂の重合時の条件によって一意的に決まる場合もあれば、意図的に制御することも可能である。   In order to make the internal average cell diameter and surface thin film cell of the polypropylene resin expanded particles of the present invention have a specific property, the polypropylene resin has an appropriate strength when semi-molten and has no resistance to stretching. One of the important requirements is that it is difficult to generate latent distortion. As such a resin, it is preferable that the entanglement between the polymers is small, but as long as the melt tension is within an appropriate range, the high molecular weight component, long chain branching, and partial crosslinking may be present in the polypropylene resin. . This characteristic may be uniquely determined depending on the polymerization conditions of the polypropylene resin, or may be intentionally controlled.

本発明のポリプロピレン系樹脂発泡粒子は半溶融時に適度な粘度、強度を持ちつつ且つ延伸に対して抵抗がない、潜在歪みを発生しにくく、発泡粒子表面のセルの不均一さが少ないことが重要になる。このような発泡粒子としては、使用するポリプロピレン系樹脂自体の溶融特性や、成形時の発泡粒子膨張時に伸びる余力がある厚みを、内部セル膜厚みに関係なく、発泡粒子表層部がある程度有していれば可能となる。ポリプロピレン系共重合体樹脂の溶融特性は、本来重合時の分子量分布や組成分布により決定されると考えられるが、溶融張力調整剤により意図的に制御することも可能である。また本発明の発泡粒子の表面や内部のセル構造は、上述した溶融粘度、溶融張力を持つ樹脂において発現されやすいがこれに限った物ではない。また、本発明の発泡粒子の表面や内部のセル構造は発泡セル形成剤や発泡剤の種類、添加量、発泡圧力などによって調整することができる。   It is important that the foamed polypropylene resin particles of the present invention have moderate viscosity and strength when semi-molten, have no resistance to stretching, are less susceptible to latent distortion, and have less cell non-uniformity on the surface of the expanded particles. become. As such foamed particles, the surface layer of the foamed particles has a certain degree of melting characteristics of the polypropylene resin to be used and a thickness capable of extending during expansion of the foamed particles during molding, regardless of the thickness of the internal cell membrane. It will be possible. Although it is considered that the melting characteristic of the polypropylene copolymer resin is originally determined by the molecular weight distribution and composition distribution during the polymerization, it can be intentionally controlled by a melt tension adjusting agent. Moreover, the cell structure of the surface and the inside of the expanded particle of the present invention is not limited to this, although it is easily expressed in the resin having the above-described melt viscosity and melt tension. Moreover, the cell structure of the surface and the inside of the foamed particle of the present invention can be adjusted by the kind of foamed cell forming agent and foaming agent, the amount added, the foaming pressure and the like.

意図的にポリプロピレン系樹脂の溶融粘度、溶融張力を制御する方法としては、溶融張力調整剤を使用する方法がある。溶融張力調整剤としては、有機過酸化物やポリプロピレン系オリゴマーがある。具体的には、ポリプロピレン系樹脂を有機過酸化物で分解させ溶融張力を低下させる方法や、ポリプロピレン系オリゴマーをポリプロピレン系樹脂に添加することにより溶融張力を低下させる方法が挙げられる。   As a method for intentionally controlling the melt viscosity and melt tension of the polypropylene resin, there is a method using a melt tension adjusting agent. Examples of melt tension adjusting agents include organic peroxides and polypropylene oligomers. Specifically, a method of reducing the melt tension by decomposing a polypropylene resin with an organic peroxide and a method of reducing the melt tension by adding a polypropylene oligomer to the polypropylene resin can be mentioned.

一例として、ポリプロピレン系樹脂を有機過酸化物で分解させるには、一般に押出機内で加熱溶融したポリプロピレン系樹脂に有機過酸化物を添加することによって行われる。有機過酸化物の使用量は、ポリプロピレン系樹脂100重量部に対して、0.001〜0.1重量部の範囲が好適である。市販のポリプロピレン系樹脂にも分子量分布の狭いものは、この方法で分子量分布を調整したものがあり、レオロジーコントロールあるいはビスブレーキングと呼ばれている。狭い分子量分布のポリプロピレン系樹脂は、高分子量成分が少ないため、発泡時、つまり半溶融延伸時に分子間の絡まりが少なく、溶融張力は適度な値となる。過酸化物処理の際、使用するポリプロピレン系樹脂の分子量を適宜選択し、170℃での溶融粘度が7500poise以上12000poise以下の範囲になるようにすることがこのましい。使用する有機過酸化物としては、1,1−ビス(t−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン、t−ブチルパーオキシラウレート、2,5−ジメチル2,5ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシベンゾエート、ジクミルパーオキサイド、1,3−ビス(t−ブチルパーオキシイソプロピル)ベンゼン、t−ブチルパーオキシイソプロピルモノカーボネート等が挙げられる。   For example, in order to decompose a polypropylene resin with an organic peroxide, it is generally performed by adding an organic peroxide to a polypropylene resin heated and melted in an extruder. The amount of the organic peroxide used is preferably in the range of 0.001 to 0.1 parts by weight with respect to 100 parts by weight of the polypropylene resin. Some commercially available polypropylene resins having a narrow molecular weight distribution are those in which the molecular weight distribution is adjusted by this method, which is called rheology control or visbreaking. A polypropylene resin having a narrow molecular weight distribution has few high molecular weight components, so that there is little entanglement between molecules at the time of foaming, that is, half melt stretching, and the melt tension becomes an appropriate value. In the peroxide treatment, it is preferable to appropriately select the molecular weight of the polypropylene resin to be used so that the melt viscosity at 170 ° C. is in the range of 7500 poise to 12000 poise. Examples of the organic peroxide to be used include 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, t-butylperoxylaurate, 2,5-dimethyl2,5di (benzoylperoxide). Oxy) hexane, t-butylperoxybenzoate, dicumyl peroxide, 1,3-bis (t-butylperoxyisopropyl) benzene, t-butylperoxyisopropyl monocarbonate and the like.

以上のようなポリプロピレン系樹脂を用いて、ポリプロピレン系樹脂発泡粒子を作製するが、ポリプロピレン系樹脂に発泡セル形成剤を添加することが好ましい。発泡剤として、プロパン、イソブタン、ノルマルブタン、イソペンタン、ノルマルペンタン等の揮発性発泡剤を使用する場合は、発泡セル形成剤としては、タルク、シリカ、炭酸カルシウム等の無機造核剤を、ポリプロピレン系樹脂100重量部に対して、0.005重量部以上0.1重量部以下添加することが好ましい。発泡剤として、空気、窒素、二酸化炭素、水等の無機発泡剤を使用する場合は、上記無機造核剤および/または吸水物質を使用することが好ましい。   Polypropylene resin foamed particles are prepared using the polypropylene resin as described above, and it is preferable to add a foam cell forming agent to the polypropylene resin. When a volatile foaming agent such as propane, isobutane, normal butane, isopentane, or normal pentane is used as the foaming agent, an inorganic nucleating agent such as talc, silica, or calcium carbonate is used as the foaming cell forming agent. It is preferable to add 0.005 parts by weight or more and 0.1 parts by weight or less with respect to 100 parts by weight of the resin. When an inorganic foaming agent such as air, nitrogen, carbon dioxide, or water is used as the foaming agent, it is preferable to use the above inorganic nucleating agent and / or water-absorbing substance.

