JPS6334207B2 - - Google Patents
Info
- Publication number
- JPS6334207B2 JPS6334207B2 JP58053784A JP5378483A JPS6334207B2 JP S6334207 B2 JPS6334207 B2 JP S6334207B2 JP 58053784 A JP58053784 A JP 58053784A JP 5378483 A JP5378483 A JP 5378483A JP S6334207 B2 JPS6334207 B2 JP S6334207B2
- Authority
- JP
- Japan
- Prior art keywords
- turbine rotor
- creep rupture
- rupture strength
- toughness
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 claims description 18
- 229910052715 tantalum Inorganic materials 0.000 claims description 9
- 229910052758 niobium Inorganic materials 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 229910000831 Steel Inorganic materials 0.000 claims description 5
- 239000010959 steel Substances 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 description 11
- 238000002844 melting Methods 0.000 description 10
- 230000008018 melting Effects 0.000 description 10
- 230000007423 decrease Effects 0.000 description 8
- 238000010791 quenching Methods 0.000 description 8
- 230000000171 quenching effect Effects 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000005496 tempering Methods 0.000 description 6
- 229910000859 α-Fe Inorganic materials 0.000 description 6
- 238000010891 electric arc Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000009863 impact test Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/38—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for roll bodies
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Heat Treatment Of Articles (AREA)
Description
〔発明の技術分野〕
この発明は高温で優れたクリープ破断強さを有
する12Cr系耐熱鋼で構成されたタービンロータ
の製造方法に関する。
〔発明の技術的背景〕
近年蒸気タービンやガスタービンは熱効率の向
上を目的に、使用する蒸気温度やガス温度が上昇
してきている。
ところで、クリープ破断強さの優れたロータの
一つに12Cr−Mo−V−Nb(Ta)−N鋼で構成さ
れたロータがあるが、今後の高温化に対処するた
めには更に高温のクリープ破断強さに優れた
12Cr系ロータが必要とされる。
高温のクリープ破断強さを向上させる方法の一
つとして焼入温度の上昇があるが、従来の12Cr
系ロータで行なわれている高周波炉や電弧炉によ
る溶解で製造されたタービンロータ素体の焼入温
度をただ単に上昇させた場合にはクリープ破断強
さは向上するが、反面延性靭性が低下し、また切
欠弱化を生じやすくなる。そのためタービンロー
タの脆性破壊に対する安全性信頼性の観点より従
来12Cr系タービンロータの焼入温度はクリープ
破断強さと延性および靭性を考慮して1030℃以上
〜1070℃未満で行なつている。
〔発明の目的〕
本発明は上記点に鑑みてなされたもので、高温
のクリープ破断強さが優れるとともに延性および
靭性にも優れたタービンロータの脆性破壊に対す
る安全性、信頼性の高い12Cr系タービンロータ
の製造方法を提供することを目的としたものであ
る。
〔発明の概要〕
本発明は従来の12Cr系タービンロータの化学
組成、溶解方法および熱処理方法などについて広
範囲に実験検討した結果、高温のクリープ破断強
さに優れ、かつ延性および靭性にも優れた12Cr
系タービンロータが得られることを見いだした事
による。
すなわち、本発明に係る12Cr系タービンロー
タは重量パーセントでC0.1〜0.25%、Si0.5%以
下、Mn0.1〜1.0%、Ni0.1〜1.0%、Cr9.0〜13.0
%、Mo0.5〜2.0%、V0.1〜0.3%、Nb、Taの少
なくとも一種0.03〜0.3%、N0.03〜0.1%、残部
Feおよび付随的不純物より成る合金組成を有し、
エレクトロスラグ再溶解による二次溶解をして得
た鋼塊を鍛造成形してタービンロータ素体とした
のち、1095℃以上〜1150℃以下の温度範囲に加熱
後焼入れし、次いで530〜730℃の温度範囲で焼戻
し処理を行うことを特徴とする高温クリープ破断
強さと延性および靭性に優れた12Cr系タービン
ロータの製造方法である。
ここで本発明方法に係る12Cr系タービンロー
タの組成および溶解、熱処理の限定理由について
説明する。
Cは引張強さやクリープ破断強さを確保するた
めに必要な元素であり、0.1%未満ではフエライ
ト相が生成して所要の特性が得られず、また0.25
%を越えると靭性が低下することからこの範囲と
する。
Siは脱酸剤として添加する元素であるが多量の
添加は靭性を劣下させるので0.5%以下とする。
Mnは脱酸、脱硫剤として添加する元素で0.1%
未満では十分な効果得られず、また1.0%を越え
るとクリープ破断強さを低下させるのでこの範囲
とする。
Niはフエライト相の生成を抑え均一なマルテ
ンサイト組織を得るために必要な元素であるが、
0.1%未満ではその効果が発揮されにくく、また
1.0%を越えるとクリープ破断強さを低下させる
のでこの範囲とする。なおNiの一部あるいは全
部をCoに置き換えることは可能である。
Crは本発明に係るロータの機械的性質を得る
ために必要な元素で、その量が90%未満では必要
