JP2638067B2 - Catalyst for catalytic reduction of nitrogen oxides - Google Patents

Catalyst for catalytic reduction of nitrogen oxides

Info

Publication number
JP2638067B2
JP2638067B2 JP63118858A JP11885888A JP2638067B2 JP 2638067 B2 JP2638067 B2 JP 2638067B2 JP 63118858 A JP63118858 A JP 63118858A JP 11885888 A JP11885888 A JP 11885888A JP 2638067 B2 JP2638067 B2 JP 2638067B2
Authority
JP
Japan
Prior art keywords
catalyst
oxide
titanium oxide
molybdenum
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63118858A
Other languages
Japanese (ja)
Other versions
JPH01288338A (en
Inventor
信江 手嶋
泰良 加藤
邦彦 小西
敏昭 松田
弘 赤間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP63118858A priority Critical patent/JP2638067B2/en
Publication of JPH01288338A publication Critical patent/JPH01288338A/en
Application granted granted Critical
Publication of JP2638067B2 publication Critical patent/JP2638067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アンモニアを還元剤とする窒素酸化物還元
用触媒に係り、特に重金属酸化物を多量に含有する排ガ
ス中の窒素酸化物の接触還元用触媒に関する。
Description: TECHNICAL FIELD The present invention relates to a catalyst for reducing nitrogen oxides using ammonia as a reducing agent, and particularly to the contact of nitrogen oxides in exhaust gas containing a large amount of heavy metal oxides. It relates to a catalyst for reduction.

〔従来の技術〕[Conventional technology]

各種固定発生源から排出された窒素酸化物(NOx)
は、硫黄酸化物(SOx)とともに主要な大気汚染物質で
ある。このNOxを除去方法としては、種々の方法がある
が、触媒を用いて排ガス中に添加したアンモニアで選択
的に還元する方法が主流となっている。このアンモニア
接触還元脱硝触媒には、石油、石炭などの化石燃料の燃
焼排ガスに含まれるSOxや灰分によって劣化しないこと
が必要であり、この要求を満たすものとして、酸化チタ
ンをベースにした各種の触媒が発明され、現在すでに広
く実用化されている(特開昭50−128681号、特開昭53−
28148号)。
Nitrogen oxides (NOx) emitted from various fixed sources
Is a major air pollutant along with sulfur oxides (SOx). Although there are various methods for removing this NOx, a method of selectively reducing it with ammonia added to exhaust gas using a catalyst has become mainstream. This ammonia catalytic reduction denitration catalyst must not be deteriorated by SOx or ash contained in the combustion exhaust gas of fossil fuels such as petroleum and coal, and various catalysts based on titanium oxide must satisfy this requirement. Have been invented and are now in widespread practical use (JP-A-50-128681, JP-A-53-128681).
No. 28148).