吸水物質としては、塩化ナトリウム、塩化カルシウム、塩化マグネシウム、硼砂、硼酸亜鉛等の水溶性無機物、メラミン(化学名1,3,5−トリアジン−2,4,6−トリアミン)、アンメリン(同1,3,5−トリアジン−2−ヒドロキシ−4,6−ジアミン)、アンメリド(同1,3,5−トリアジン−2,4−ヒドロキシ−6−アミン)、シアヌル酸(同1,3,5−トリアジン−2,4,6−トリオール)、イソシアヌル酸(同1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン)、アセトグアナミン(同1,3,5−トリアジン−2,4−ジアミン−6−メチル)、ベンゾグアナミン(同1,3,5−トリアジン−2,4−ジアミン−6−フェニル)、トリス(メチル)イソシアヌレート、トリス(エチル)イソシアヌレート、トリス(ブチル)イソシアヌレート、トリス(2−ヒドロキシエチル)イソシアヌレート、メラミン・イソシアヌル酸縮合物等のトリアジン骨格を有する化合物、ポリエチレングリコール、エチレン(メタ)アクリル酸共重合体のアルカリ金属塩、ブタジエン(メタ)アクリル酸共重合体のアルカリ金属塩、カルボキシル化ニトリルゴムのアルカリ金属塩、イソブチレン−無水マレイン酸共重合体のアルカリ金属塩、ポリ(メタ)アクリル酸のアルカリ金属塩等の親水性ポリマーが挙げられる。水溶性無機物を使用する場合、その添加量は、ポリプロピレン系樹脂100重量部に対して0.01重量部以上1重量部以下であることが好ましい。トリアジン骨格を有する化合物を使用する場合、その添加量は、ポリプロピレン系樹脂100重量部に対して0.001重量部以上1重量部以下であることが好ましい。親水性ポリマーを使用する場合、その添加量は、ポリプロピレン系樹脂100重量部に対して0.1重量部以上5重量部以下であることが好ましい。これら、水溶性無機物、トリアジン骨格を有する化合物、親水性ポリマーは2種以上を併用してもよい。   Water-absorbing substances include water-soluble inorganic substances such as sodium chloride, calcium chloride, magnesium chloride, borax and zinc borate, melamine (chemical name 1,3,5-triazine-2,4,6-triamine), ammelin (same as 1, 3,5-triazine-2-hydroxy-4,6-diamine), ammelide (1,3,5-triazine-2,4-hydroxy-6-amine), cyanuric acid (1,3,5-triazine) -2,4,6-triol), isocyanuric acid (1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione), acetoguanamine (1,3,5-triazine-) 2,4-diamine-6-methyl), benzoguanamine (1,3,5-triazine-2,4-diamine-6-phenyl), tris (methyl) isocyanurate, tris (ethyl) Compounds having a triazine skeleton such as sosocyanurate, tris (butyl) isocyanurate, tris (2-hydroxyethyl) isocyanurate, melamine / isocyanuric acid condensate, polyethylene glycol, alkali metal salt of ethylene (meth) acrylic acid copolymer, Hydrophilic properties such as alkali metal salt of butadiene (meth) acrylic acid copolymer, alkali metal salt of carboxylated nitrile rubber, alkali metal salt of isobutylene-maleic anhydride copolymer, alkali metal salt of poly (meth) acrylic acid Polymers. When using a water-soluble inorganic substance, it is preferable that the addition amount is 0.01 to 1 part by weight with respect to 100 parts by weight of the polypropylene resin. When using a compound having a triazine skeleton, the amount added is preferably 0.001 part by weight or more and 1 part by weight or less with respect to 100 parts by weight of the polypropylene resin. When using a hydrophilic polymer, it is preferable that the addition amount is 0.1 to 5 parts by weight with respect to 100 parts by weight of the polypropylene resin. Two or more of these water-soluble inorganic substances, compounds having a triazine skeleton, and hydrophilic polymers may be used in combination.

これらの発泡セル形成剤の添加量が不適切な場合、発泡粒子の内部平均セル径や表面薄膜セルのセル径や占有率が本発明の範囲外になることがある。   When the addition amount of these foamed cell forming agents is inappropriate, the internal average cell diameter of the foamed particles and the cell diameter and the occupation ratio of the surface thin film cell may be out of the scope of the present invention.

そのほかに必要に応じて、溶融張力調整剤、造核剤、吸水剤、界面活性剤型もしくは高分子型の帯電防止剤、顔料、難燃性改良材、導電性改良材等をポリプロピレン系樹脂に使用することができ、添加方法としては、通常、ポリプロピレン系樹脂粒子の製造過程において溶融した樹脂中に添加することが好ましい。   In addition, if necessary, melt-strength modifiers, nucleating agents, water-absorbing agents, surfactant-type or polymer-type antistatic agents, pigments, flame retardant improvers, conductivity improvers, etc. can be used as polypropylene resins. As an addition method, it is usually preferable to add to a molten resin in the production process of polypropylene resin particles.

ポリプロピレン系樹脂は、通常、発泡に利用されやすいようにあらかじめ押出機、ニーダー、バンバリミキサー、ロール等を用いて溶融加工し、円柱状、楕円状、球状、立方体状、直方体状等のような所望の形状のポリプロピレン系樹脂粒子とすることが出来る。ポリプロピレン系樹脂粒子の製造は、通常、所望の添加剤をポリプロピレン系樹脂にドライブレンドやマスターバッチブレンドにより添加して、押出機内で溶融混練したあと、押出機先端のダイスからストランド状に押出、水槽などで十分に冷却されたストランドをカットして粒子状に加工する方法や、ダイスから樹脂を直接水中に吐出しながら、粒子状にカットするアンダーウオーターカット方式等の方法が採られる。該押出機としては単軸押出機、二軸押出機などが使用される。加工の際の樹脂温度はポリプロピレン系樹脂の融点+30℃以上、250℃以下が好ましい。250℃を超えるとポリプロピレン系樹脂が分解劣化する場合がある。ポリプロピレン系樹脂の融点+30℃未満の樹脂温度では十分に混練されない場合や、押出機に過大な負荷がかかることがある。   Polypropylene resin is usually melt-processed in advance using an extruder, kneader, Banbury mixer, roll, etc. so that it can be easily used for foaming, and is desired to have a cylindrical shape, elliptical shape, spherical shape, cubic shape, rectangular parallelepiped shape, etc. It can be set as the polypropylene resin particle of the shape. The production of polypropylene resin particles is usually performed by adding desired additives to polypropylene resin by dry blending or masterbatch blending, melt-kneading in the extruder, and extruding into a strand from the die at the tip of the extruder, water tank For example, a method of cutting the strand sufficiently cooled by a method such as cutting into particles, or a method of underwater cutting in which the resin is directly discharged from a die into water while being cut into particles. As the extruder, a single screw extruder, a twin screw extruder or the like is used. The resin temperature during processing is preferably a melting point of the polypropylene resin + 30 ° C. or more and 250 ° C. or less. If it exceeds 250 ° C., the polypropylene resin may be degraded and deteriorated. When the resin temperature is lower than the melting point of the polypropylene resin + 30 ° C., the kneading may not be sufficient, or an excessive load may be applied to the extruder.

作製されたポリプロピレン系樹脂粒子は再加熱、特に発泡の際に、押出機流れ方向に対して収縮変形することがあり、収縮変形後の発泡粒子形状によっては成形時の金型へ充填が悪くなるため、加熱収縮を予測して、適宜ポリプロピレン系樹脂粒子の長さや厚みといった形状を調整することが好ましい。   The produced polypropylene resin particles may undergo shrinkage deformation in the flow direction of the extruder during reheating, particularly foaming, and depending on the shape of the foamed particles after shrinkage deformation, the filling of the mold during molding becomes worse. Therefore, it is preferable to predict the heat shrinkage and appropriately adjust the shape such as the length and thickness of the polypropylene resin particles.

また、ポリプロピレン系樹脂粒子の平均粒重量は、好ましくは0.5〜3.0mg、より好ましくは0.5〜2.0mg、更に好ましくは0.5〜1.5mgである。   The average particle weight of the polypropylene resin particles is preferably 0.5 to 3.0 mg, more preferably 0.5 to 2.0 mg, and still more preferably 0.5 to 1.5 mg.

本発明のポリプロピレン系樹脂発泡粒子は、上述のポリプロピレン系樹脂粒子を後述の条件により発泡させることで得られる。   The polypropylene resin expanded particles of the present invention can be obtained by expanding the above-described polypropylene resin particles under the conditions described later.

本発明のポリプロピレン系樹脂発泡粒子は、ポリプロピレン系樹脂粒子、発泡剤、水、分散剤、分散助剤を含んでなる分散液を耐圧容器内に入れて、所定の温度まで加熱し、加圧下のもと、分散液を耐圧容器内よりも低圧雰囲気下に放出して得られるものである。具体的には、ポリプロピレン系樹脂粒子を、発泡剤、水、分散剤、分散助剤と共に耐圧容器内で分散させ、分散液を、好ましくはポリプロピレン系樹脂の融点−25℃以上、融点+25℃以下の範囲、更に好ましくは融点−10℃以上、融点+10℃以下の範囲の温度に加熱するとともに発泡剤を含浸させ、容器内の温度、圧力を一定に保持しながら、加圧下で、分散液を容器内よりも低圧雰囲気下に放出することによりポリプロピレン系樹脂発泡粒子を製造する。   The expanded polypropylene resin particles of the present invention are prepared by placing a dispersion containing polypropylene resin particles, a foaming agent, water, a dispersing agent and a dispersion aid in a pressure vessel, heating to a predetermined temperature, Originally, it is obtained by discharging the dispersion into a low-pressure atmosphere rather than in the pressure vessel. Specifically, polypropylene resin particles are dispersed in a pressure-resistant container together with a foaming agent, water, a dispersant, and a dispersion aid, and the dispersion is preferably a melting point of the polypropylene resin of −25 ° C. or higher and a melting point of + 25 ° C. or lower. The dispersion is heated under pressure while maintaining the temperature and pressure in the container constant while heating to a temperature in the range of -10 ° C and more preferably in the range of -10 ° C to -10 ° C and impregnating the foaming agent. Polypropylene-based resin expanded particles are produced by discharging in a low-pressure atmosphere than in the container.

ポリプロピレン系樹脂発泡粒子製造時に使用する耐圧容器には特に制限はなく、ポリプロピレン系樹脂発泡粒子製造時における容器内圧力、容器内温度に耐えられるものであればよく、例えばオートクレーブ型の耐圧容器があげられる。   There is no particular limitation on the pressure vessel used when producing the expanded polypropylene resin particles, and any vessel that can withstand the pressure and temperature in the vessel at the time of producing the expanded polypropylene resin particles can be used. For example, an autoclave type pressure vessel can be used. It is done.

