JPS6333892B2 - - Google Patents

Info

Publication number
JPS6333892B2
JPS6333892B2 JP54149864A JP14986479A JPS6333892B2 JP S6333892 B2 JPS6333892 B2 JP S6333892B2 JP 54149864 A JP54149864 A JP 54149864A JP 14986479 A JP14986479 A JP 14986479A JP S6333892 B2 JPS6333892 B2 JP S6333892B2
Authority
JP
Japan
Prior art keywords
catalyst
carrier
tio
desulfurization
experiment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54149864A
Other languages
Japanese (ja)
Other versions
JPS5673527A (en
Inventor
Shigeo Yokoyama
Akira Takei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP14986479A priority Critical patent/JPS5673527A/en
Publication of JPS5673527A publication Critical patent/JPS5673527A/en
Publication of JPS6333892B2 publication Critical patent/JPS6333892B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は含硫黄燃料の燃焼装置、例えばボイラ
などの排ガスをはじめとし、各種の燃焼排ガス中
に含有される硫黄酸化物(以下、SOxと略称す
る)や窒素酸化物(以下、Noxと略称する)を
同時に処理し浄化する方法ならびに、その触媒に
関するものである。 現在、燃焼排ガス中の成分で大気汚染の要因と
して、SOxとNOxがあげれ、その浄化対策が、
各方面で開発されている。 この対策としては脱硫は石灰石膏法、脱硝は接
触還元法が主流をなしているが、これらは各々単
独のプロセスである。また、この単独の浄化法が
採用された理由は、脱硫の必要な排ガスは脱硝触
媒に悪影響が大きく、脱硝プロセスは成立し難い
し、又反対に脱硝プロセスの成立する燃焼排ガス
はいわゆるクリーンガスであつて、脱硫が必要で
なかつた。ところで、石油類の逼迫した今日では
エネルギーの多様化から石炭燃料や重質油の利用
が検討されている。これらの石炭や重質油を燃焼
させた場合には排ガス中のNOxやSOxの濃度が
高いため両者の浄化が必要になつている。また従
来の、両者に対する別種の方法と装置による脱硝
や脱硫法の現況は、複雑な周辺機器が必要になつ
て、経済性を悪化させるため実用化に至つていな
い。 このような情勢において単一の方法と装置によ
る脱硫と脱硝(以下脱硫硝と略称する)が同時に
可能となれば、その社会への貢献は素清らしいも
のがある。 乾式の脱硫硝の試みは、すでに発表されている
が以下述べるような問題点があつて、実用化され
ていない。 まず、脱硫については、酸化鉄(Fe2O3)触媒
を使用する方法は公知であり原理としては(1)、(2)
式で示される。 Fe2O3+3SO3Fe2(SO43 ……(1) Fe2O3+3SO2+3/2O2Fe2(SO43 ……(2) この触媒の担体としてアルミナ(Al2O3)の使
用(特公昭52−43615)が報告されているがSOx
との反応によつてAl2(SO4)への転化があり、遂
次活性の低下を生じることが難点である。 この改良法として、アルミナの上にチタニアを
コートした触媒(特開昭49−97794)があるが上
述の如くアルミナの硫酸化の問題は免れない。 本発明者らは、耐SOx性を有し、かつ触媒性能
の高い担体材料について探策しアナターゼ型のチ
タニア(TiO2)が優れることを見出した。これ
は触媒討論会(昭和48年名工大村上教授)にも発
表されているように活性は小さい担体であり、こ
のTiO2の担体を実用化するためには、以下に述
べる二つの問題があつた。 第一の問題点はTiO2の熱安定性である。さき
に述べたとおり、活性のあるTiO2担体の結晶形
はアナターゼ型であるが、触媒上のFe2O3がFe2
(SO43となるとSOxの浄化作用はなくなるため
再生処理が必要である。この再生法としては加熱
による(1)、(2)式の左向きの反応や、CoやH2によ
る還元反応が知られている。この反応により600
℃以上の高温下に触媒が暴露され活性の高い
TiO2はこのような高温のもとではルチル型に転
化し活性を失うため再生しながら、反復利用でき
ないことが問題である。更にもう一つの問題点は
TiO2は従来の担体Al2O3と異つて成形性が極めて
悪いためペレツトやハニカムなどの触媒形状に保
持することが難しいことである。 このような事実から、TiO2をコートした先述
の特許出願がなされた理由がよく理解できる。 この点、本発明の触媒は熱安定化させたTiO2
担体を特徴とする、同時脱硫硝に関するものであ
る。 以下、実験例により、本発明の特徴ならびに優
位性について述べる。 実験例 本発明の脱硫硝の試験条件を表1に試験ガス性
状を表2に示す。
The present invention deals with sulfur oxides (hereinafter abbreviated as SOx) and nitrogen oxides (hereinafter abbreviated as Nox) contained in various types of combustion exhaust gas, including exhaust gas from sulfur-containing fuel combustion equipment such as boilers. ) and its catalyst. Currently, SOx and NOx are components of combustion exhaust gas that cause air pollution, and measures to purify them are
It is being developed in various areas. The main countermeasures against this problem are the lime plaster method for desulfurization and the catalytic reduction method for denitrification, but these are each independent processes. In addition, the reason why this single purification method was adopted is that exhaust gas that requires desulfurization has a large negative effect on the denitrification catalyst, making it difficult to carry out the denitration process, and conversely, the combustion exhaust gas that can undergo the denitrification process is so-called clean gas. In that case, desulfurization was not necessary. By the way, in these