これらの触媒は、メタチタン酸または酸化チタンにバ
ナジウム、モリブデン、タングステン、鉄、クロムなど
の遷移金属元素の酸化物を混練、含浸などで添加し焼成
したものであり、通常の石油や石炭の排煙脱硝触媒とし
ては活性、寿命ともに優れたものである。
These catalysts are obtained by adding and kneading oxides of transition metal elements such as vanadium, molybdenum, tungsten, iron, chromium, etc. to metatitanic acid or titanium oxide and calcining them. As a denitration catalyst, it is excellent in both activity and life.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、低質の石炭燃焼排ガスやヨーロッパに
おいて多用されている、第1図に示した灰循環を有する
ボイラの排ガスなどの重金属酸化物蒸気を多量に含有す
る排ガスを処理する場合の触媒活性の低下については考
慮されていなかった。特に第1図に示すように、電気集
じん器7で捕集した燃焼灰を、灰循環路を介して火炉1
に再循環し、火炉内で熔融スラグとし外部に取出す燃料
方式の場合には、石炭中の鉱物質中に含有される鉛(P
b)、セレン(Se)、砒素(As)、カドミニウム(C
d)、亜鉛(Zn)などの金属は、灰分が火炉中で熔融さ
れ、スラグとして回収される過程で、単体もしくは酸化
物の蒸気となって排ガス中に移行し、通常脱硝装置を設
置する空気予熱器の前流では、高濃度の蒸気として存在
することが知られている(H.Brumsack et al.,Enviro
nmentsl Tecnology Letters;,7−22(1982))。脱
硝触媒がこれらの蒸気によって被毒し、その対策が必要
であることが判明したが、上記実用触媒は、この点につ
いて考慮されていなかった。
However, reduction of catalytic activity when treating exhaust gas containing a large amount of heavy metal oxide vapor such as low-quality coal combustion exhaust gas and exhaust gas from boilers having ash circulation shown in FIG. 1 which is widely used in Europe. Was not taken into account. In particular, as shown in FIG. 1, the combustion ash collected by the electric precipitator 7 is supplied to the furnace 1 through an ash circulation path.
In the case of the fuel system, which is recirculated to the slag in the furnace and taken out as molten slag, the lead (P
b), selenium (Se), arsenic (As), cadmium (C
d) In the process of melting ash in a furnace and collecting it as slag, metals such as zinc (Zn) are transferred to the exhaust gas as single or oxide vapors, and are usually installed in denitrification equipment. It is known that there is a high concentration of vapor in the upstream of the preheater (H. Bramsack et al., Enviro
nmentsl Tecnology Letters; 5 , 7-22 (1982)). It has been found that the denitration catalyst is poisoned by these vapors, and that it is necessary to take countermeasures. However, the above-mentioned practical catalyst has not been considered in this respect.

本発明の目的は、上記従来技術には考慮されていなか
った排ガス中に含まれる重金属化合物の蒸気による劣化
を防止した触媒を提供し、従来の触媒では活性低下が大
きく実現することが困難であった、第1図に示す灰循環
を有する灰熔融式ボイラのように、多量の重金属化合物
の蒸気を有する排ガスを、通常の排煙脱硝と同程度の触
媒量と簡便さで実施可能にすることにある。
An object of the present invention is to provide a catalyst in which the heavy metal compound contained in the exhaust gas is prevented from being deteriorated by vapor, which was not considered in the above prior art, and it is difficult to realize a large reduction in activity with the conventional catalyst. In addition, as in the ash-melting boiler having the ash circulation shown in FIG. 1, it is possible to carry out exhaust gas having a large amount of heavy metal compound vapor with the same amount of catalyst as that of ordinary flue gas denitration and with ease. It is in.

〔課題を解決するための手段〕[Means for solving the problem]

上記した従来技術の問題点は、酸化チタンとバナジウ
ム、銅、鉄、マンガンのうち1種以上の元素の酸化物、
およびモリブデンまたはタングステンの酸化物とからな
り、モリブデンまたはタングステンの酸化物のモル数の
和が触媒の単位比表面積当たり2×10-6から20×10-6
ル/m2の範囲にあり、全細孔容積が0.2ml/g以上であり、
かつ直径30Å以下の細孔容積が全細孔容積の25%以下で
あるように調整されたアンモニアを還元剤とする窒素酸
化物の接触還元用触媒により解決される。
The above-mentioned problems of the prior art include oxides of one or more of titanium oxide and vanadium, copper, iron and manganese,
And molybdenum or tungsten oxide, and the sum of the number of moles of the molybdenum or tungsten oxide is in the range of 2 × 10 -6 to 20 × 10 -6 mol / m 2 per unit specific surface area of the catalyst. The pore volume is 0.2 ml / g or more,
The problem is solved by a catalyst for catalytic reduction of nitrogen oxides using ammonia as a reducing agent and adjusted such that the pore volume of a diameter of 30 ° or less is 25% or less of the total pore volume.