ポリプロピレン系樹脂発泡粒子を製造するに当たり、使用する発泡剤に特に制限はなく、プロパン、イソブタン、ノルマルブタン、イソペンタン、ノルマルペンタン等の揮発性発泡剤;空気、窒素、二酸化炭素、水等の無機発泡剤が例示でき、これらは単独でも2種以上を併用しても使用することが出来る。発泡剤の使用量は、目的とする発泡倍率のポリプロピレン系樹脂発泡粒子を得るために異なるが、通常、ポリプロピレン系樹脂100重量部に対して5重量部以上100重量部以下であることが好ましい。5重量部未満では所望の発泡倍率のポリプロピレン系樹脂発泡粒子が得られない場合があり、100重量部を超えると、ポリプロピレン系樹脂への発泡剤の溶解の飽和量以上になり、溶解しない発泡剤が無駄になる場合がある。また、適切な発泡剤の量でない場合に、ポリプロピレン系樹脂発泡粒子の平均セル径が細かくなったりする場合がある。   There are no particular restrictions on the foaming agent used to produce polypropylene resin foamed particles, and volatile foaming agents such as propane, isobutane, normal butane, isopentane, and normal pentane; inorganic foams such as air, nitrogen, carbon dioxide, and water An agent can be illustrated and these can be used individually or in combination of 2 or more types. The amount of the foaming agent used is different in order to obtain polypropylene resin foamed particles having a desired expansion ratio, but it is usually preferably 5 parts by weight or more and 100 parts by weight or less with respect to 100 parts by weight of the polypropylene resin. If the amount is less than 5 parts by weight, the foamed polypropylene resin particles having a desired expansion ratio may not be obtained. If the amount exceeds 100 parts by weight, the amount of the foaming agent dissolved in the polypropylene resin exceeds the saturation amount and does not dissolve. May be wasted. In addition, when the amount of the foaming agent is not appropriate, the average cell diameter of the polypropylene resin foamed particles may become fine.

本発明で使用することが出来る分散剤としては、例えば、第三リン酸カルシウム、塩基性炭酸マグネシウム、炭酸カルシウム、塩基性炭酸亜鉛、酸化アルミニウム、酸化鉄、酸化チタン、アルミノ珪酸塩、硫酸バリウム、カオリン等の無機系分散剤が挙げられ、これらを単独或いは複数を併用して使用することができる。   Examples of the dispersant that can be used in the present invention include tribasic calcium phosphate, basic magnesium carbonate, calcium carbonate, basic zinc carbonate, aluminum oxide, iron oxide, titanium oxide, aluminosilicate, barium sulfate, and kaolin. These inorganic dispersants can be used, and these can be used alone or in combination.

本発明で使用することが出来る分散助剤としては、例えば、アルキルスルホン酸ソーダ、ドデシルベンゼンスルホン酸ソーダ、n−パラフィンスルホン酸ソーダ、α−オレフィンスルホン酸ソーダ等が挙げられ、これらを単独或いは複数を併用して使用することができる。分散剤と分散助剤の組み合わせは、発泡剤などによって適宜選択することができる。   Examples of the dispersion aid that can be used in the present invention include alkyl sulfonic acid soda, dodecylbenzene sulfonic acid soda, n-paraffin sulfonic acid soda, and α-olefin sulfonic acid soda. Can be used in combination. The combination of the dispersant and the dispersion aid can be appropriately selected depending on the foaming agent and the like.

分散剤や分散助剤の使用量は、その種類や、用いるポリプロピレン系樹脂の種類と使用量によって異なるが、通常、水100重量部に対して分散剤0.2重量部以上3重量部以下、分散助剤0.001重量部以上0.1重量部以下であることが好ましい。また、ポリプロピレン系樹脂粒子は、水中での分散性を良好なものにするために、通常、水100重量部に対して20重量部以上100重量部以下使用するのが好ましい。   The amount of dispersant and dispersion aid used varies depending on the type and the type and amount of polypropylene resin used, but usually 0.2 parts by weight to 3 parts by weight of dispersant with respect to 100 parts by weight of water, The dispersion aid is preferably 0.001 part by weight or more and 0.1 part by weight or less. Moreover, in order to make the polypropylene resin particles have good dispersibility in water, it is usually preferable to use 20 to 100 parts by weight with respect to 100 parts by weight of water.

以上の製造方法により得られるポリプロピレン系樹脂発泡粒子の真倍率は、20倍以上40倍以下であり、さらに好ましくは25倍以上35倍以下である。真倍率が20倍未満のポリプロピレン系樹脂発泡粒子を使用すると目的とする発泡倍率の型内発泡成形体が得られない。真倍率が40倍より大きい場合は型内発泡成形の際に成形体が収縮・変形しやすくなり、所望の形状が得られない。   The true magnification of the expanded polypropylene resin particles obtained by the above production method is 20 times or more and 40 times or less, and more preferably 25 times or more and 35 times or less. If polypropylene resin expanded particles having a true magnification of less than 20 times are used, an in-mold foam-molded article having the desired expansion ratio cannot be obtained. When the true magnification is larger than 40 times, the molded body is easily contracted and deformed during in-mold foam molding, and a desired shape cannot be obtained.

なお、本発明において、ポリプロピレン系樹脂粒子、発泡剤、水、分散剤、分散助剤を含んでなる分散液を耐圧容器内に入れて、所定の温度まで加熱し、加圧下のもと、分散液を耐圧容器内よりも低圧雰囲気下に放出して発泡させることを「一段発泡」と称し、一段発泡で得られたポリプロピレン系樹脂発泡粒子を「一段発泡粒子」と称す場合がある。   In the present invention, a dispersion liquid containing polypropylene-based resin particles, foaming agent, water, dispersant, and dispersion aid is placed in a pressure vessel, heated to a predetermined temperature, and dispersed under pressure. In some cases, the liquid is discharged in a low-pressure atmosphere from the pressure-resistant container and foamed, and this is referred to as “one-stage foaming”, and the polypropylene-based resin foam particles obtained by one-stage foaming are sometimes referred to as “single-stage foam particles”.

一段発泡で発泡倍率が所望の発泡倍率に満たない一段発泡粒子が得られた場合でも、該一段発泡粒子を密閉容器内に入れて窒素、空気などを含浸させる加圧処理により一段発泡粒子内の圧力を常圧よりも高くした後、該一段発泡粒子をスチーム等で加熱して更に発泡させることにより、発泡倍率20倍以上40倍以下のポリプロピレン系樹脂発泡粒子を得ることができる。   Even when single-stage foamed particles having a foaming ratio less than the desired foaming ratio are obtained by single-stage foaming, the single-stage foamed particles are placed in a sealed container and subjected to pressure treatment to impregnate nitrogen, air, etc. After making the pressure higher than normal pressure, the first-stage expanded particles are heated with steam or the like and further expanded to obtain polypropylene-based resin expanded particles having an expansion ratio of 20 to 40 times.

ここで一段発泡粒子をさらに発泡させることを「二段発泡」と称し、二段発泡で得られた発泡粒子を「二段発泡粒子」と称す場合がある。   Here, the further expansion of the single-stage expanded particles is sometimes referred to as “two-stage expansion”, and the expanded particles obtained by the two-stage expansion may be referred to as “two-stage expanded particles”.

二段発泡を行う場合、一段発泡粒子の好ましい発泡倍率は、5倍以上である。一段発泡粒子の倍率が5倍未満の場合は二段発泡を行っても目的の倍率に到達しない場合や、発泡倍率バラツキが大きくなる場合があり、品質が不良になることがある。   When performing two-stage foaming, the preferable expansion ratio of the first-stage foamed particles is 5 times or more. When the magnification of the first-stage expanded particles is less than 5 times, the target magnification may not be reached even if the second-stage expansion is performed, or the variation in the expansion ratio may be increased, resulting in poor quality.

二段発泡させる際の一段発泡粒子内の圧力は、0.20〜0.70MPaが好ましく、特に0.3〜0.55MPaが好ましい。一段発泡粒子内の圧力が0.20MPa未満の場合、二段発泡の効果が少なく殆ど倍率が増加しない場合があり、0.70MPa以上の場合、発泡倍率バラツキが大きくなることがある。   The pressure in the first-stage expanded particles when the two-stage expansion is performed is preferably 0.20 to 0.70 MPa, and particularly preferably 0.3 to 0.55 MPa. When the pressure in the first-stage expanded particles is less than 0.20 MPa, the effect of the second-stage expansion is small and the magnification may hardly increase. When the pressure is 0.70 MPa or more, the variation in the expansion ratio may increase.

本発明においてポリプロピレン系樹脂発泡粒子は、特に断りのない限り、型内発泡成形に供する直前のものをいい、例えば、二段発泡を行った場合は、二段発泡粒子をいう。   In the present invention, unless otherwise specified, the polypropylene-based resin expanded particles refer to those immediately before being subjected to in-mold expansion molding. For example, when two-stage expansion is performed, it refers to two-stage expanded particles.