とするクリープ破断強さが確保し難く、また13.0
%を越えるとフエライト相が生成し、クリープ破
断強さが低下することからこの範囲とする。
Moはクリープ破断強さの向上と焼戻し脱性を
防止するために必要な元素で、0.5%未満ではそ
の効果が十分でなく、また2.0%を越えるとフエ
ライト相の生成によるクリープ破断強さの低下や
靭性の低下などを生ずることからこの範囲とす
る。
Vはクリープ破断強さの向上に必要な元素であ
るが0.1%未満ではその効果が十分でなく、また
0.3%を越るとMoと同様にフエライト相が生成し
クリープ破断強さを低下させることからこの範囲
とする。
NbおよびTaは本発明に係るロータを構成する
12Cr系鋼の素地中に炭窒化物として微細に析出
分散し、クリープ破断強さを向上させる元素で、
その量が0.03%未満では十分な効果が得られず、
また0.3%を越えると後述するエレクトロスラグ
再溶解を行なつてもロータ中心部に粗大な炭窒化
物を生成して延性を劣下させることからこの範囲
とする。なお、さらに優れたクリープ破断強さを
必要とする場合には、Nb、Taの少なくとも一種
が0.13%以上が望ましい。
Nはフエライト相の生成を抑えるとともに炭窒
化物を生成してクリープ破断強さを向上させるに
必要な元素で0.03%未満ではその効果が十分でな
く、また0.1%を越えるとピンホールやブローホ
ールを発生させることからこの範囲とした。
次に本発明方法で重要なエレクトロスラグ再溶
解および熱処理について述べる。
エレクトロスラグ再溶解を行う理由は、高温ク
リープ破断強さ、延性および靭性に優れた12Cr
系タービンロータを得るために、次に述べる熱処
理と共に必要不可欠な工程で、このエレクトロス
ラグ再溶解をしない従来の高周波炉溶解や電弧炉
溶解のままの場合には焼入温度を従来の1050℃<
±20℃、最高で1090℃より上昇した本発明方法と
同じ焼入温度1095℃以上〜1150℃以下で焼入する
と、高温のクリープ破断強さは同じような値にな
るが、延性や靭性が大幅に低下し、脆性破壊に対
する安全性や信頼性のある12Cr系タービンロー
タを得ることが出来ない。
また、従来の12Cr系タービンロータでは高周
波溶解炉や電弧炉で溶解した溶湯を鋳型に流し込
み凝固させているため溶湯の凝固に時間がかか
り、タービンロータの中心部にNbやTaを含む粗
大な炭窒化物が析出して靭性の低下をまねくこと
からこれまでNbやTaの含有量は通常0.03〜0.1%
程度までしか添加しておらず本発明方法によれば
それ以上の添加でもタービンロータ中心部に炭化
物の粗大偏析はなく、高温クリープ破断強さに優
れ、かつ延性や靭性にも優れた12Cr系タービン
ロータを得ることが出来る。1095℃以上〜1150℃
以下の温度範囲に加熱後焼入し、次いで530〜730
℃の温度範囲で焼戻しを行なう理由としてはNb
やTaの炭窒化物を多量に固溶させ焼戻しで再析
出させるには焼入れ温度が1095℃未満では十分で
なく、また1150℃を越えると結晶粒の粗大化が大
きくなり靭性を害するのでこの範囲とした。ま
た、焼戻し温度が530℃未満では十分な焼戻しが
行なわれず、所要の靭性が得られず、730℃を越
えた場合には所要の引張強さや耐力を得ることが
出来ないことからこの範囲とした。
なお、本発明方法に係るタービンロータの製造
方法において上記エレクトロスラグ再溶解と熱処
理の両者が必要不可欠であり、このうちの一つで
も欠けた場合には高温のクリープ破断強さに優
れ、かつ延性および靭性を有する12Cr系タービ
ンロータを得ることは出来ない。
〔発明の実施例〕
第1表に示す化学組成を有するタービンロータ
モデル(直径600ミリ、長さ800ミリ)を作製した
のち各種試験を行なつた。
本発明に係る実施例1、2、3のタービンロー
タモデルの作成は第1表に示した合金組成となる
ように原料を配合したのち電弧炉で溶解次いでエ
レクトロスラグ再溶解の消耗電極用モールドに鋳
込みインゴツトを得た。引続いて、このインゴツ
トを消耗電極としてエレクトロスラグ再溶解を行
なつたのち、鍛造を行ないタービンロータモデル
素体を得た。さらにこのタービンロータモデル素
体に第1表に併記した熱処理を施こしたのち機械
加工を行ないタービンロータモデルを得た。
また、比較例1は上記実施例と同様に溶解、鍛
造を行なつたのち、第1表に併記した従来より行
なわれている熱処理を施こしたのち、機械加工を
行ないタービンロータモデルを得た。
さらに比較例2、3は従来の12Cr系タービン
ロータの溶解方法と同様に電弧炉で溶解した溶湯
をモールドに注ぎ、インゴツトを得たのち、これ
を鍛造してタービンロータモデル素体としたあ
と、第1表に併記した熱処理、比較例2は従来よ
り行なわれている熱処理、比較例3は焼入温度を
高くした熱処理を施こしたのち、機械加工を行な
いタービンロータモデルとした。
試験は上記のようにして得たタービンロータモ
デルのそれぞれについて試験片を切り出し、引張
試験、衝撃試験、クリープ破断試験を行なつた。
第2表に引張試験および衝撃試験結果をまた第
3表にクリープ破断試験結果を示す。
[Technical Field of the Invention] The present invention relates to a method for manufacturing a turbine rotor made of 12Cr heat-resistant steel that has excellent creep rupture strength at high temperatures. [Technical Background of the Invention] In recent years, steam and gas temperatures used in steam turbines and gas turbines have been increasing in order to improve thermal efficiency. By the way, one of the rotors with excellent creep rupture strength is a rotor made of 12Cr-Mo-V-Nb(Ta)-N steel, but in order to cope with future high temperatures, even higher temperature creep Excellent breaking strength
A 12Cr rotor is required. One way to improve high-temperature creep rupture strength is to increase the quenching temperature, but conventional 12Cr