本発明の触媒を調製するに際しては、酸化チタンと、
バナジウム、銅、鉄、マンガンのうち1種以上の元素の
酸化物と、モリブデンまたはタングステンの酸化物とか
らなる組成物に、硫酸アルミニウムまたは硫酸マグネシ
ウムを硫酸塩を混練または含浸し、もしくは上記組成物
に、ケイ酸エチルまたはシリカゾルを混練または含浸し
て乾燥、焼成するか、または上記組成物を酸化チタンを
高温で焼成した担体またはケイ酸エチル、チタニアゾル
もしくはシリカゾルを添加して焼成した担体に、担持す
ることが好ましい。
When preparing the catalyst of the present invention, titanium oxide,
A composition comprising an oxide of one or more of vanadium, copper, iron and manganese and an oxide of molybdenum or tungsten is kneaded or impregnated with sulfate of aluminum sulfate or magnesium sulfate, or the above composition The mixture is kneaded or impregnated with ethyl silicate or silica sol and dried and calcined, or the above composition is supported on a carrier obtained by calcining titanium oxide at a high temperature or a carrier calcined by adding ethyl silicate, titania sol or silica sol, Is preferred.

〔作用〕[Action]

重金属化合物を含むガスに触媒を接触させると、触媒
中に重金属化合物が蓄積し、活性が低下する。このとき
の細孔分布の変化を調べると、重金属化合物に接触した
後は、直径30Å以下の細孔が大きく減少している。この
ことから直径30Å以下の細孔は、短時間で細孔閉塞を引
き起こし、この部分は失活すると考えられる。また、触
媒活性は細孔容積が大きいほど高くなるので、すべての
細孔を減少させると、初期活性から低くなり使用できな
い。そこで、本発明では全細孔容積を大きく減少させる
ことなく、30Å以下の細孔を少なくし、活性をこの30Å
以下の細孔に負わせないようにすることにより、重金属
化合物による活性低下が少ない。
When a catalyst is brought into contact with a gas containing a heavy metal compound, the heavy metal compound accumulates in the catalyst and the activity is reduced. Examination of the change in the pore distribution at this time reveals that pores having a diameter of 30 mm or less are greatly reduced after contact with the heavy metal compound. From this, it is considered that pores having a diameter of 30 mm or less cause pore closure in a short time, and this portion is deactivated. Further, since the catalytic activity becomes higher as the pore volume is larger, if all the pores are reduced, the initial activity becomes lower and cannot be used. Therefore, in the present invention, the pores of 30 ° or less are reduced without greatly reducing the total pore volume, and the activity is reduced by 30% or less.
By not imposing on the following pores, the activity decrease by the heavy metal compound is small.

〔実施例〕〔Example〕

本発明になる触媒は、酸化チタンとV、Cu、Fe、Mnの
うち1種以上の酸化物とンMoまたはWの酸化物とからな
り、直径30Å以下の細孔容積が全細孔容積に対して25%
以下のものである。
The catalyst according to the present invention comprises titanium oxide, one or more oxides of V, Cu, Fe, and Mn and an oxide of Mo or W, and a pore volume having a diameter of 30 mm or less is reduced to a total pore volume. 25% for
These are:

具体的には、上記組成になる触媒粉末もしくは成形体
に、硫酸アルミニウムや硫酸マグネシウム等の硫酸塩、
またはケイ酸エチルやシリカゾル等を混練もしくは含浸
し、乾燥、焼成することにより実現できる。また、酸化
チタンを高温で焼成したもの、もしくは酸化チタンにケ
イ酸エチル、チタニアゾル、シリカゾル等を添加し焼成
したものに、上記組成になる活性成分を担持することに
より実現できる。この他の方法でも本発明を実現するこ
とは可能で、手段にはとらわれない。
Specifically, the catalyst powder or the molded body having the above composition, sulfates such as aluminum sulfate and magnesium sulfate,
Alternatively, it can be realized by kneading or impregnating ethyl silicate, silica sol, or the like, followed by drying and firing. Further, the present invention can be realized by supporting an active ingredient having the above-described composition on titanium oxide fired at a high temperature, or on titanium oxide added with ethyl silicate, titania sol, silica sol, or the like, and fired. The present invention can be realized by other methods, and is not limited to any means.