ここでポリプロピレン系樹脂発泡粒子の真倍率は、ポリプロピレン系樹脂発泡粒子の重量w(g)およびエタノール水没体積v(cm)を求め、発泡前のポリプロピレン系樹脂粒子の密度d(g/cm)から次式により求めたものである。
真倍率=d×v/w
Here, the true magnification of the polypropylene resin expanded particles is obtained by determining the weight w (g) and the ethanol submerged volume v (cm 3 ) of the polypropylene resin expanded particles, and the density d (g / cm 3 ) of the polypropylene resin particles before expansion. ) From the following equation.
True magnification = d × v / w

本発明のポリプロピレン系樹脂発泡粒子の内部平均セル径は150μm以上1000μm以下であり、好ましくは200μm以上500μm以下である。内部平均セル径が150μm未満の場合、セル膜は薄く引き延ばされて延伸が大きくかかっており、型内発泡成形時の収縮・変形、表面性の悪化の原因になる。また1000μmを超えては内部平均セル径のバラツキが大きくなり、皺の原因となる500μmより大きいセル径を有する表面薄膜セルが増加し、型内発泡成形体の外観が不良となる。   The internal average cell diameter of the expanded polypropylene resin particles of the present invention is 150 μm or more and 1000 μm or less, preferably 200 μm or more and 500 μm or less. When the internal average cell diameter is less than 150 μm, the cell membrane is thinly stretched and stretched greatly, which causes shrinkage / deformation and deterioration of surface properties during in-mold foam molding. On the other hand, if it exceeds 1000 μm, the variation of the internal average cell diameter increases, the number of surface thin film cells having a cell diameter larger than 500 μm that causes wrinkles increases, and the appearance of the in-mold foam molded article becomes poor.

ポリプロピレン系樹脂発泡粒子の内部平均セル径が当該範囲のポリプロピレン系樹脂発泡粒子を得るには、ポリプロピレン系樹脂中の添加剤や発泡剤の種類、使用量、発泡圧力を適宜調整することで得られる。   In order to obtain a polypropylene resin foamed particle having an internal average cell diameter of the polypropylene resin foamed particle in the above range, it can be obtained by appropriately adjusting the type, amount of use, and foaming pressure of the additive or foaming agent in the polypropylene resin. .

ポリプロピレン系樹脂発泡粒子の内部平均セル径は、ポリプロピレン系樹脂発泡粒子のほぼ直径を含むような切断面を顕微鏡により観察、撮影し、ポリプロピレン系樹脂発泡粒子のほぼ中央を通る直線を引き、ポリプロピレン系樹脂発泡粒子表面との2カ所の交点の距離(L)と該直線が貫通している気泡数(n)より以下のように求める。
内部平均セル径=L/n
The average internal cell diameter of the expanded polypropylene resin particles is obtained by observing and photographing a cut surface that includes almost the diameter of the expanded polypropylene resin particles with a microscope, and drawing a straight line passing through the approximate center of the expanded polypropylene resin particles. From the distance (L) between the two intersections with the resin foam particle surface and the number of bubbles (n) through which the straight line penetrates, the following is obtained.
Internal average cell diameter = L / n

本発明のポリプロピレン系樹脂発泡粒子の表面薄膜セルの最大セル径は500μm以下であり、好ましくは350μm以下である。表面薄膜セル径の最大セル径が500μm以上の場合、型内発泡成形体にシワが発生しやすくなり好ましくない。   The maximum cell diameter of the surface thin film cell of the polypropylene resin expanded particles of the present invention is 500 μm or less, preferably 350 μm or less. When the maximum cell diameter of the surface thin film cell diameter is 500 μm or more, wrinkles are likely to occur in the in-mold foam molded article, which is not preferable.

本発明において、表面薄膜セルのポリプロピレン系樹脂発泡粒子表面における面積占有率は0%以上40%以下である。好ましくは0%以上30%以下である。表面薄膜セルの発泡粒子表面の面積占有率が40%より大きい場合、型内発泡成形体にシワが発生する。   In the present invention, the area occupation ratio of the surface thin film cell on the surface of the expanded polypropylene resin particles is 0% or more and 40% or less. Preferably they are 0% or more and 30% or less. When the area occupation ratio of the surface of the surface thin film cell on the surface of the expanded particles is larger than 40%, wrinkles are generated in the in-mold expanded molded body.

表面薄膜セルの状態が当該範囲のポリプロピレン系樹脂発泡粒子を得るには、ポリプロピレン系樹脂中の添加剤や発泡剤の種類や使用量、発泡圧力を適宜調整することで得られる。   In order to obtain a polypropylene resin foamed particle having a surface thin film cell in the above range, it can be obtained by appropriately adjusting the type and amount of the additive or foaming agent in the polypropylene resin and the foaming pressure.

表面薄膜セルのセル径および占有面積は低真空SEMによる観察で行う。低真空SEMでは反射電子により試料表面に分布する物質の密度の違いによるコントラストが得られるため、厚膜で密度の高い部分は白く、薄膜で密度の低い部分は黒く観察される。本発明で使用される低真空SEMの観察条件では、膜厚が数μ以下の薄い部分が黒く見える。これを表面薄膜セルと定義する。薄膜セルの最大セル径は低真空SEM画像で黒く見える部分の最長直径を言う。また、薄膜セルの占有面積は表面画像全体面積に対する黒色部分の面積の比率である。図1にイメージ図を、図2〜図4に実施例・比較例の低真空SEM観察図をしめしている。   The cell diameter and occupied area of the surface thin film cell are determined by observation with a low vacuum SEM. In the low-vacuum SEM, the contrast due to the difference in the density of the substance distributed on the sample surface is obtained by the reflected electrons, so that the high density portion in the thick film is observed as white and the low density portion in the thin film is observed as black. Under the observation condition of the low vacuum SEM used in the present invention, a thin portion having a film thickness of several μ or less appears black. This is defined as a surface thin film cell. The maximum cell diameter of the thin film cell refers to the longest diameter of the portion that appears black in the low vacuum SEM image. The area occupied by the thin-film cell is the ratio of the area of the black portion to the entire surface image area. FIG. 1 shows an image diagram, and FIGS. 2 to 4 show low-vacuum SEM observation diagrams of Examples and Comparative Examples.

具体的には、ポリプロピレン系樹脂発泡粒子を、ほぼ中心を含むように2分割し、蒸着などの処理をせずに発泡粒子の表面部分全体が画面内に入るように立体像モードで観察する。測定装置として、日立計測器製、SEMEDX TypeNを使用した場合、観察条件は、真空度30Pa、加速電圧15kV、エミッション電流約30μA、対物可動絞り3、入力信号BSE2、観察倍率30倍、3Dモード観察にて行う。得られた発泡粒子表面観察像より薄膜セルの状態を観察し、薄膜セル最長径の測定、及び薄膜セルの面積占有率を決める。   Specifically, the polypropylene resin expanded particles are divided into two so as to substantially include the center, and observation is performed in a stereoscopic image mode so that the entire surface portion of the expanded particles enters the screen without performing a process such as vapor deposition. When Hitachi Seiki Type N, manufactured by Hitachi Keiki Co., is used as the measuring device, the observation conditions are: degree of vacuum 30 Pa, acceleration voltage 15 kV, emission current about 30 μA, objective movable aperture 3, input signal BSE2, observation magnification 30 times, 3D mode observation To do. The state of the thin film cell is observed from the obtained foamed particle surface observation image, and the measurement of the longest diameter of the thin film cell and the area occupation ratio of the thin film cell are determined.

本発明のポリプロピレン系樹脂発泡粒子は、示差走査熱量計(DSC)で測定したとき、DSC曲線において、低温側と高温側に2つの融解ピークを有し、DSC高温側融解ピーク熱量比(以下、単にDSCピーク比と称す場合がある)が10〜50%の範囲にあることが好ましい。DSCピーク比の測定方法は、試料3〜6mgを40℃〜220℃まで10℃/分の速度で昇温した時に得られるDSC曲線において、低温側ピークと低温側ピークと高温側ピークの間の極大点からの融解開始ベースラインへの接線で囲まれる熱量である、低温側の融解ピーク熱量QLと、DSC曲線の高温側ピークと低温側ピークと高温側ピークの間の極大点からの融解終了ベースラインへの接線で囲まれる熱量である高温側融解ピーク熱量QHから、
DSCピーク比(%)=QH/(QH+QL)×100
として求められる。DSCピーク比が当該範囲であると、表面美麗性の高い型内発泡成形体が得られやすい。
The polypropylene resin expanded particles of the present invention have two melting peaks on the low temperature side and the high temperature side in the DSC curve when measured with a differential scanning calorimeter (DSC), and the DSC high temperature side melting peak calorie ratio (hereinafter, (It may be simply referred to as DSC peak ratio) is preferably in the range of 10 to 50%. In the DSC curve obtained when the sample is heated at a rate of 10 ° C./min from 40 ° C. to 220 ° C., the DSC peak ratio is measured between the low temperature side peak, the low temperature side peak, and the high temperature side peak. The amount of heat surrounded by the tangent to the melting start baseline from the local maximum point, the melting peak calorie QL on the low temperature side, and the melting end from the local maximum point between the high temperature side peak, the low temperature side peak, and the high temperature side peak of the DSC curve From the high temperature side melting peak calorific value QH that is the amount of heat surrounded by the tangent to the baseline
DSC peak ratio (%) = QH / (QH + QL) × 100
As required. When the DSC peak ratio is within this range, it is easy to obtain an in-mold foam molded product having a high surface beauty.

