JPS59179719A - Manufacture of turbine rotor - Google Patents

Manufacture of turbine rotor

Info

Publication number
JPS59179719A
JPS59179719A JP58053784A JP5378483A JPS59179719A JP S59179719 A JPS59179719 A JP S59179719A JP 58053784 A JP58053784 A JP 58053784A JP 5378483 A JP5378483 A JP 5378483A JP S59179719 A JPS59179719 A JP S59179719A
Authority
JP
Japan
Prior art keywords
turbine rotor
creep rupture
rupture strength
toughness
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58053784A
Other languages
Japanese (ja)
Other versions
JPS6334207B2 (en
Inventor
Kanji Kawaguchi
川口 寛二
Mitsuo Kawai
光雄 河合
Osamu Watanabe
修 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58053784A priority Critical patent/JPS59179719A/en
Publication of JPS59179719A publication Critical patent/JPS59179719A/en
Publication of JPS6334207B2 publication Critical patent/JPS6334207B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/38Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for roll bodies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain a turbine rotor of 12Cr steel with superior creep rupture strength, ductility and toughness at high temp. by forging a steel ingot having a specified composition obtd. by electro-slag remelting to form a rough body for a turbine rotor and by subjecting the rough body to heating, quenching and tempering under specified conditions. CONSTITUTION:A steel ingot obtd. by electro-slag remelting is forged to form a rough body for a turbine rotor. The steel ingot has an alloy composition consisting of, by weight, 0.1-0.5% C, <=0.5% Si, 0.1-1.0% Mn, 0.1-1.0% Ni, 9.0- 13.0% Cr, 0.5-2.0% Mo, 0.1-0.3% V, 0.03-0.3% Nb and/or Ta, 0.03-0.1% N and the balance Fe with accompanying impurities. The rough body is heated to 1,095-1,150 deg.C, quenched, and tempered at 530-730 deg.C.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は高温で優れたクリープ破断強さを有する1Z
cr系耐熱輸で侮成されたタービンロータの製造方法に
関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a 1Z resin having excellent creep rupture strength at high temperatures.
This invention relates to a method for manufacturing a turbine rotor made of Cr-based heat-resistant material.

〔発明の技術的背景〕[Technical background of the invention]

近年蒸気タービンやガスタービンは熱効率の向上を目的
に、使用する蒸気温度やガス温度か上昇してきている。
In recent years, the steam and gas temperatures used in steam turbines and gas turbines have been increasing in order to improve their thermal efficiency.

ところで、クリープ破断強さの優れたロータの一つに1
2Cr−Mo−V−Nb(Ta)−N Nで肩(成され
たロータカ;あるが、今後の高温化に対処するためには
〜11こ尚温のクリープ破断強さに優れだ12cr糸ロ
ーター必要とされる。
By the way, one of the rotors with excellent creep rupture strength is 1.
2Cr-Mo-V-Nb(Ta)-N There is a rotor made of N, but in order to cope with future high temperatures, a 12cr yarn rotor with excellent creep rupture strength of ~11% is needed. Needed.

高温のクリープ破断強さ全同上させる方法の一つとして
焼入温度の上昇があるか、従来の12Cr糸ロータで行
なわれている高周波炉や′セ弧炉による溶解で製造され
たタービンロータ素体の焼入温度をただ単に上昇させた
場合にはクリープ破断強さは向上するが、反曲延性・靭
性が低下し、−また切欠弱イヒを生じやすくなる。その
ためタービンロータのI范性破見に対する安全性信頼性
の観点より従来12Cr系ターヒンロータの焼入温度は
クリープ破断強さと延性および靭怜已を考慮して103
0’0以上〜1070°C未満で行なっている。
One way to increase the high-temperature creep rupture strength is to increase the quenching temperature, or to improve the turbine rotor body manufactured by melting in a high-frequency furnace or a 'cerc furnace', which is done with conventional 12Cr yarn rotors. If the quenching temperature is simply increased, the creep rupture strength will improve, but the reverse bending ductility and toughness will decrease, and notch damage will likely occur. Therefore, from the viewpoint of safety and reliability against I-flexure fracture of the turbine rotor, the quenching temperature of the conventional 12Cr-based Tahin rotor was set at 103°C in consideration of creep rupture strength, ductility, and toughness.
The temperature is 0'0 or more and less than 1070°C.