細孔容積の大きい状態の触媒に、硫酸アルミニウムや
ケイ酸エチル等を添加すると、これら添加物により触媒
表面が覆われ、その結果小さい細孔は閉塞して減少す
る。このとき、添加前の細孔容積が充分に大きいため、
全細孔容積は若干減少しても大きい値を維持し、これら
添加物は重金属化合物と異なり被毒作用がないので、活
性低下はほとんどない。また、酸化チタンにケイ酸エチ
ルやシリカゾル、チタニアゾルを添加することにより、
同様に小さい細孔を減少させたり、酸化チタンを高温で
焼成することにより、シンタリングにより小さい細孔を
減少させたものに、活性成分を担持することにより、有
効に活性成分を担持することが可能で、活性の高い触媒
が得られる。このように小さい細孔は減少させ、なおか
つ高活性な触媒であるため、重金属化合物によっても活
性低下をすることがない。
When aluminum sulfate, ethyl silicate, or the like is added to a catalyst having a large pore volume, the surface of the catalyst is covered by these additives, and as a result, small pores are closed and reduced. At this time, since the pore volume before addition is sufficiently large,
Even though the total pore volume is slightly reduced, it maintains a large value, and since these additives have no poisoning effect unlike heavy metal compounds, there is almost no decrease in activity. Also, by adding ethyl silicate, silica sol, titania sol to titanium oxide,
Similarly, by reducing the small pores or firing the titanium oxide at a high temperature, the active components can be effectively supported by supporting the active components on those having the smaller pores reduced by sintering. A possible and highly active catalyst is obtained. Since such small pores are reduced and the catalyst is highly active, the activity is not reduced even by the heavy metal compound.

以下、具体的実施例により本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to specific examples.

実施例1 酸化チタンを30wt%含有するメタチタン酸スラリ50kg
に、メタバナジン酸アンモン(NH4VO3)1.02kgと、モリ
ブデン酸アンモン3.81kgを加え、ニーダで加熱混練し水
分34%のペーストを得た。得られたペーストを押出造粒
機により造粒後、流動層乾燥機で乾燥し400℃で2時間
焼成した後、ハンマミルで100メッシュパス90%に粉砕
した。この粉末に硫酸アルミニウム(Al2(SO4)4w
t%と水とカオリン系無機繊維15wt%を加えてペースト
状にし、このペーストを厚さ0.3nmのSUS304を帯鋼を金
網状にメタルラス加工した後、酸化アルミ溶射した金属
基板へローラを用いて加圧塗布した。これを12時間風乾
した後、500℃で2時間焼成して板状触媒を得た。
Example 1 50 kg of metatitanate slurry containing 30 wt% of titanium oxide
To this were added 1.02 kg of ammonium metavanadate (NH 4 VO 3 ) and 3.81 kg of ammonium molybdate, and the mixture was heated and kneaded with a kneader to obtain a paste having a water content of 34%. The obtained paste was granulated by an extrusion granulator, dried by a fluidized bed drier, calcined at 400 ° C. for 2 hours, and pulverized with a hammer mill to a 90% mesh pass of 100 mesh. Aluminum sulfate (Al 2 (SO 4 ) 3 ) 4w
t%, water, and 15 wt% of kaolin-based inorganic fiber are added to form a paste. This paste is made of SUS304 with a thickness of 0.3 nm by metal lath processing into a steel mesh, and then using a roller on a metal substrate sprayed with aluminum oxide. It was applied under pressure. This was air-dried for 12 hours and calcined at 500 ° C. for 2 hours to obtain a plate-like catalyst.

比較例1 実施例1の硫酸アルミニウムを添加せず、他は同様に
して板状触媒を得た。
Comparative Example 1 A plate catalyst was obtained in the same manner as in Example 1, except that the aluminum sulfate was not added.

実施例2 比較例1で得られた板状触媒を、硫酸アルミニウムを
20%含む水溶液に含浸し、風乾し、500℃で2時間焼成
して触媒を得た。
Example 2 The plate-like catalyst obtained in Comparative Example 1 was replaced with aluminum sulfate.
It was impregnated with an aqueous solution containing 20%, air-dried, and calcined at 500 ° C. for 2 hours to obtain a catalyst.