If the quenching temperature of the turbine rotor body manufactured by melting in a high-frequency furnace or electric arc furnace, which is used in system rotors, is simply increased, the creep rupture strength will improve, but on the other hand, the ductility and toughness will decrease. , it also becomes more likely to cause notch weakening. Therefore, from the viewpoint of safety and reliability against brittle fracture of the turbine rotor, the quenching temperature for 12Cr turbine rotors has conventionally been set at 1030°C or higher and lower than 1070°C, taking into consideration creep rupture strength, ductility, and toughness. [Object of the Invention] The present invention has been made in view of the above points, and provides a 12Cr-based turbine that has excellent high-temperature creep rupture strength, excellent ductility and toughness, and is highly safe and reliable against brittle fracture of the turbine rotor. The object of the present invention is to provide a method for manufacturing a rotor. [Summary of the Invention] As a result of extensive experimental studies on the chemical composition, melting method, heat treatment method, etc. of conventional 12Cr-based turbine rotors, the present invention has developed a 12Cr-based turbine rotor that has excellent creep rupture strength at high temperatures, as well as excellent ductility and toughness.
This is due to the discovery that a system turbine rotor can be obtained. That is, the 12Cr-based turbine rotor according to the present invention has C0.1 to 0.25%, Si 0.5% or less, Mn 0.1 to 1.0%, Ni 0.1 to 1.0%, and Cr 9.0 to 13.0% by weight.
%, Mo0.5~2.0%, V0.1~0.3%, at least one of Nb and Ta 0.03~0.3%, N0.03~0.1%, balance
has an alloy composition consisting of Fe and incidental impurities,
A steel ingot obtained by secondary melting by electroslag remelting is forged to form a turbine rotor body, then heated to a temperature range of 1095°C or higher to 1150°C or lower, quenched, and then quenched at a temperature of 530 to 730°C. This is a method for manufacturing a 12Cr-based turbine rotor, which has excellent high-temperature creep rupture strength, ductility, and toughness, and is characterized by performing tempering treatment in a temperature range. Here, the reason for limitations on the composition, melting, and heat treatment of the 12Cr turbine rotor according to the method of the present invention will be explained. C is an element necessary to ensure tensile strength and creep rupture strength; if it is less than 0.1%, a ferrite phase will form and the required properties cannot be obtained;
If it exceeds %, the toughness decreases, so this range is set. Si is an element added as a deoxidizing agent, but addition of a large amount deteriorates toughness, so it is limited to 0.5% or less. Mn is an element added as a deoxidizing and desulfurizing agent and is 0.1%
If it is less than 1.0%, a sufficient effect will not be obtained, and if it exceeds 1.0%, the creep rupture strength will decrease, so this range is set. Ni is an element necessary to suppress the formation of ferrite phase and obtain a uniform martensitic structure.