days of tight petroleum supplies, the use of coal fuel and heavy oil is being considered due to the diversification of energy sources. When these coals and heavy oils are burned, the concentrations of NOx and SOx in the exhaust gas are high, so it is necessary to purify both. Further, the current state of the conventional denitrification and desulfurization methods using different methods and equipment for both requires complicated peripheral equipment and deteriorates economic efficiency, so that they have not been put into practical use. Under these circumstances, if desulfurization and denitrification (hereinafter abbreviated as desulfurization/nitrification) could be performed simultaneously using a single method and device, the contribution to society would be of great value. Dry desulfurization attempts have already been announced, but they have not been put into practical use due to the following problems. First, regarding desulfurization, a method using an iron oxide (Fe 2 O 3 ) catalyst is publicly known, and the principle is (1) and (2).
It is shown by the formula. Fe 2 O 3 +3SO 3 Fe 2 (SO 4 ) 3 ...(1) Fe 2 O 3 +3SO 2 +3/2O 2 Fe 2 (SO 4 ) 3 ...(2) Alumina (Al 2 O) is used as a support for this catalyst. 3 ) has been reported (Special Publication No. 52-43615), but SOx
The problem is that the reaction with Al 2 (SO 4 ) causes conversion to Al 2 (SO 4 ), resulting in a subsequent decrease in activity. As an improved method, there is a catalyst (Japanese Patent Laid-Open No. 49-97794) in which titania is coated on alumina, but as mentioned above, the problem of sulfation of alumina cannot be avoided. The present inventors searched for a carrier material that has SOx resistance and high catalytic performance and found that anatase type titania (TiO 2 ) is excellent. As announced at the Catalyst Discussion Group (Professor Murakami, Nagoya Institute of Technology in 1971), this is a carrier with low activity, and in order to put this TiO 2 carrier to practical use, the following two problems must be met. Ta. The first problem is the thermal stability of TiO2 . As mentioned earlier, the crystal form of the active TiO 2 support is anatase type, but Fe 2 O 3 on the catalyst is
When it becomes (SO 4 ) 3 , the purification effect of SOx disappears, so regeneration treatment is necessary. Known methods for this regeneration include the leftward reactions of equations (1) and (2) by heating, and the reduction reaction by Co and H 2 . This reaction results in 600
The catalyst is exposed to high temperatures above ℃ and has high activity.
The problem is that TiO 2 converts to rutile form and loses its activity at such high temperatures, so it cannot be recycled and used repeatedly. Yet another problem is
Unlike the conventional carrier Al 2 O 3 , TiO 2 has extremely poor formability, making it difficult to hold it in catalyst shapes such as pellets or honeycombs. From these facts, it is easy to understand why the above-mentioned patent application for coating TiO 2 was filed. In this respect, the catalyst of the present invention is made of thermally stabilized TiO 2
This invention relates to simultaneous desulfurization, characterized by a carrier. The features and advantages of the present invention will be described below using experimental examples. Experimental Example The test conditions for the desulfurized nitrogen of the present invention are shown in Table 1, and the test gas properties are shown in Table 2.