〔発明の目的〕[Purpose of the invention]

本発明は上記点に鑑みてなされたもので、高温のクリー
プ破断強さが優れるとともに延性および靭性にも優れた
タービンロータの脆性破壊に対する安全性、信頼性の高
い12Cr系タービンロータの製造方法を提供すること
を目的としたものである。
The present invention has been made in view of the above points, and provides a method for manufacturing a 12Cr-based turbine rotor that has excellent high-temperature creep rupture strength, excellent ductility and toughness, and has high safety and reliability against brittle fracture of the turbine rotor. It is intended to provide.

〔発明の概要〕[Summary of the invention]

本発明は従来の12cr系タービンロータの化学組成、
溶解方法および熱処理方法などについて広範凹に実験検
討した結果、高温のクリープ破断強さに優れ、かつ延性
および靭性にも優れだ12Cr系タービンロータが得ら
れることを見いだした事による。
The present invention discloses the chemical composition of a conventional 12cr turbine rotor,
As a result of extensive experimental studies on melting methods, heat treatment methods, etc., it was discovered that a 12Cr-based turbine rotor can be obtained that has excellent high-temperature creep rupture strength, as well as excellent ductility and toughness.

すなわち、本発明に係る12Cr系タービンロータは重
量パーセントで00.1〜0.25乞Si[,5%以下
、Mn 0.1〜1.0%、Ni 0.1〜1.0 %
、+ Cr・・9ニド1+3.Q %、M。
That is, the 12Cr-based turbine rotor according to the present invention has a weight percentage of 0.1 to 0.25%, Si[, 5% or less, Mn 0.1 to 1.0%, and Ni 0.1 to 1.0%.
, + Cr..9 Nido 1+3. Q%, M.

0.5〜2.0%、Vo、1〜0.3’%、Nb、Ta
の少なくとも一種0.03〜0.3%、N O,03〜
0.1 %、残部Feおよび付随的不純物より成る合金
組成を有し、エレクトロスラグ再溶解による二次溶解を
して得得た鋼塊を鍛造成形してタービンロータ索体とし
たのち、1095°0以上〜1j50°CJ)下の温度
範、囲に加熱後焼入れし、次いで530−7300の温
度範囲で焼戻し処理を行うことを前像とする高温クリー
プ破断強さと延性および靭性に優れた12Cr系タービ
ンロータの製造方法である。
0.5-2.0%, Vo, 1-0.3'%, Nb, Ta
at least one kind of 0.03 to 0.3%, N O,03 to
A steel ingot having an alloy composition of 0.1%, the balance being Fe and incidental impurities, obtained by secondary melting by electroslag remelting, was forged to form a turbine rotor cable body, and then heated at 1095°. 12Cr system with excellent high-temperature creep rupture strength, ductility and toughness, which is heated to a temperature range of 0 to 1j50°CJ), then quenched, and then tempered in a temperature range of 530-7300°C. This is a method for manufacturing a turbine rotor.

ここで本発明方法に係る1ZCr系クービンロータの組
成および溶解、熱処理の限定理由Vこついて説明する。
Here, the reason for limiting the composition, melting, and heat treatment of the 1ZCr Kubin rotor according to the method of the present invention will be explained.

Cは引張強さやクリープ破断「速さを確保するために必
要な元素であり、01%未満ではフェライト相が生成し
てP9T要の特性が得られず、捷た0、25チを越える
と靭性が低下することからこの範囲とする。
C is an element necessary to ensure tensile strength and creep rupture speed; if it is less than 0.01%, a ferrite phase will form and the required properties of P9T cannot be obtained, and if it exceeds 0.25%, the toughness will decrease. It is set in this range because of the decrease in

Stは脱酸剤として添加する元素であるが多す−の添加
は靭性を劣下させるので0.5係以下とする。
St is an element added as a deoxidizing agent, but since adding too much St will degrade toughness, it should be kept at a factor of 0.5 or less.