If it is less than 0.1%, the effect will not be exhibited, and
If it exceeds 1.0%, the creep rupture strength will decrease, so the content should be within this range. Note that it is possible to replace part or all of Ni with Co. Cr is an element necessary to obtain the mechanical properties of the rotor according to the present invention, and if the amount is less than 90%, it is difficult to secure the required creep rupture strength, and if the amount is less than 90%,
%, a ferrite phase will be formed and the creep rupture strength will decrease, so this range is set. Mo is an element necessary to improve creep rupture strength and prevent detempering. If it is less than 0.5%, the effect will not be sufficient, and if it exceeds 2.0%, the creep rupture strength will decrease due to the formation of ferrite phase. This range is set because this may cause problems such as hardness and a decrease in toughness. V is an element necessary for improving creep rupture strength, but if it is less than 0.1%, the effect is not sufficient;
If it exceeds 0.3%, a ferrite phase will form like Mo, reducing the creep rupture strength, so this range is set. Nb and Ta constitute the rotor according to the present invention
An element that is finely precipitated and dispersed as carbonitrides in the matrix of 12Cr steel and improves creep rupture strength.
If the amount is less than 0.03%, sufficient effect will not be obtained.
Moreover, if it exceeds 0.3%, coarse carbonitrides will be formed in the center of the rotor even if the electroslag remelting described later is carried out, and the ductility will be deteriorated, so this range is set. In addition, when even better creep rupture strength is required, it is desirable that at least one of Nb and Ta be 0.13% or more. N is an element necessary to suppress the formation of ferrite phase and to generate carbonitrides to improve creep rupture strength. If it is less than 0.03%, the effect is not sufficient, and if it exceeds 0.1%, pinholes or blowholes may occur. This range was chosen because it causes Next, electroslag remelting and heat treatment, which are important in the method of the present invention, will be described. The reason for electroslag remelting is that 12Cr has excellent high temperature creep rupture strength, ductility and toughness.
In order to obtain a system turbine rotor, this is an essential process along with the heat treatment described below.If electroslag is not remelted using conventional high frequency furnace melting or electric arc furnace melting, the quenching temperature is lower than the conventional 1050℃.
If quenching is performed at the same quenching temperature of 1095°C or higher and 1150°C or lower as in the method of the present invention, which is higher than ±20°C and a maximum of 1090°C, the high-temperature creep rupture strength will be similar, but the ductility and toughness will be lower. As a result, it is impossible to obtain a 12Cr turbine rotor that is safe and reliable against brittle fracture. In addition, in conventional 12Cr turbine rotors, the molten metal melted in a high-frequency melting furnace or electric arc furnace is poured into a mold and solidified, so it takes time to solidify the molten metal, and coarse carbon containing Nb and Ta is deposited in the center of the turbine rotor. Until now, the content of Nb and Ta was usually 0.03 to 0.1% because nitrides precipitate and lead to a decrease in toughness.