本発明のポリプロピレン系樹脂発泡粒子を型内発泡成形に用いる場合には、イ)そのまま用いる方法、ロ)あらかじめポリプロピレン系樹脂発泡粒子中に空気等の無機ガスを圧入し、発泡能を付与する方法、ハ)ポリプロピレン系樹脂発泡粒子を圧縮状態で金型内に充填し成形する方法、など従来既知の方法が使用しうる。   When the polypropylene resin foamed particles of the present invention are used for in-mold foam molding, a) a method of using as it is, b) a method of previously injecting an inorganic gas such as air into the polypropylene resin foamed particles to impart foaming ability. C) Conventionally known methods such as a method in which polypropylene resin expanded particles are filled in a mold in a compressed state and molded may be used.

例えば、ロ)の方法を用いる場合、本発明のポリプロピレン系樹脂発泡粒子から型内発泡成形体を成形するには、あらかじめポリプロピレン系樹脂発泡粒子を耐圧容器内で空気加圧し、粒子中に空気を圧入することにより発泡力を付与し、これを閉鎖しうるが密閉し得ない成形型内に充填し、水蒸気などを加熱媒体として0.15MPa〜0.33MPa(ゲージ圧)程度の加熱水蒸気圧で3〜30秒程度の加熱時間で成形しポリプロピレン系樹脂発泡粒子同士を融着させ、このあと成形金型を水冷により型内発泡成形体取り出し後の型内発泡成形体の変形を抑制できる程度まで冷却した後、金型を開くことで、型内発泡成形体を得ることが出来る。   For example, in the case of using the method (b), in order to form an in-mold foam molded article from the polypropylene resin foam particles of the present invention, the polypropylene resin foam particles are preliminarily air-pressurized in a pressure resistant container, and air is introduced into the particles. A foaming force is imparted by press-fitting, and this is filled in a mold that can be closed but cannot be sealed, and with a water vapor pressure of about 0.15 MPa to 0.33 MPa (gauge pressure) using water vapor or the like as a heating medium. Molded with a heating time of about 3 to 30 seconds to fuse polypropylene resin foamed particles together, and then to the extent that deformation of the in-mold foam molding after taking out the in-mold foam molding by water cooling can be suppressed After cooling, an in-mold foam-molded product can be obtained by opening the mold.

本発明のポリプロピレン系樹脂発泡粒子は、融点が125℃以上160℃以下のポリプロピレン系樹脂発泡粒子を使用しているため、場合によっては0.15MPa程度の加熱成形圧が低い場合でも成形が出来る点に特徴を有している。   Since the polypropylene resin expanded particles of the present invention use polypropylene resin expanded particles having a melting point of 125 ° C. or higher and 160 ° C. or lower, in some cases, molding can be performed even when the heat molding pressure of about 0.15 MPa is low. It has the characteristics.

融着は、カッターナイフ等で型内発泡成形体の厚み方向に約2mmの切り込みを入れた後、手で切り込み部から型内発泡成形体を破断し、破断面を観察して、破断面に対する、破壊されたポリプロピレン系樹脂発泡粒子の割合で評価した。   For fusion, after cutting about 2 mm in the thickness direction of the in-mold foam molded body with a cutter knife or the like, the in-mold foam molded body is broken by hand from the cut portion, and the fracture surface is observed, The ratio was evaluated based on the ratio of broken polypropylene resin foam particles.

本発明において、型内発泡成形によりポリプロピレン系樹脂型内発泡成形体を得ることが出来る。得られた型内発泡成形体の発泡倍率は、好ましくは30〜50倍である。   In the present invention, a polypropylene resin in-mold foam molded product can be obtained by in-mold foam molding. The expansion ratio of the obtained in-mold foam molded article is preferably 30 to 50 times.

型内発泡成形体の発泡倍率は、型内発泡成形体のエタノール水没体積(cm)を重量(g)で除して、発泡前の樹脂粒子の密度(g/cm)を乗じたものである。 The expansion ratio of the in-mold foam molded product is obtained by dividing the ethanol submerged volume (cm 3 ) of the in-mold foam molded product by the weight (g) and multiplying by the resin particle density (g / cm 3 ) before foaming. It is.

以下、本発明を実施例、比較例によって詳しく説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited to these.

実施例、比較例で用いたポリプロピレン系樹脂を表1に、各種添加剤を表2に示した。また、各ポリプロピレン系樹脂発泡粒子の製造条件を表3、発泡粒子の諸物性を表4に示した。   Table 1 shows polypropylene resins used in Examples and Comparative Examples, and Table 2 shows various additives. In addition, Table 3 shows the production conditions of each polypropylene resin expanded particle, and Table 4 shows various physical properties of the expanded particle.

各種評価は以下の様に実施した。 Various evaluations were performed as follows.

<融点の測定>
セイコーインスツルメンツ(株)製のDSC6200型示差走査熱量計を用いて、ポリプロピレン系樹脂粒子5〜6mgを10℃/minの昇温速度で40℃から220℃まで昇温する事によりポリプロピレン系樹脂粒子を融解し、その後10℃/minで220℃から40℃まで降温することにより結晶化させた後に、さらに10℃/minで40℃から220℃まで昇温したときに得られるDSC曲線から、2回目の昇温時の融解ピーク温度を融点とした。
<Measurement of melting point>
Using a DSC6200 type differential scanning calorimeter manufactured by Seiko Instruments Inc., 5-6 mg of polypropylene resin particles are heated from 40 ° C. to 220 ° C. at a heating rate of 10 ° C./min. From the DSC curve obtained by melting and then crystallizing by lowering the temperature from 220 ° C. to 40 ° C. at 10 ° C./min, and then increasing the temperature from 40 ° C. to 220 ° C. at 10 ° C./min. The melting peak temperature when the temperature was raised was defined as the melting point.

<ポリプロピレン系樹脂発泡粒子の真倍率>
成形に使用したポリプロピレン系樹脂発泡粒子の嵩体積約50cmの重量w(g)およびエタノール水没体積v(cm)を求め、発泡前の樹脂粒子の密度d(g/cm)から次式により求めた。
真倍率=d×v/w
使用した発泡粒子が二段発泡粒子である場合は一段発泡粒子の真倍率も記載した。
<True magnification of expanded polypropylene resin particles>
The weight w (g) and the ethanol submerged volume v (cm 3 ) of a bulk volume of about 50 cm 3 of the polypropylene resin foam particles used for molding were determined, and the following formula was obtained from the density d (g / cm 3 ) of the resin particles before foaming. Determined by
True magnification = d × v / w
When the used expanded particles were two-stage expanded particles, the true magnification of the first-stage expanded particles was also described.

<内部平均セル径>
ポリプロピレン系樹脂発泡粒子20個、それぞれのほぼ直径を含むような切断面を顕微鏡により観察、撮影し、各ポリプロピレン系樹脂発泡粒子のほぼ中央を通る直線を引き、ポリプロピレン系樹脂発泡粒子表面との2カ所の交点の距離(Li)と該直線が貫通している気泡数(ni)より以下のように求め、更に20個の相加平均とした。
セル径Ri=Li/ni
内部平均セル径=Riの20個の相加平均
<Internal average cell diameter>
20 polypropylene-based resin expanded particles, each of the cut surfaces including the diameter of each of the 20 is observed and photographed under a microscope, and a straight line passing through substantially the center of each polypropylene-based resin expanded particle is drawn. It calculated | required as follows from the distance (Li) of the intersection of one place, and the number of bubbles (ni) which this straight line penetrated, and also set it as the arithmetic mean of 20 pieces.
Cell diameter Ri = Li / ni
20 arithmetic averages of internal average cell diameter = Ri

<表面薄膜セルの最大セル径および表面薄膜セルの面積占有率>
ポリプロピレン系樹脂発泡粒子20個について日立計測器製、SEMEDX TypeNを使用して低真空観察を実施した。発泡粒子のほぼ中央を通るように発泡粒子を切断し、発泡粒子表面部を観察面とし、蒸着などの処理を施さずに、ワーキングディスタンスが20になるように試料高さ調整し観察を行った。観察条件は、真空度30Pa、加速電圧15kV、エミッション電流約30μA、対物可動絞り3、入力信号BSE2、観察倍率30倍、3Dモード観察で行った。得られた発泡粒子表面観察像より薄膜セルの状態を観察し、薄膜セル最長径の測定、及び薄膜セルの面積占有率を目視により行い、面積占有率が20%以下を「◎」、20%よりおおきく40%以下を「○」、40%より大きい場合を「×」とした。
<Maximum cell diameter of surface thin film cell and area occupation ratio of surface thin film cell>
Low-vacuum observation was performed on 20 polypropylene-based resin expanded particles using a SEMEDX Type N manufactured by Hitachi Keiki Co., Ltd. The foamed particles were cut so as to pass through almost the center of the foamed particles, the surface of the foamed particles was used as an observation surface, and the sample height was adjusted and observed so that the working distance was 20 without performing processing such as vapor deposition. . The observation conditions were a degree of vacuum of 30 Pa, an acceleration voltage of 15 kV, an emission current of about 30 μA, an objective movable diaphragm 3, an input signal BSE2, an observation magnification of 30 times, and 3D mode observation. The state of the thin film cell is observed from the obtained foamed particle surface observation image, the longest diameter of the thin film cell is measured, and the area occupancy of the thin film cell is visually observed. If the area occupancy is 20% or less, “◎”, 20% A larger value of 40% or less was “◯”, and a value larger than 40% was “x”.