胤は脱酸、脱硫剤として添加する元素で01%未満では
十分な効果得られず、また10チを越えるとクリープ破
断強ざを低下させるのでこの範囲とする。
Seed is an element added as a deoxidizing and desulfurizing agent, and if it is less than 10%, a sufficient effect cannot be obtained, and if it exceeds 10%, the creep rupture strength will decrease, so it is set within this range.

Niはフェライト相の生成を抑え均一なマルテンザイト
組社を得るために必要な元素であるが、O11チ満では
その効果が発揮されに<<、また1、0襲を越えるとク
リープ破断師さを低下させるのでこのゆ1Σ囲とする。
Ni is a necessary element to suppress the formation of ferrite phase and obtain a uniform martenzite structure, but if the O concentration is less than 11, its effect is not exhibited, and if it exceeds 1 or 0, it becomes a creep rupture breaker. Since this reduces the

なおNiの一部あるいは全部をCoK置き換えることは
可能である。
Note that it is possible to replace part or all of Ni with CoK.

Crは本発明に係るロータの機械的性質ケ得るために必
要な元素で、その量が90%未満では必要とするクリー
プ破断強きが確保し難く、また13.0チを越えるとフ
ェライト相が生成し、クリープ破断強さが低下すること
からこの範囲とする。
Cr is an element necessary to obtain the mechanical properties of the rotor according to the present invention. If the amount is less than 90%, it is difficult to secure the required creep rupture strength, and if it exceeds 13.0%, a ferrite phase is formed. However, since the creep rupture strength decreases, this range is set.

Moはクリープ破断強さの向上と焼戻し脱性を防止する
ために必要な元素で、0.5%未満ではその効果が十分
でなく、また2、0%を越えるとフェライト相の生成に
よるクリープ破断強さの低下や靭性の低下などを生ずる
ことからこの範囲とする。
Mo is an element necessary to improve creep rupture strength and prevent detempering. If it is less than 0.5%, the effect will not be sufficient, and if it exceeds 2.0%, creep rupture will occur due to the formation of ferrite phase. This range is set because it causes a decrease in strength and toughness.

■はクリープ破断強さの向上に必要な元素であるが0.
1%未満ではその効果が十分でなく、また0゜3チを越
るとIVloと同様にフェライト相が生成しクリープ破
断強さを低下させることφ)らこの範囲とする。
■ is an element necessary for improving creep rupture strength, but 0.
If it is less than 1%, the effect will not be sufficient, and if it exceeds 0°3, a ferrite phase will be formed like IVlo, reducing the creep rupture strength (φ), so this range is set.

NbおよびTaは本発明に1,1りるロータをイ11成
する12Cr系鋼の素地中に炭r化物としてr& A1
1llに析出分散し、クリープ破断強さを11】」上ざ
ぜるノ〔素で、その景が0.03%未満では十分なく、
已、ミが創られず、吐た0、3%を越えると後述するエ
レクトロスラグ再溶解を行なってもロータ中心部に粗大
な炭(,5′j化物を生成して延性を劣下させることか
らこのΩ囲とする。なお、さらに優れたクリープ破断’
j:Gさを必要とする場合には、Nb、Taの少なくと
も一種が0.13%以上が望ましい。
Nb and Ta are added as carbides in the matrix of 12Cr steel that forms the rotor of the present invention.
Precipitated and dispersed in 1 liter, the creep rupture strength is increased to 11%.
However, if the amount exceeds 0.3%, coarse charcoal (,5'j) will be formed in the center of the rotor, reducing ductility even if electroslag is remelted as described below. and this Ω range.In addition, even better creep rupture '
When j:G is required, it is desirable that at least one of Nb and Ta be 0.13% or more.