However, according to the method of the present invention, there is no coarse segregation of carbides in the center of the turbine rotor even if it is added more than that, and the 12Cr-based turbine has excellent high-temperature creep rupture strength as well as excellent ductility and toughness. You can get the rotor. 1095℃ or higher ~ 1150℃
Quenched after heating to the following temperature range, then 530~730
The reason for tempering in the temperature range of ℃ is that Nb
A quenching temperature of less than 1095°C is not sufficient to dissolve a large amount of carbonitrides of Ta and Ta and re-precipitate during tempering, and if it exceeds 1150°C, coarsening of crystal grains becomes large and toughness is impaired. And so. In addition, if the tempering temperature is less than 530℃, sufficient tempering will not be performed and the required toughness will not be obtained, and if the tempering temperature exceeds 730℃, the required tensile strength and yield strength cannot be obtained, so this range was chosen. . In addition, in the method for manufacturing a turbine rotor according to the method of the present invention, both the above-mentioned electroslag remelting and heat treatment are indispensable, and if even one of them is lacking, it will result in excellent high-temperature creep rupture strength and ductility. Therefore, it is not possible to obtain a 12Cr turbine rotor with high toughness. [Example of the Invention] A turbine rotor model (diameter 600 mm, length 800 mm) having the chemical composition shown in Table 1 was prepared and various tests were conducted. The turbine rotor models of Examples 1, 2, and 3 according to the present invention were created by blending the raw materials to have the alloy composition shown in Table 1, melting them in an electric arc furnace, and then molding them into consumable electrode molds for electroslag remelting. A cast ingot was obtained. Subsequently, electroslag was remelted using this ingot as a consumable electrode, and then forged to obtain a turbine rotor model body. Furthermore, this turbine rotor model body was subjected to the heat treatment listed in Table 1 and then machined to obtain a turbine rotor model. In Comparative Example 1, the turbine rotor model was obtained by melting and forging in the same manner as in the above-mentioned examples, then performing the conventional heat treatment listed in Table 1, and then machining. . Furthermore, in Comparative Examples 2 and 3, the molten metal melted in an electric arc furnace was poured into a mold in the same manner as the conventional melting method for 12Cr-based turbine rotors, and an ingot was obtained. This was then forged to form a turbine rotor model body. After the heat treatments listed in Table 1, Comparative Example 2 was a conventional heat treatment, and Comparative Example 3 was a heat treatment at a higher quenching temperature, the samples were machined to create a turbine rotor model. For testing, test pieces were cut out for each of the turbine rotor models obtained as described above, and a tensile test, an impact test, and a creep rupture test were conducted. Table 2 shows the results of the tensile test and impact test, and Table 3 shows the results of the creep rupture test.
【表】【table】
【表】【table】
【表】【table】
【表】
第2表および第3表より明らかなように、本発
明方法に係る12Cr系タービンロータモデルは比
較例に比べ引張強さが優れるとともに伸び、絞り
も大きく、また衝撃靭性が著しく大きい。さらに
クリープ破断強さも従来の12Cr系ロータ材であ
る比較例2に比べるとクリープ破断伸びや絞りは
同等以上でありまたクリープ破断強さも優れてい
る。これらのことから本発明方法に係る12Cr系
タービンロータ材は、室温および高温強度に優れ
るとともに延性、靭性にも優れており工業上有用
である。[Table] As is clear from Tables 2 and 3, the 12Cr turbine rotor model according to the method of the present invention has superior tensile strength, elongation, and a larger area of area than the comparative example, and has significantly higher impact toughness. Furthermore, compared to Comparative Example 2, which is a conventional 12Cr-based rotor material, the creep rupture strength is equal to or higher than that of Comparative Example 2, which is a conventional 12Cr rotor material. For these reasons, the 12Cr-based turbine rotor material according to the method of the present invention has excellent strength at room temperature and high temperature, as well as ductility and toughness, and is industrially useful.
Claims (1)
下、Mn0.1〜1.0%、Ni0.1〜1.0%、Cr9.0〜13.0
%、Mo0.5〜2.0%、V0.1〜0.3%、Nb、Taの少
なくとも一種0.03〜0.3%、N0.03〜0.1%、残部
Feおよび付随的不純物より成る合金組成を有し、
エレクトロスラグ再溶解により得た鋼塊を鍛造成
形してタービンロータ素体としたのち、1095℃以
上〜1150℃以下の温度範囲に加熱後焼入し、次い
で530〜730℃の温度範囲で焼戻し処理を行なうこ
とを特徴とするタービンロータの製造方法。 2 特許請求の範囲第1項において、Nb、Taの
少なくとも一種を重量%で0.13〜0.3%とした事
を特徴とするタービンロータの製造方法。[Claims] 1. C0.1 to 0.25%, Si 0.5% or less, Mn 0.1 to 1.0%, Ni 0.1 to 1.0%, Cr 9.0 to 13.0 in weight percent
%, Mo0.5~2.0%, V0.1~0.3%, at least one of Nb and Ta 0.03~0.3%, N0.03~0.1%, balance