<発泡粒子DSCピーク比>
ポリプロピレン系樹脂発泡粒子を示差走査熱量計(DSC)で測定した。発泡粒子3〜6mgを40℃〜220℃まで10℃/分の速度で昇温した時に得られるDSC曲線において、低温側ピークと低温側ピークと高温側ピークの間の極大点からの融解開始ベースラインへの接線で囲まれる熱量である、低温側の融解ピーク熱量QLと、DSC曲線の高温側ピークと低温側ピークと高温側ピークの間の極大点からの融解終了ベースラインへの接線で囲まれる熱量である高温側融解ピーク熱量QHから、
DSCピーク比(%)=QH/(QH+QL)×100
として求めた。
<Foamed particle DSC peak ratio>
The polypropylene resin expanded particles were measured with a differential scanning calorimeter (DSC). In the DSC curve obtained when 3-6 mg of expanded particles are heated from 40 ° C. to 220 ° C. at a rate of 10 ° C./min, the melting start base from the maximum point between the low temperature side peak, the low temperature side peak, and the high temperature side peak Surrounded by the tangent to the melting end baseline from the maximum point between the high temperature side peak and the low temperature side peak and the high temperature side peak of the DSC curve, which is the amount of heat surrounded by the tangent to the line From the high temperature side melting peak calorific value QH, which is the amount of heat generated,
DSC peak ratio (%) = QH / (QH + QL) × 100
As sought.

<対金型収縮率(収縮率)>
ポリプロピレン系樹脂発泡粒子により、400×300×22mmの板状の型内発泡成形体を成形、冷却後金型から取り出し、25℃、50%rhに1時間放置した後、75℃で8時間養生した後、再度25℃、50%rhに12時間放置し、縦・横・厚み寸法を測定し金型寸法に対する収縮率を求めた。その後、縦・横・厚みの収縮率の平均を、平均収縮率とし、これを評価した。平均収縮率3.0%以下を○、3.0%より大きく4.0%以下を△、4.0%より大きい場合を×とした。平均収縮率が3.0%より大きくなると、型内発泡成形体の寸法精度が悪いとされており、実用上問題があるとされている。
<Shrinkage against mold (shrinkage)>
A 400 × 300 × 22 mm plate-shaped in-mold foam molded body is formed with polypropylene resin foam particles, cooled, removed from the mold, left at 25 ° C. and 50% rh for 1 hour, and then cured at 75 ° C. for 8 hours. After that, the sample was left again at 25 ° C. and 50% rh for 12 hours, and the vertical, horizontal, and thickness dimensions were measured to determine the shrinkage ratio with respect to the mold dimensions. Thereafter, the average of the shrinkage ratios of length, width, and thickness was defined as the average shrinkage ratio, and this was evaluated. The average shrinkage ratio of 3.0% or less was evaluated as ◯, the average shrinkage greater than 3.0% and 4.0% or less as Δ, and the case where it was greater than 4.0% as x. When the average shrinkage rate is larger than 3.0%, it is considered that the dimensional accuracy of the in-mold foam molded article is poor, and there is a problem in practical use.

<型内発泡成形体変形評価(変形)>
対金型収縮率を測定した板状の型内発泡成形体の外観を目視観察し、ヒケ(凹み)やヒケに由来すると思われるおおきな皺(1cm以上の筋)がほとんど無いものは○、僅かに皺があるがヒケがないものは△、皺が多く形状全体が波打っているものを×とした。
<In-mold foam molding deformation evaluation (deformation)>
The appearance of the plate-like in-mold foam-molded product whose mold shrinkage was measured was visually observed, and those that had almost no sink marks (dents) or large wrinkles (streaks of 1 cm or more) that would be derived from sink marks were ○. In the case where there is a wrinkle but there is no sink, Δ is marked, and a case where there are many wrinkles and the entire shape is waved is marked with ×.

<成形体辺部伸び評価(伸び)>
成形体変形評価を実施した板状(直方体)の型内発泡成形体の12辺部を観察し、辺に発泡粒子が十分伸びなかったためにできた隙間個数と、発泡粒子形状がそのまま残って辺のエッジが出ていないことを観察して以下の判定とした。
隙間無し・・・◎
5個未満・・・○
5個以上10個以下・・・△
辺のエッジが出ていない・・・×
<Evaluation of molded body side elongation (elongation)>
The 12 side parts of the plate-shaped (rectangular) in-mold foam molded body subjected to the deformation evaluation of the molded body were observed, and the number of gaps formed because the expanded particles did not extend sufficiently on the sides, and the expanded particle shape remained as it was The following judgment was made by observing that no edge appeared.
No gap ... ◎
Less than 5 ... ○
5 or more and 10 or less ... △
The edge of the side does not come out ... ×

<成形体表面小皺評価(小皺)>
成形体変形評価を実施した板状の型内発泡成形体の表面を観察し小皺(1mm以上、10mm未満の筋)があるか無いかを観察した。
小皺なし・・・◎
小皺あり・・・×
<Small evaluation of compact surface (small)>
The surface of the plate-like in-mold foam molded body for which the molded body deformation evaluation was performed was observed to observe whether or not there were small wrinkles (1 mm or more and streaks less than 10 mm).
No gavel ... ◎
There is a gavel ... ×

<融着性評価(融着)>
表面性評価を実施した板状の型内発泡成形体を、カッターナイフで型内発泡成形体の厚み方向に約2mmの切り込みを入れた後、手で切り込み部から型内発泡成形体を破断し、破断面を観察して、破壊されたポリプロピレン系樹脂発泡粒子の割合を求めて判定した。表5における成形蒸気圧1は融着率が60%に達した蒸気圧力を成形可能圧力下限として記載している。
<Fusability evaluation (fusion)>
The plate-shaped in-mold foam molded body for which surface properties were evaluated was cut with a cutter knife in the thickness direction of the in-mold foam molded body, and then the in-mold foam molded body was broken by hand from the cut portion. The fracture surface was observed, and the ratio of the broken polypropylene resin expanded particles was determined and determined. The forming vapor pressure 1 in Table 5 describes the vapor pressure at which the fusion rate has reached 60% as the lower limit of forming pressure.

<型内発泡成形体の発泡倍率>
融着性評価を実施した板状の型内発泡成形体より、嵩体積約50cmのブロックを切り出し、その重量W(g)およびエタノール水没体積V(cm)を求め、発泡前の樹脂粒子の密度d(g/cm)から次式により求める。
発泡倍率=d×V/W
<Foaming ratio of in-mold foam molding>
A block having a bulk volume of about 50 cm 3 is cut out from the plate-like in-mold foam molded body subjected to the evaluation of fusion property, and its weight W (g) and ethanol submerged volume V (cm 3 ) are obtained. It calculates | requires by following Formula from the density d (g / cm < 3 >) of this.
Foaming ratio = d × V / W

(実施例1)
ポリプロピレン系樹脂として、エチレン−プロピレンランダム共重合体(K2)100重量部に溶融張力調整剤として有機過酸化物を使用して得られた融点137.2℃のエチレン−プロピレンランダム共重合体(K3)を使用し、セル造核剤として硼酸亜鉛0.1重量部をドライブレンドした後、50mm単軸押出機(大阪精機工作(株)製20VSE−50−28型)内で溶融混練した。溶融混練した樹脂を直径2mmの円形ダイよりストランド状に押出し、水冷後、ペレタイザーで切断し、一粒の重量が1.2mg/粒のポリプロピレン系樹脂粒子を得た。
Example 1
As a polypropylene resin, an ethylene-propylene random copolymer (K3) having a melting point of 137.2 ° C. obtained by using an organic peroxide as a melt tension adjusting agent in 100 parts by weight of an ethylene-propylene random copolymer (K2). ) And 0.1 parts by weight of zinc borate as a cell nucleating agent was dry blended and then melt-kneaded in a 50 mm single-screw extruder (20VSE-50-28 type, manufactured by Osaka Seiki Co., Ltd.). The melt-kneaded resin was extruded in a strand shape from a circular die having a diameter of 2 mm, cooled with water, and cut with a pelletizer to obtain polypropylene resin particles having a weight of 1.2 mg / grain.