Nはフェライト相の生成を抑えるとともに炭窒化物を生
成してクリープ破断強さを向上させるに必要な元素で0
.03%未満ではその効果が十分でなく、丑だ0.1チ
を越えるとピンホールやブローホール’c 発生させる
ことからこの範囲としだ。
N is an element necessary to suppress the formation of ferrite phase and to generate carbonitrides to improve creep rupture strength.
.. If it is less than 0.3%, the effect will not be sufficient, and if it exceeds 0.1%, pinholes or blowholes will occur, so this range is recommended.

次に本発明方法で重要なエレクトロスラグ再溶解および
熱処理について述べる。
Next, electroslag remelting and heat treatment, which are important in the method of the present invention, will be described.

エレクトロスラグ再溶解を行う理由は、篩隠りリープ破
断強さ、延性および靭性に役れた12Cr系タービンロ
ータを得るために、次に述べる熱処理と共に必要不可欠
な工程で、このエレクトロスラグ再溶解をしない従来の
高周波炉溶解や電弧炉溶解の瞥まの場合には焼入温度を
従来の1050 ’(3く±20’C,最高で1090
℃よシ上昇した本発明方法と同じ焼入温g1095°0
以上〜]、150℃以下で焼入すると、高温のクリープ
破断強さは同じような値になるが、延性や靭性が大幅に
低下し、脆性破壊に対する安全性や信頼性のある12C
r系タービンロータを得ることが出来ない。
The reason for electroslag remelting is that in order to obtain a 12Cr-based turbine rotor with improved sieve leap rupture strength, ductility, and toughness, electroslag remelting is an essential step along with the heat treatment described below. In the case of conventional high frequency furnace melting or electric arc furnace melting, the quenching temperature should be changed to the conventional 1050' (3 ± 20'C, maximum 1090 °C).
The same quenching temperature as the method of the present invention, which is higher than ℃ 1095°0
If quenched at 150°C or lower, the high-temperature creep rupture strength will be similar, but the ductility and toughness will be significantly lower than 12C, which is safer and more reliable against brittle fracture.
It is not possible to obtain an r-series turbine rotor.

また、従来の12Cr系タービンロータでは高周波溶解
炉や電弧炉で溶解した溶湯を鋳型に流し込み凝固させて
いるため溶湯の凝固に時間がかかり、タービンロータの
中心部にNbやTaを含む粗大な炭窒化物が析出して靭
性の低下をまねくことからこれまでNb +Taの含有
量は通常0.03〜0.1%程度までしか添加しておら
ず本発明方法によればそれ以上の添加でもクービンロー
タ中心部に炭化物の粗大偏析はなく、高温クリープ破断
強さに優れ、かつ延性や靭性にも優れた12Cr系ター
ビンロータを得ることが出来る。1095(jJJ上〜
1150’C以下の温度範囲に加熱後焼入し、次いで5
30〜730℃の温度範囲で焼戻しを行なう理由として
はNbやTaの炭窒化物を多量に固溶させ焼戻しで再析
出させるには焼入れ温度が1095’C!未満では十分
でなく、また1150℃を越えると結晶粒の粗大化が大
きくなり、靭性を害するのでこの範囲とした。
In addition, in conventional 12Cr turbine rotors, molten metal melted in a high-frequency melting furnace or electric arc furnace is poured into a mold and solidified, so it takes time to solidify the molten metal, and coarse carbon containing Nb and Ta is deposited in the center of the turbine rotor. Since nitrides precipitate and lead to a decrease in toughness, the content of Nb + Ta has conventionally been added to only about 0.03 to 0.1%, but according to the method of the present invention, even if more than that is added, the Kubin rotor It is possible to obtain a 12Cr-based turbine rotor with no coarse segregation of carbides in the center, excellent high-temperature creep rupture strength, and excellent ductility and toughness. 1095 (jJJ top~
After heating to a temperature range of 1150'C or less, quenching, then 5
The reason why tempering is performed in the temperature range of 30 to 730°C is that the quenching temperature is 1095'C to dissolve a large amount of Nb and Ta carbonitrides into solid solution and re-precipitate them during tempering! If it is less than 1150°C, it is not sufficient, and if it exceeds 1150°C, the crystal grains will become coarser and the toughness will be impaired, so this range was set.