【表】【table】

【表】【table】

【表】 (1) 実験1 硫酸チタニルをアンモニア水で中和し、沈澱
を生じせしめ、過分離して、これを400℃で
焼成した。このTiO2粉末に水酸化アルミナの
水溶液をAl2O3として5%相当を添加し、粒径
2〜4mmの粒状に成形して、600℃で3時間焼
成し、担体を得た。 この担体に硝酸第1鉄をFe2O3として10%と
なるように水溶液で含浸させ、500℃で3時間
焼成して触媒とし、表1、2、の条件で評価し
て、表3に示す結果を得た。 (2) 実験2 硫酸チタニルをアンモニア水で中和し、沈澱
を生じせしめ、過分離してこれを400℃で焼
成した。ここで、生成したTiO2にタングステ
ン酸をメチルアミンに溶解させた液をWO3
して7重量%相当加え、700℃で焼成し、熱安
定化させたTiO2−WO3の粉末を得た。 次にこの粉末に水酸化アルミナをAl2O3で5
重量%相当添加し、粒径2〜4mmの粒状に成形
し、600℃で3時間焼成して、担体を得た。こ
の得られた担体を実験1と同様の処理をして
Fe2O3の触媒とし、表1、2の条件で評価して
表3の結果を得た。 (3) 実験3 市販の活性アルミナ(住友化学KHA)を粒
径2〜4mmに篩分けし、これを担体として実験
1と同様にFe2O3を10%担持し、触媒とした。
この触媒について表1、2の条件で性能を評価
し、表3に示す結果を得た。
[Table] (1) Experiment 1 Titanyl sulfate was neutralized with aqueous ammonia to form a precipitate, which was overseparated and calcined at 400°C. To this TiO 2 powder, an aqueous solution of alumina hydroxide equivalent to 5% Al 2 O 3 was added, formed into particles with a particle size of 2 to 4 mm, and fired at 600° C. for 3 hours to obtain a carrier. This carrier was impregnated with an aqueous solution of ferrous nitrate to a concentration of 10% as Fe 2 O 3 and fired at 500°C for 3 hours to form a catalyst. The following results were obtained. (2) Experiment 2 Titanyl sulfate was neutralized with aqueous ammonia to form a precipitate, which was overseparated and calcined at 400°C. Here, 7% by weight of a solution of tungstic acid dissolved in methylamine as WO 3 was added to the produced TiO 2 and fired at 700° C. to obtain a thermally stabilized TiO 2 -WO 3 powder. Next, add alumina hydroxide to this powder with Al 2 O 3 for 5 minutes.
It was added in an amount equivalent to % by weight, formed into particles with a particle size of 2 to 4 mm, and fired at 600°C for 3 hours to obtain a carrier. The obtained carrier was treated in the same manner as in Experiment 1.
Using Fe 2 O 3 as a catalyst, evaluation was performed under the conditions shown in Tables 1 and 2, and the results shown in Table 3 were obtained. (3) Experiment 3 Commercially available activated alumina (Sumitomo Chemical KHA) was sieved to a particle size of 2 to 4 mm, and this was used as a carrier to support 10% Fe 2 O 3 in the same manner as in Experiment 1 to serve as a catalyst.
The performance of this catalyst was evaluated under the conditions shown in Tables 1 and 2, and the results shown in Table 3 were obtained.

【表】 この結果から判るように、Al2O3やTiO2の単
独より、TiO2−WO3系の担体(実験No.2)を
用いた本発明実施列の場合が、脱硫硝の作用が
秀れていることがわかる。 (4) 実験4 実験1〜3で使用した触媒において、Fe2O3
はFe2(SO43に転化する。これらの触媒につい
て再生の可否を確認するため、各々を700℃の
温度で3時間加熱し、熱分解により再生して、
再度表1、2の試験条件で触媒の性能評価を行
いその結果を表4に示した。 この結果から判るように本発明の実施例の場
合のTiO2−WO3系担体を用いた触媒は劣化が
殆どなく、他のものは、脱硫、脱硫性能におい
て著しい劣化が認められた。
[Table] As can be seen from this result, the effect of desulfurization was higher in the case of the present invention using a TiO 2 -WO 3 carrier (Experiment No. 2) than with Al 2 O 3 or TiO 2 alone. It can be seen that he is excellent. (4) Experiment 4 In the catalyst used in Experiments 1 to 3, Fe 2 O 3
is converted to Fe 2 (SO 4 ) 3 . In order to confirm whether these catalysts can be regenerated, each was heated at a temperature of 700°C for 3 hours and regenerated by thermal decomposition.
The performance of the catalyst was evaluated again under the test conditions shown in Tables 1 and 2, and the results are shown in Table 4. As can be seen from the results, the catalyst using the TiO 2 -WO 3 carrier in the example of the present invention showed almost no deterioration, while the other catalysts showed significant deterioration in desulfurization and desulfurization performance.