得られたポリプロピレン系樹脂粒子100重量部、水300重量部、分散剤としてカオリン(エンゲルハード社製ASP−170)0.8重量部、分散助剤としてドデシルベンゼンスルホン酸ナトリウム0.02重量部を容量10Lの耐圧オートクレーブ中に仕込み、攪拌下、発泡剤として炭酸ガスを7重量部添加した。オートクレーブ内容物を昇温し、143℃の発泡温度まで加熱した後、さらに炭酸ガスを追加してオートクレーブ内圧を3.3MPa(ゲージ圧)とした。その後、30分間保持した後、オートクレーブ下部のバルブを開き、4.0mmφの開口オリフィスを通して、オートクレーブ内容物を大気圧下に放出してポリプロピレン系樹脂ポリプロピレン系樹脂発泡粒子を得た。得られたポリプロピレン系樹脂発泡粒子(一段発泡粒子)の真倍率は14.5倍、DSCピーク比は23.9%であった。さらに、得られたポリプロピレン系樹脂発泡粒子に対して空気加圧処理を行い、ポリプロピレン系樹脂発泡粒子内部の空気圧力を0.36MPaとし、0.12MPa(ゲージ圧)の蒸気により加熱膨張、二段発泡させ、真倍率約30倍のポリプロピレン系樹脂(二段)発泡粒子(K3C1)を得た。   100 parts by weight of the obtained polypropylene resin particles, 300 parts by weight of water, 0.8 part by weight of kaolin (ASP-170 manufactured by Engelhard) as a dispersant, 0.02 part by weight of sodium dodecylbenzenesulfonate as a dispersion aid Into a pressure-resistant autoclave having a capacity of 10 L, 7 parts by weight of carbon dioxide gas was added as a blowing agent with stirring. The autoclave contents were heated up and heated to a foaming temperature of 143 ° C., and then carbon dioxide gas was added to adjust the internal pressure of the autoclave to 3.3 MPa (gauge pressure). Then, after holding for 30 minutes, the valve | bulb of the autoclave lower part was opened, the autoclave content was discharge | released under atmospheric pressure through the 4.0 mm diameter opening orifice, and the polypropylene resin polypropylene resin expanded particle was obtained. The resulting polypropylene-based resin expanded particles (single-stage expanded particles) had a true magnification of 14.5 times and a DSC peak ratio of 23.9%. Furthermore, the obtained polypropylene resin expanded particles are subjected to air pressure treatment, the air pressure inside the polypropylene resin expanded particles is set to 0.36 MPa, and heated and expanded by steam of 0.12 MPa (gauge pressure). Foaming was performed to obtain polypropylene resin (two-stage) expanded particles (K3C1) having a true magnification of about 30 times.

得られたポリプロピレン系樹脂発泡粒子(K3C1)は、ダイセン株式会社製ポリオレフィン発泡成形機KD−345を用い、縦300mm×横400mm×厚み22mmの金型に、あらかじめポリプロピレン系樹脂発泡粒子内部の空気圧力が0.20MPaになるように調整したポリプロピレン系樹脂発泡粒子(K3C1)を充填し、0.21MPa(ゲージ圧)及び0.24MPa(ゲージ圧)の水蒸気で厚み方向に5%圧縮して型内発泡成形させることにより、ポリプロピレン系樹脂型内発泡成形体を得た。加熱成形時の水蒸気圧力は、融着率を目安に選定した。得られた型内発泡成形体は25℃×50%rhで1時間放置した後、75℃の恒温室内で8時間養生乾燥を行い、再び25℃×50%rhで1時間放置した後に各種評価、観察を実施した。型内発泡成形体の評価結果を表5に示す。   The obtained polypropylene resin expanded particles (K3C1) were preliminarily air pressure inside the polypropylene resin expanded particles in a mold 300 mm long × 400 mm wide × 22 mm thick using a polyolefin foam molding machine KD-345 manufactured by Daisen Corporation. Filled with expanded polypropylene resin particles (K3C1) adjusted to 0.20 MPa and compressed in the thickness direction by 5% with 0.21 MPa (gauge pressure) and 0.24 MPa (gauge pressure) steam in the mold By performing foam molding, a foamed molded product in a polypropylene resin mold was obtained. The water vapor pressure at the time of thermoforming was selected based on the fusion rate. The obtained in-mold foam molded product was left to stand at 25 ° C. × 50% rh for 1 hour, then cured and dried in a constant temperature room at 75 ° C. for 8 hours, and again left at 25 ° C. × 50% rh for 1 hour to make various evaluations. Observed. Table 5 shows the evaluation results of the in-mold foam molding.

(実施例2〜11、比較例1〜5)
表2記載の樹脂種、添加剤配合、及び発泡粒子製造条件とし、二段発泡条件を適宜調整した以外は、実施例1と同様の方法にて、真倍率約30倍のポリプロピレン系樹脂(二段)発泡粒子(K3C2〜K1C11、K3C12〜K3C16)を得た。
(Examples 2-11, Comparative Examples 1-5)
Polypropylene resin having a true magnification of about 30 times (two times) in the same manner as in Example 1 except that the resin type, additive formulation, and foamed particle production conditions shown in Table 2 were used, and the two-stage foaming conditions were appropriately adjusted. Step) Expanded particles (K3C2 to K1C11, K3C12 to K3C16) were obtained.

これらのポリプロピレン系樹脂(二段)発泡粒子(K3C2〜K1C11、K3C12〜K3C16)に関して、加熱成形圧力0.21、0.24、0.27、0.30MPa(ゲージ圧)から融着率を目安に適宜選択して成形を実施し、実施例1と同様の方法にてポリプロピレン系樹脂型内発泡成形体を得た。得られた型内発泡成形体は実施例1と同様の評価を行った。型内発泡成形体の評価結果を表5に示す。   For these polypropylene-based resin (two-stage) expanded particles (K3C2 to K1C11, K3C12 to K3C16), the fusion rate is determined from the thermoforming pressures 0.21, 0.24, 0.27, and 0.30 MPa (gauge pressure). Molding was carried out by appropriately selecting the above, and a polypropylene resin in-mold foam molded product was obtained in the same manner as in Example 1. The obtained in-mold foam molded article was evaluated in the same manner as in Example 1. Table 5 shows the evaluation results of the in-mold foam molding.

(実施例12)
ポリプロピレン系樹脂として、表1記載の融点141.5℃のエチレン−プロピレンランダム共重合体(K1)を使用し、セル造核剤としてタルク0.1重量部をドライブレンドした後、50mm単軸押出機(大阪精機工作(株)製20VSE−50−28型)内で溶融混練した。溶融混練した樹脂を直径2mmの円形ダイよりストランド状に押出し、水冷後、ペレタイザーで切断し、一粒の重量が1.2mg/粒のポリプロピレン系樹脂粒子を得た。
Example 12
As a polypropylene resin, an ethylene-propylene random copolymer (K1) having a melting point of 141.5 ° C. shown in Table 1 was used, and 0.1 parts by weight of talc was dry blended as a cell nucleating agent. The mixture was melt kneaded in a machine (Osaka Seiki Kogyo Co., Ltd. 20VSE-50-28 type). The melt-kneaded resin was extruded in a strand shape from a circular die having a diameter of 2 mm, cooled with water, and cut with a pelletizer to obtain polypropylene resin particles having a weight of 1.2 mg / grain.

得られたポリプロピレン系樹脂粒子100重量部、水300重量部、分散剤として第三リン酸カルシウム(太平化学産業社製)2重量部、分散助剤としてアルキルスルホン酸ナトリウム0.04重量部を容量4.5Lの耐圧オートクレーブ中に仕込み、攪拌下、発泡剤としてイソブタンを28重量部添加した。オートクレーブ内容物を昇温し、136.0℃の発泡温度まで加熱した。その後、30分間保持した後、オートクレーブ下部のバルブを開き、直径4.0mmの開口オリフィスを通して、オートクレーブ内容物を大気圧下に放出してポリプロピレン系樹脂発泡粒子を得た。得られたポリプロピレン系樹脂発泡粒子(K1B1)の発泡倍率は約30倍、セル径は290μm、DSCピーク比は23.5%であった。   3. 100 parts by weight of the obtained polypropylene resin particles, 300 parts by weight of water, 2 parts by weight of tricalcium phosphate (manufactured by Taihei Chemical Industrial Co., Ltd.) as a dispersing agent, and 0.04 part by weight of sodium alkylsulfonate as a dispersing aid. Into a 5 L pressure-resistant autoclave, 28 parts by weight of isobutane was added as a blowing agent with stirring. The autoclave contents were heated to a foaming temperature of 136.0 ° C. Then, after holding for 30 minutes, the valve | bulb of the autoclave lower part was opened, the autoclave content was discharge | released under atmospheric pressure through the opening orifice of diameter 4.0mm, and the polypropylene resin expanded particle was obtained. The resulting expanded polypropylene resin particles (K1B1) had an expansion ratio of about 30 times, a cell diameter of 290 μm, and a DSC peak ratio of 23.5%.

得られたポリプロピレン系樹脂発泡粒子(K1B1)は、0.27、0.30MPa(ゲージ圧)の水蒸気で加熱成形させることにより、ポリプロピレン系樹脂型内発泡成形体を得た。得られた型内発泡成形体は実施例1と同様の評価を行った。結果を表5に示す。   The obtained polypropylene resin expanded particles (K1B1) were heat-molded with water vapor of 0.27 and 0.30 MPa (gauge pressure) to obtain a polypropylene resin in-mold expanded foam. The obtained in-mold foam molded article was evaluated in the same manner as in Example 1. The results are shown in Table 5.