また、焼戻し温度が530°C未満では十分な焼戻しが
行なわれず、所要の靭性が得られず、730’0を越え
た場合には所要の引張強さや耐力を得ることが出来ない
ことからこのづ・a囲とした。
In addition, if the tempering temperature is less than 530°C, sufficient tempering will not be performed and the required toughness will not be obtained, and if the tempering temperature exceeds 730'0, the required tensile strength and yield strength cannot be obtained.・It was set as a circle.

なお、本発明方法に係るタービンロータの製造方法にお
いて上記エレクトロスラグ再溶解と熱処理の両者が必要
不可欠であシ、このうちの一つでも欠けた場合には高温
のクリープ破断強さに優れ、かつ延性および靭性を有す
る12Cr系タービンロータを得ることは出来ない。
In addition, in the method for manufacturing a turbine rotor according to the method of the present invention, both the electroslag remelting and heat treatment described above are indispensable, and if even one of them is lacking, it is necessary to have excellent high-temperature creep rupture strength and It is not possible to obtain a 12Cr-based turbine rotor with ductility and toughness.

〔発明の実施例〕 第1表に示す化学組成を石するタービンロータモデル(
直径600ミリ、長さ800ミリ)を作製したのち各種
試験を行なった。
[Embodiments of the Invention] A turbine rotor model with the chemical composition shown in Table 1 (
After fabricating a specimen with a diameter of 600 mm and a length of 800 mm, various tests were conducted.

本発明に係る実施例1.2.3のタービンロータモデル
の作成は第1表に示した合金組成となるように原料を配
合したのち電弧炉で溶解次いでエレクトロスラグ再溶解
の消耗電極用モールドに鋳込みインゴットを得た。引続
いて、このインゴットを消耗電極としてエレクトロスラ
グ再溶解を行なっタッチ、鍛造を行ないタービンローp
 モデル素体を得た。さらにこのタービンロータモデル
素体に第1表に併記した熱処理を施こしたのち機械加工
を行ないタービンロータモデルを得た。
The turbine rotor model of Example 1.2.3 according to the present invention was created by mixing the raw materials to have the alloy composition shown in Table 1, melting them in an electric arc furnace, and then molding them into a mold for consumable electrodes for electroslag remelting. A cast ingot was obtained. Subsequently, this ingot was used as a consumable electrode by electroslag remelting, touch, and forging to form a turbine rope.
Obtained a model body. Furthermore, this turbine rotor model body was subjected to the heat treatment listed in Table 1 and then machined to obtain a turbine rotor model.

まだ、比較例1は上記実施例と同様に溶解、鍛造を行な
ったのち、第1表に併記した従来より行なわれている熱
処理を施こしたのち、機械加工を行ないタービンロータ
モデルを得た。
However, in Comparative Example 1, after melting and forging in the same manner as in the above-mentioned Examples, a conventional heat treatment listed in Table 1 was performed, and then machining was performed to obtain a turbine rotor model.

さらに比較例2,3は従来の12Cr系タービンロータ
の溶解方法と同様に電弧炉−で溶解した溶湯をモールド
に注ぎ、インゴットを得たのち、これを鍛造してタービ
ンロータモデル素体としたあと、第1表に併記しだ熱処
理、比較例2は従来より行なわれている熱処理、比較例
3は焼入温度を高くしだ熱処理を施こしたのち、機械加
工を行ないタービンロータモデルとした。
Furthermore, in Comparative Examples 2 and 3, the molten metal melted in an electric arc furnace was poured into a mold in the same manner as the conventional melting method for 12Cr-based turbine rotors. After obtaining an ingot, this was forged to form a turbine rotor model body. , Comparative Example 2 was heat treated as shown in Table 1. Comparative Example 3 was heat treated at a higher quenching temperature, and then machined to form a turbine rotor model.

試験は上記のようにして得たタービンロータモデルのそ
れぞれについて試験片を切り出し、引張試験、衝撃試験
、クリープ破断試験を行なった。
For testing, test pieces were cut out for each of the turbine rotor models obtained as described above, and a tensile test, an impact test, and a creep rupture test were conducted.