実施例3 実施例2の硫酸アルミニウム水溶液を硫酸マグネシウ
ム水溶液(MgSO4)20wt%に変え、同様の方法で触媒を
得た。
Example 3 A catalyst was obtained in the same manner as in Example 2, except that the aqueous solution of aluminum sulfate was changed to 20% by weight of an aqueous solution of magnesium sulfate (MgSO 4 ).

実施例4 実施例2の硫酸アルミニウム水溶液をケイ酸エチル
(Si(OC2H5)に変え、同様の方法で触媒を得た。
Example 4 A catalyst was obtained in the same manner as in Example 2 except that the aqueous solution of aluminum sulfate was changed to ethyl silicate (Si (OC 2 H 5 ) 4 ).

実施例5 酸化チタンを30wt%含有するメタチタン酸スラリを蒸
発乾固した後、150℃で乾燥し、粉砕して酸化チタン粉
末を得た。この粉末を500℃で2時間焼成したもの200g
に、メタバナジン酸アンモニウム12.9gとモリブデン酸
アンモニウム24.3gと水100gに加え、加熱混練しながら
蒸発乾固させた。これを450℃で2時間焼成した後、粉
砕した後5φ×5mmに加圧成形し、触媒を得た。
Example 5 A metatitanate slurry containing 30% by weight of titanium oxide was evaporated to dryness, dried at 150 ° C., and pulverized to obtain a titanium oxide powder. 200g of this powder fired at 500 ° C for 2 hours
Then, 12.9 g of ammonium metavanadate, 24.3 g of ammonium molybdate and 100 g of water were added, and the mixture was evaporated to dryness while heating and kneading. This was calcined at 450 ° C. for 2 hours, pulverized, and then molded under pressure to 5 × 5 mm to obtain a catalyst.

実施例6、7 実施例5の酸化チタン粉末の焼成温度を300℃および7
00℃に変え、他は同様の方法で触媒を得た。
Examples 6 and 7 The firing temperature of the titanium oxide powder of Example 5 was set to 300 ° C. and 7
The catalyst was obtained in the same manner except that the temperature was changed to 00 ° C.

比較例2 実施例5の酸化チタン粉末を焼成せずに、150℃で乾
燥しただけで、他は同様の方法で触媒を得た。
Comparative Example 2 A catalyst was obtained in the same manner except that the titanium oxide powder of Example 5 was dried at 150 ° C. without firing.

実施例8 実施例5の150℃で乾燥した酸化チタン粉末200gにケ
イ酸エチル70gを加え、加熱混練し蒸発乾固させた後、4
00℃で2時間焼成し、粉砕して粉末を得た。この粉末20
0gを用い、他は実施例5と同様の方法で板状の触媒を得
た。
Example 8 70 g of ethyl silicate was added to 200 g of the titanium oxide powder dried at 150 ° C. in Example 5, heated and kneaded, and evaporated to dryness.
It was baked at 00 ° C. for 2 hours and pulverized to obtain a powder. This powder 20
A plate-like catalyst was obtained in the same manner as in Example 5 except that 0 g was used.

実施例9 実施例5のモリブデン酸アンモンに変え、パラタング
ステン酸アンモンを過酸化水素水溶液に溶解して等モル
を添加し、他は同様の方法で触媒を得た。
Example 9 A catalyst was obtained in the same manner as in Example 5, except that ammonium paratungstate was dissolved in an aqueous hydrogen peroxide solution and equimolar was added.

実施例10〜12 実施例5のメタバナジン酸アンモンに変え、硝酸銅、
硝酸鉄、硫酸マンガンを等モル添加し、他は同様の方法
で触媒を得た。
Examples 10 to 12 Instead of ammonium metavanadate of Example 5, copper nitrate was used.
Equimolar amounts of iron nitrate and manganese sulfate were added, and the others were the same to obtain a catalyst.