has an alloy composition consisting of Fe and incidental impurities,
After the steel ingot obtained by electroslag remelting is forged and formed into a turbine rotor body, it is heated to a temperature range of 1095°C or higher to 1150°C or lower, then quenched, and then tempered in a temperature range of 530 to 730°C. A method for manufacturing a turbine rotor, the method comprising: 2. A method for manufacturing a turbine rotor according to claim 1, characterized in that at least one of Nb and Ta is contained in an amount of 0.13 to 0.3% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58053784A JPS59179719A (en) | 1983-03-31 | 1983-03-31 | Manufacture of turbine rotor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58053784A JPS59179719A (en) | 1983-03-31 | 1983-03-31 | Manufacture of turbine rotor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59179719A JPS59179719A (en) | 1984-10-12 |
JPS6334207B2 true JPS6334207B2 (en) | 1988-07-08 |
Family
ID=12952436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58053784A Granted JPS59179719A (en) | 1983-03-31 | 1983-03-31 | Manufacture of turbine rotor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59179719A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0651319U (en) * | 1992-12-24 | 1994-07-12 | エヌティエヌ株式会社 | Soundproof metal fittings for curtain wall |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6196062A (en) * | 1984-10-17 | 1986-05-14 | Mitsubishi Heavy Ind Ltd | High-chromium cast steel for high temperature service pressure vessel |
JPS62222027A (en) * | 1986-03-25 | 1987-09-30 | Nippon Chiyuutankou Kk | Manufacture of heat resisting rotor |
JP4602163B2 (en) * | 2005-05-31 | 2010-12-22 | 株式会社東芝 | Heat-resistant steel member and manufacturing method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51126917A (en) * | 1975-04-30 | 1976-11-05 | Hitachi Ltd | Process for heat treatment of 12%cr steel axle material |
JPS5558330A (en) * | 1978-10-20 | 1980-05-01 | Toshiba Corp | Heat treating method of steam turbine rotor shaft |
JPS56116858A (en) * | 1980-02-20 | 1981-09-12 | Toshiba Corp | Steam turbine rotor |
-
1983
- 1983-03-31 JP JP58053784A patent/JPS59179719A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51126917A (en) * | 1975-04-30 | 1976-11-05 | Hitachi Ltd | Process for heat treatment of 12%cr steel axle material |
JPS5558330A (en) * | 1978-10-20 | 1980-05-01 | Toshiba Corp | Heat treating method of steam turbine rotor shaft |
JPS56116858A (en) * | 1980-02-20 | 1981-09-12 | Toshiba Corp | Steam turbine rotor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0651319U (en) * | 1992-12-24 | 1994-07-12 | エヌティエヌ株式会社 | Soundproof metal fittings for curtain wall |
Also Published As
Publication number | Publication date |
---|---|
JPS59179719A (en) | 1984-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0175075B1 (en) | Potor for steam turbine and manufacturing method thereof | |
KR102037086B1 (en) | Low alloy steel for geothermal power generation turbine rotor, and low alloy material for geothermal power generation turbine rotor and method for manufacturing the same | |
KR20120075376A (en) | Heat resistant cast steel, manufacturing method of heat resistant cast steel, casting parts of steam turbine and manufacturing method of casting parts of steam turbine | |
JP4262414B2 (en) | High Cr ferritic heat resistant steel | |
WO2004104253A1 (en) | Wear resistant cast iron | |
US2519406A (en) | Wrought alloy | |
JP3723924B2 (en) | Heat-resistant cast steel and method for producing the same | |
GB2386906A (en) | Heat resisting steels | |
JPS6334206B2 (en) | ||
JPS6334207B2 (en) | ||
JPS59232231A (en) | Manufacture of rotor for turbine | |
JP3422658B2 (en) | Heat resistant steel | |
JP2006083432A (en) | Heat-resisting steel, heat treatment method for heat-resisting steel, and high-temperature steam turbine rotor | |
JPS6132384B2 (en) | ||
JP3649618B2 (en) | Cast steel for pressure vessel and method for producing pressure vessel using the same | |
JP4177136B2 (en) | Method for producing B-containing high Cr heat resistant steel | |
JPH0234724A (en) | Manufacture of turbine rotor | |
JP3504835B2 (en) | Low alloy heat resistant cast steel and cast steel parts for steam turbines | |
JPS5845360A (en) | Low alloy steel with temper embrittlement resistance | |
JP2004359969A (en) | Heat resistant steel, method for producing heat resistant steel ingot, and steam turbine rotor | |
JP3576234B2 (en) | Cast steel for steam turbine cabin or pressure vessel | |
JPS6070125A (en) | Manufacture of turbine rotor | |
JP2004002963A (en) | Heat resistant steel and manufacturing method therefor | |
JP5996403B2 (en) | Heat resistant steel and method for producing the same | |
JPH02149649A (en) | Cr alloy steel |