第2表に引張試験および衝撃試験結果をまた第3表にク
リープ破断試験結果を示す。
Table 2 shows the results of the tensile test and impact test, and Table 3 shows the results of the creep rupture test.

以下余白 第2表および第3表より明らかなように、本発明方法に
係る12Cr系クービンロータモデルは比較例に比べ引
張強さが優れるとともに伸ひ、絞りも太きく、゛また衝
撃靭性が著しく大きい。さらにクリープ破断強さも従来
の12Cr系ロータ相でめる比較例2に比べるとりIJ
−プ4i11fji伸びや絞りは同等以上でありまたク
リープ破断強さも優れている。これらのことから本発明
方法に係る12Cr系タービンロータ材は、罠温および
高温頻度に優れるとともに延性、り性にもイ受れており
工業上M )[Jである。
As is clear from Tables 2 and 3 below, the 12Cr-based Kubin rotor model according to the method of the present invention has superior tensile strength, elongation, and larger aperture compared to the comparative example, and also has poor impact toughness. significantly larger. Furthermore, the creep rupture strength is also higher than that of Comparative Example 2 using the conventional 12Cr rotor phase.
-P4i11fji The elongation and reduction of area are the same or higher, and the creep rupture strength is also excellent. From these facts, the 12Cr-based turbine rotor material according to the method of the present invention is excellent in trap temperature and high temperature frequency, and is also poor in ductility and stiffness, and is industrially rated M)[J.

代理人 弁理士 則 近 冠 佑 (ほか1名)Agent: Patent Attorney Noriyuki Chikan (1 other person)

Claims (1)

【特許請求の範囲】[Claims] (1)M蓋パーセントでCO,1〜0.25チ、Si0
.5係以下、Mn 0.1〜1.0 %、Ni O,1
〜1.0 %、Cr 9.0〜13.0 %b Mo 
O,5〜2.0 %、 V O,1〜0.3 %、 N
b 、Taの少なくとも一種0.03〜0.3%、NO
,03〜0.1チ、残部Feおよび付随的不純物より成
る合金組成を有シフ、エレクトロスラ消溶解により得た
鋼塊を鍛造成形してタービンロータ素体としたのち、 
 1095°0以上〜1150°0以下の温度範囲に加
熱後焼入し、次いで530〜730’C!の温度範囲で
焼戻し処理を行なうことを特徴とするタービンロータの
製造方法。 (2、特許請求の範囲第1項において、 Nb、Taの
少なくとも一種を重量慢で0,13〜0.3%とした事
を特徴トするタービンロータの製造方法。
(1) CO, 1 to 0.25 Chi, Si0 in M lid percentage
.. 5 or less, Mn 0.1-1.0%, NiO, 1
~1.0%, Cr 9.0~13.0%bMo
O, 5-2.0%, VO, 1-0.3%, N
b, at least one kind of Ta 0.03-0.3%, NO
, 03 to 0.1%, with an alloy composition consisting of Fe and incidental impurities, and a steel ingot obtained by electroslave melting was forged to form a turbine rotor body.
After heating to a temperature range of 1095°0 to 1150°0, quenching is performed, and then 530 to 730'C! A method for manufacturing a turbine rotor, characterized in that a tempering treatment is performed in a temperature range of . (2. A method for manufacturing a turbine rotor according to claim 1, characterized in that at least one of Nb and Ta is contained in an amount of 0.13 to 0.3% by weight.
JP58053784A 1983-03-31 1983-03-31 Manufacture of turbine rotor Granted JPS59179719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58053784A JPS59179719A (en) 1983-03-31 1983-03-31 Manufacture of turbine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58053784A JPS59179719A (en) 1983-03-31 1983-03-31 Manufacture of turbine rotor

Publications (2)

Publication Number Publication Date
JPS59179719A true JPS59179719A (en) 1984-10-12
JPS6334207B2 JPS6334207B2 (en) 1988-07-08

Family

ID=12952436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58053784A Granted JPS59179719A (en) 1983-03-31 1983-03-31 Manufacture of turbine rotor