【表】 (5) 実験5 実験2においてWO3の添加量を0、5、1、
0、3.0、5.0、9.0各重量%添加した担体を試作
し、実験1と同様にFe2O5を10重量%担持して
触媒を調製した。この各々について700℃の高
温で3時間、加速劣化処理し、表1、2に示す
試験条件で脱硝性能を評価した。ここで得た結
果を加速劣化処理前の脱硝性能に対する、加速
劣化処理後の脱硝性能への劣化度(〔処理前の
脱硝率−処理後の脱硝率〕÷処理前の脱硝率)
で表わし、表5に示した。
[Table] (5) Experiment 5 In Experiment 2, the amount of WO 3 added was 0, 5, 1,
0, 3.0, 5.0, and 9.0% by weight of Fe 2 O 5 were added as trial carriers, and in the same manner as in Experiment 1, 10% by weight of Fe 2 O 5 was supported to prepare a catalyst. Each of these was subjected to accelerated deterioration treatment at a high temperature of 700°C for 3 hours, and the denitrification performance was evaluated under the test conditions shown in Tables 1 and 2. The results obtained here are the degree of deterioration of the denitrification performance after accelerated deterioration treatment relative to the denitrification performance before accelerated deterioration treatment ([denitrification rate before treatment - denitrification rate after treatment] ÷ denitrification rate before treatment)
It is expressed in Table 5.

【表】 この結果から判るようにWO3の添加量は3
%以上あれば劣化度は小さく、実用に支障なき
ことが理解できる。またWO3は高価なため最
大使用量は7wt%にとどめることが好ましい。 (6) 実験6 実験2において、水酸化アルミナの水溶液の
添加量を、Al2O3として、1、3、5、7、9
各重量%添加した担体を試作し、粒径3mmの担
体を篩分けして、各々につき圧縮強度を測定し
た。 この結果を表6に示す。なお、この強度の値
は100個のサンプルの平均値である。
[Table] As you can see from this result, the amount of WO 3 added is 3
% or more, it can be understood that the degree of deterioration is small and there is no problem in practical use. Furthermore, since WO 3 is expensive, it is preferable to limit the maximum usage amount to 7wt%. (6) Experiment 6 In Experiment 2, the amount of aqueous solution of alumina hydroxide added was 1, 3, 5, 7, 9 as Al 2 O 3.
Prototype carriers containing each weight percent were prepared, and the carrier particles having a particle size of 3 mm were sieved, and the compressive strength of each carrier was measured. The results are shown in Table 6. Note that this intensity value is the average value of 100 samples.

【表】 この値から判るように、Al2O3の添加量は3
%以上あれば実用に支障ない強度である。 さらにAl2O3を増量すると、強度は幾分高く
はなるが、触媒性能の低下と、使用中にAl2
(SO43の生成が大きくなり触媒の劣化につな
がるので好ましくない。 従つて、本発明による触媒担体の好ましい組
成は、チタニア、酸化タングステン、アルミナ
質の重量%比で85〜94、7〜3、8〜3であ
る。 Al2O3の代替えとして水酸化シリカ(日産化
学製のシリカゾル)を使用したがTiO2の粘結
強度は得られなかつた。 又、アルミノシリケートについて、テストし
た結果、これは粘結剤として有効であるがシリ
ケート分は触媒組成を稀薄にするだけの作用し
か示さず、Al2O3だけが粘結作用の効果を生ぜ
しめているものと考える。 以上の試験において示した如く、本発明は極め
て優れた同時脱硫硝の方法と触媒を提供するもの
である。
[Table] As you can see from this value, the amount of Al 2 O 3 added is 3
% or more, the strength is sufficient for practical use. Further increasing the amount of Al 2 O 3 will increase the strength somewhat, but will reduce the catalyst performance and increase the amount of Al 2 O 3 during use.
This is not preferable because it increases the production of (SO 4 ) 3 and leads to catalyst deterioration. Therefore, the preferred composition of the catalyst carrier according to the present invention is 85 to 94, 7 to 3, and 8 to 3 in weight percent ratio of titania, tungsten oxide, and alumina. Silica hydroxide (silica sol manufactured by Nissan Chemical) was used as a substitute for Al 2 O 3 , but the caking strength of TiO 2 could not be obtained. In addition, tests on aluminosilicate showed that it was effective as a binder, but the silicate component only had the effect of diluting the catalyst composition, and that only Al 2 O 3 had a caking effect. I think that there is. As shown in the above tests, the present invention provides an extremely excellent method and catalyst for simultaneous desulfurization.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化タングステンにより熱安定化させた酸化
チタンを、アルミナ質にて粘結して担体とし、こ
の担体に酸化鉄を担持させた触媒により、燃焼排
ガス中の硫黄酸化物と窒素酸化物とを、同時に除
去することを特徴とする燃焼排ガスの浄化方法。
1 Titanium oxide thermally stabilized with tungsten oxide is caked with alumina to form a carrier, and a catalyst with iron oxide supported on this carrier removes sulfur oxides and nitrogen oxides from combustion exhaust gas. A method for purifying combustion exhaust gas characterized by simultaneously removing the gas.
JP14986479A 1979-11-19 1979-11-19 Purification method for combustion exhaust gas Granted JPS5673527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14986479A JPS5673527A (en) 1979-11-19 1979-11-19 Purification method for combustion exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14986479A JPS5673527A (en) 1979-11-19 1979-11-19 Purification method for combustion exhaust gas