実施例では、いずれも型内発泡成形体の対金型収縮率、型内発泡成形体変形、伸び、小皺、融着性とも良好であった。   In Examples, all of the in-mold foam molded article had good shrinkage ratio to the mold, in-mold foam molded article deformation, elongation, small wrinkle, and fusion property.

比較例1〜4では、ポリプロピレン系樹脂発泡粒子の発泡倍率、内部平均セル径は本発明の範囲内であるが、表面薄膜セル率は範囲外であり、型内発泡成形体の金型収縮率、伸び、小皺のいずれか及び複数が不十分であった。比較例5は、ポリプロピレン系樹脂発泡粒子の内部平均セル径、表面薄膜セル率ともに範囲外であり、型内発泡成形体の収縮率、伸び、小皺が不十分であった。成形蒸気圧力を変更しても品質バランスの良い型内発泡成形体は得られなかった。   In Comparative Examples 1 to 4, the expansion ratio and internal average cell diameter of the polypropylene resin foamed particles are within the range of the present invention, but the surface thin film cell ratio is out of the range, and the mold shrinkage rate of the in-mold foam molded product , Any of elongation, gavel and plural were insufficient. In Comparative Example 5, both the average internal cell diameter and the surface thin film cell rate of the polypropylene resin foamed particles were out of the range, and the shrinkage rate, elongation and small wrinkles of the in-mold foam molded product were insufficient. Even if the molding steam pressure was changed, an in-mold foam molded article having a good quality balance could not be obtained.

本発明のポリプロピレン系樹脂発泡粒子を型内成形した型内発泡成形体は、高倍率で緩衝包装材用途等の変形や収縮しやすい形状においても変形が少なく、寸法安定性に優れており発泡粒子間の伸びが優れており、成形体表面に微細なシワがなく、表面性が美麗である。且つ、比較的低圧の水蒸気圧で成型可能であり、工業的に経済的に製造することができる。   The in-mold foam-molded product obtained by molding the polypropylene resin foam particles of the present invention in-mold is highly deformed and has little dimensional stability even in a shape that easily deforms or shrinks for buffer packaging materials, etc., and has excellent dimensional stability. The elongation between them is excellent, the surface of the molded body has no fine wrinkles, and the surface properties are beautiful. Moreover, it can be molded with a relatively low water vapor pressure, and can be produced industrially and economically.

発泡粒子表面薄膜セル部分についてのイメージを表した図である。It is a figure showing the image about the foam particle surface thin film cell part. 実施例1のポリプロピレン系樹脂発泡粒子の断面を低真空SEMで観察したの断面写真である。黒い部分が表面薄膜セルである。It is the cross-sectional photograph which observed the cross section of the polypropylene resin expanded particle of Example 1 with the low vacuum SEM. The black part is the surface thin film cell. 実施例6のポリプロピレン系樹脂発泡粒子の断面を低真空SEMで観察したの断面写真である。黒い部分が表面薄膜セルである。It is the cross-sectional photograph which observed the cross section of the polypropylene resin expanded particle of Example 6 with the low vacuum SEM. The black part is the surface thin film cell.

Claims (3)

融点が125℃以上160℃以下のポリプロピレン系樹脂を発泡させて得られる、真倍率が20倍以上40倍以下のポリプロピレン系樹脂発泡粒子において、該発泡粒子の内部平均セル径が150μm以上1000μm以下であり、表面薄膜セルの最大セル径が500μm以下であり、且つ、表面薄膜セルのポリプロピレン系樹脂発泡粒子表面における面積占有率が0%以上40%以下であることを特徴とするポリプロピレン系樹脂発泡粒子。   In a polypropylene resin expanded particle having a true magnification of 20 times or more and 40 times or less obtained by foaming a polypropylene resin having a melting point of 125 ° C. or more and 160 ° C. or less, the internal average cell diameter of the expanded particles is 150 μm or more and 1000 μm or less. And the maximum cell diameter of the surface thin film cell is 500 μm or less, and the area occupation ratio of the surface thin film cell on the surface of the polypropylene resin expanded particle is from 0% to 40%, . ポリプロピレン系樹脂の170℃での溶融粘度が7500poise以上12000poise以下、溶融張力が0.5g以上1.8g以下であるポリプロピレン系樹脂を発泡させて得られた請求項1記載のポリプロピレン系樹脂発泡粒子。   The expanded polypropylene resin particles according to claim 1, obtained by foaming a polypropylene resin having a melt viscosity at 170 ° C of 7500 poise or more and 12000 poise or less and a melt tension of 0.5 g or more and 1.8 g or less. 請求項1〜2のいずれかに記載のポリプロピレン系樹脂発泡粒子を、型内に充填して加熱し、粒子相互を融着せしめて得られる、発泡倍率が30〜50倍のポリプロピレン系樹脂型内発泡成形体。   The polypropylene resin foamed particles according to any one of claims 1 and 2 are filled in a mold and heated, and the particles are fused to each other, and the expansion ratio of the polypropylene resin mold is 30 to 50 times. Foam molded body.
JP2008140911A 2008-05-29 2008-05-29 Polypropylene resin foam particles and in-mold foam moldings Active JP5298642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008140911A JP5298642B2 (en) 2008-05-29 2008-05-29 Polypropylene resin foam particles and in-mold foam moldings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008140911A JP5298642B2 (en) 2008-05-29 2008-05-29 Polypropylene resin foam particles and in-mold foam moldings

Publications (2)

Publication Number Publication Date
JP2009286899A true JP2009286899A (en) 2009-12-10
JP5298642B2 JP5298642B2 (en) 2013-09-25

Family

ID=41456435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008140911A Active JP5298642B2 (en) 2008-05-29 2008-05-29 Polypropylene resin foam particles and in-mold foam moldings

Country Status (1)

Country Link
JP (1) JP5298642B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861128A (en) * 1981-10-09 1983-04-12 Asahi Chem Ind Co Ltd Foamed molded propylene resin article and its preparation
JPH10298338A (en) * 1997-05-01 1998-11-10 Kanegafuchi Chem Ind Co Ltd Preliminarily expanded bead of polyolefin-based resin composition, production of the bead, and molded form made therefrom
JPH1180413A (en) * 1997-08-29 1999-03-26 Kanegafuchi Chem Ind Co Ltd Process for in-mold molding of pre-expanded polyolefin resin particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861128A (en) * 1981-10-09 1983-04-12 Asahi Chem Ind Co Ltd Foamed molded propylene resin article and its preparation
JPH10298338A (en) * 1997-05-01 1998-11-10 Kanegafuchi Chem Ind Co Ltd Preliminarily expanded bead of polyolefin-based resin composition, production of the bead, and molded form made therefrom
JPH1180413A (en) * 1997-08-29 1999-03-26 Kanegafuchi Chem Ind Co Ltd Process for in-mold molding of pre-expanded polyolefin resin particle

Also Published As

Publication number Publication date
JP5298642B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
KR101455435B1 (en) Polypropylene resin foam particle and molding thereof
JP5553476B2 (en) Method for producing expanded polypropylene resin particles and expanded polypropylene resin particles
JP5976098B2 (en) In-mold foam molded article comprising polypropylene resin expanded particles, polypropylene resin expanded particles, and methods for producing the same
WO2015076306A1 (en) Polyethylene resin foam particles, polyethylene resin in-mold expansion-molded article, and methods respectively for producing those products
JP2008255286A (en) Black pre-expanded particle of polypropylene-based resin
JP5587605B2 (en) Polypropylene resin pre-expanded particles and in-mold foam-molded product obtained from the pre-expanded particles
WO2013031745A1 (en) Polyethylene resin foamed particles and molded articles thereof
JP6730979B2 (en) Expanded polypropylene resin particles and method for producing the same
JP2018162370A (en) Method for producing polypropylene-based resin black foamed particle
JP5358452B2 (en) Polypropylene resin expanded particles and expanded molded articles
JP2010248341A (en) Polypropylene-based resin prefoamed particle
JP5347368B2 (en) Polypropylene resin foam particles and in-mold foam moldings
JP2018162369A (en) Method for producing polypropylene-based resin black foamed particle
US10403416B2 (en) Conductive polypropylene-based foamed resin particles, method for production thereof, and polypropylene-based foamed molding article
JP5298642B2 (en) Polypropylene resin foam particles and in-mold foam moldings
WO2016147775A1 (en) Polyethylene resin foam particles having antistatic performance, and polyethylene resin in-mold foam-molded article and method for manufacturing same
WO2017090432A1 (en) Method for producing polypropylene-based resin foamed particles, polypropylene-based resin foamed particles, and in-mold foam molded article
JP2017179281A (en) Polypropylene resin foam particle, polypropylene resin in-mold foam molded body and manufacturing method therefor
JP2009221258A (en) Pre-expanded polypropylene resin particle
JP5248939B2 (en) Polypropylene resin foam particles
JP6655758B2 (en) Expanded polypropylene resin particles and method for producing the same
JP2010209286A (en) Polyolefin resin foaming particle
JP5331344B2 (en) Polypropylene resin pre-expanded particles
JP5252957B2 (en) Polypropylene resin pre-expanded particles and in-mold molded body comprising the same
JP2018162371A (en) Method for producing polypropylene-based resin black foamed particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5298642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250