Country Status (1)

Country Link
JP (1) JPS59179719A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196062A (en) * 1984-10-17 1986-05-14 Mitsubishi Heavy Ind Ltd High-chromium cast steel for high temperature service pressure vessel
JPS62222027A (en) * 1986-03-25 1987-09-30 Nippon Chiyuutankou Kk Manufacture of heat resisting rotor
JP2006336059A (en) * 2005-05-31 2006-12-14 Toshiba Corp Heat-resistant steel member and manufacturing method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651319U (en) * 1992-12-24 1994-07-12 エヌティエヌ株式会社 Soundproof metal fittings for curtain wall

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51126917A (en) * 1975-04-30 1976-11-05 Hitachi Ltd Process for heat treatment of 12%cr steel axle material
JPS5558330A (en) * 1978-10-20 1980-05-01 Toshiba Corp Heat treating method of steam turbine rotor shaft
JPS56116858A (en) * 1980-02-20 1981-09-12 Toshiba Corp Steam turbine rotor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51126917A (en) * 1975-04-30 1976-11-05 Hitachi Ltd Process for heat treatment of 12%cr steel axle material
JPS5558330A (en) * 1978-10-20 1980-05-01 Toshiba Corp Heat treating method of steam turbine rotor shaft
JPS56116858A (en) * 1980-02-20 1981-09-12 Toshiba Corp Steam turbine rotor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196062A (en) * 1984-10-17 1986-05-14 Mitsubishi Heavy Ind Ltd High-chromium cast steel for high temperature service pressure vessel
JPS62222027A (en) * 1986-03-25 1987-09-30 Nippon Chiyuutankou Kk Manufacture of heat resisting rotor
JPH05450B2 (en) * 1986-03-25 1993-01-06 Nippon Chutanko Kk
JP2006336059A (en) * 2005-05-31 2006-12-14 Toshiba Corp Heat-resistant steel member and manufacturing method therefor
JP4602163B2 (en) * 2005-05-31 2010-12-22 株式会社東芝 Heat-resistant steel member and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6334207B2 (en) 1988-07-08

Similar Documents

Publication Publication Date Title
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
KR20120075376A (en) Heat resistant cast steel, manufacturing method of heat resistant cast steel, casting parts of steam turbine and manufacturing method of casting parts of steam turbine
JP2588705B2 (en) Nickel-base superalloys
CN102747305B (en) Geothermal power generation turbine rotor low alloy steel and geothermal power generation turbine rotor low alloy material and manufacture method thereof
JPH10265909A (en) Heat resistant steel with high toughness, turbine rotor, and their production
JP3723924B2 (en) Heat-resistant cast steel and method for producing the same
JP3483493B2 (en) Cast steel for pressure vessel and method of manufacturing pressure vessel using the same
JPS59179718A (en) Manufacture of turbine rotor
JPS59179719A (en) Manufacture of turbine rotor
JPS59232231A (en) Manufacture of rotor for turbine
JPS6132384B2 (en)
JP3649618B2 (en) Cast steel for pressure vessel and method for producing pressure vessel using the same
JPS61143523A (en) Manufacture of rotor for geothermal energy turbine
JP3576234B2 (en) Cast steel for steam turbine cabin or pressure vessel
JPS5845360A (en) Low alloy steel with temper embrittlement resistance
JP3504835B2 (en) Low alloy heat resistant cast steel and cast steel parts for steam turbines
JPS6070125A (en) Manufacture of turbine rotor
JPH03177535A (en) Manufacture of low temperature high toughness steel for welding
JPH0234724A (en) Manufacture of turbine rotor
JPS60245772A (en) Low alloy steel for rotor of integrated high and low pressure type steam turbine
CN113319467B (en) Nickel-based alloy welding strip for nuclear power
JP2004018897A (en) High-chromium alloy steel and turbine rotor using this
JPH04111962A (en) Production of high-speed tool steel
JP3254102B2 (en) High strength low alloy cast steel and its heat treatment method
JP3411756B2 (en) Manufacturing method of cast steel for pressure vessel and pressure vessel