Publications (2)

Publication Number Publication Date
JPS5673527A JPS5673527A (en) 1981-06-18
JPS6333892B2 true JPS6333892B2 (en) 1988-07-07

Family

ID=15484315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14986479A Granted JPS5673527A (en) 1979-11-19 1979-11-19 Purification method for combustion exhaust gas

Country Status (1)

Country Link
JP (1) JPS5673527A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152974A (en) * 1974-05-30 1975-12-09
JPS5171265A (en) * 1974-12-17 1976-06-19 Hitachi Shipbuilding Eng Co
JPS5395892A (en) * 1977-02-03 1978-08-22 Mizusawa Industrial Chem Titanium oxide catalyst carrier mold product and manufacture thereof
JPS5411093A (en) * 1977-06-27 1979-01-26 Sakai Chem Ind Co Ltd Production of catalyst and denitration method
JPS5483696A (en) * 1977-12-16 1979-07-03 Sakai Chem Ind Co Ltd Production of catalyst and denitration method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152974A (en) * 1974-05-30 1975-12-09
JPS5171265A (en) * 1974-12-17 1976-06-19 Hitachi Shipbuilding Eng Co
JPS5395892A (en) * 1977-02-03 1978-08-22 Mizusawa Industrial Chem Titanium oxide catalyst carrier mold product and manufacture thereof
JPS5411093A (en) * 1977-06-27 1979-01-26 Sakai Chem Ind Co Ltd Production of catalyst and denitration method
JPS5483696A (en) * 1977-12-16 1979-07-03 Sakai Chem Ind Co Ltd Production of catalyst and denitration method

Also Published As

Publication number Publication date
JPS5673527A (en) 1981-06-18

Similar Documents

Publication Publication Date Title
JPH02194819A (en) Reducing method of nitrogen oxide present in waste gas containing oxygen
JP2013173147A (en) Ammonia oxidation catalyst for the coal fired utilities
JPS6214339B2 (en)
JPS5915022B2 (en) Catalyst for removing nitrogen oxides from exhaust gas
JP3826167B2 (en) Nitrogen oxide removal method using natural manganese ore
JPS594175B2 (en) Nitrogen oxide removal using coated catalysts
WO1994021373A1 (en) Nitrogen oxide decomposing catalyst and denitration method using the same
JP3543224B2 (en) Method for reducing NOx in combustion exhaust gas and reduction catalyst
JP4204692B2 (en) Nitrogen oxide removal catalyst, method for producing the same, and method for removing nitrogen oxides using the catalyst
JP5164821B2 (en) Nitrogen oxide selective catalytic reduction catalyst
KR20080113565A (en) Preparation method of the zeolite containing iron catalyst for scr(selective catalyst reaction)
JPS5812057B2 (en) Shiyokubaisosabutsu
JPS6333891B2 (en)
JPS6333890B2 (en)
JPS6333892B2 (en)
JPH0299141A (en) Carbon monoxide oxidizing catalyst composition
JP3246757B2 (en) Nitrogen oxide removal catalyst
JPS6333894B2 (en)
JP2638067B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JPS58193733A (en) Catalyst for high temperature denitration
JPH03296436A (en) Denitrification catalyst for high temperature waste gas
JPH04244218A (en) Method for purifying exhaust gas
JPH04210241A (en) Catalyst for cleaning exhaust gas
JP3998218B2 (en) Carbon deposition control desulfurization agent
CN111774080B (en) Composition capable of reducing emission of CO and NOx, preparation method and application thereof