本発明の効果を明らかにするなめ、実施例および比較
例の各触媒の細孔容積を、100Å以下は液体N2温度にお
けるN2吸着によるBET法により、100Å以上は水銀圧入法
により求め、両者をあわせて全細孔容積とした。また、
第1表に示す条件でそれらの寿命テストを行った。本条
件は、石炭中の重金属化合物として亜酸化砒素(As
2O3)をガス中に含有させて、石炭排ガス脱硝条件を模
擬したものである。
Licking clarify the effects of the present invention, the pore volume of the catalysts of Examples and Comparative Examples, 100Å or less by the BET method by N 2 adsorption at liquid N 2 temperature, or 100Å is determined by mercury porosimetry, both And the total pore volume. Also,
Their life tests were performed under the conditions shown in Table 1. The conditions are that arsenic oxide (As
2 O 3 ) is contained in the gas to simulate the conditions for denitration of coal exhaust gas.

さらに第2表に、実施例1〜12および比較例1、2の
全細孔容積と、これに対する30Å以下の細孔容積の割
合、ならびに寿命テストの結果をあわせて示した。
Table 2 also shows the total pore volume of Examples 1 to 12 and Comparative Examples 1 and 2, the ratio of the pore volume of 30 ° or less to the total pore volume, and the results of the life test.

本発明になる触媒は、寿命テストによる活性低下が小
さく、さらに優れた耐久性を有することが示されてい
る。
It has been shown that the catalyst according to the present invention has a small decrease in activity by a life test and has excellent durability.

〔発明の効果〕〔The invention's effect〕

本発明によれば、重金属化合物の蒸気を多量に含有す
る排ガスでも、長時間高い脱硝性能を維持でき、触媒量
の少ない脱硝装置を実現できる。特に、第1図に示した
灰循環式ボイラの場合は、重金属蒸気濃度が著しく高
く、従来の触媒を用いた方法では、触媒量が通常の2〜
3倍必要と試算されるのに対し、本発明では触媒量をほ
とんど増加させる必要がない。
ADVANTAGE OF THE INVENTION According to this invention, even the exhaust gas which contains the vapor | steam of a heavy metal compound in large quantities can maintain high denitration performance for a long time, and can implement | achieve the denitration apparatus with a small catalyst amount. In particular, in the case of the ash circulation type boiler shown in FIG. 1, the heavy metal vapor concentration is extremely high.
Although it is estimated that the amount is required to be three times, in the present invention, there is almost no need to increase the amount of the catalyst.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の実施対象の一例である灰循環を有す
るボイラの系統図である。 1……火炉、2……節炭器、6……空気予熱器、7……
電気準じん器、8……煙突、9……灰循環路。
FIG. 1 is a system diagram of a boiler having an ash circulation which is an example of an object of the present invention. 1 ... furnace, 2 ... economizer, 6 ... air preheater, 7 ...
Electric dust filter, 8 chimney, 9 ash circulation path.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/88 B01D 53/36 102C (72)発明者 松田 敏昭 広島県呉市宝町3番36号 バブコック日 立株式会社呉研究所内 (72)発明者 赤間 弘 広島県呉市宝町3番36号 バブコック日 立株式会社呉研究所内 (56)参考文献 特開 昭62−282623(JP,A)──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication location B01J 23/88 B01D 53/36 102C (72) Inventor Toshiaki Matsuda 3-36 Takaramachi, Kure City, Hiroshima Prefecture Inside the Kure Research Laboratory, Babcock Hitachi Ltd. (72) The inventor Hiroshi Akama 3-36 Takaracho, Kure City, Hiroshima Prefecture Inside the Kure Research Laboratory, Babcock Hitachi Ltd. (56) References JP-A-62-282623 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化チタンと、バナジウム、銅、鉄、マン
ガンのうち1種以上の元素の酸化物と、モリブデンまた
はタングステンの酸化物とからなり、モリブデンまたは
タングステンの酸化物のモル数の和が触媒の単位比表面
積当たり2×10-6から20×10-6モル/m2の範囲にあり、
全細孔容積が0.2ml/g以上であり、かつ直径30Å以下の
細孔容積が全細孔容積の25%以下であるように調整され
た、アンモニアを還元剤とする窒素酸化物の接触還元用
触媒。
(1) An oxide of titanium oxide, an oxide of at least one of vanadium, copper, iron and manganese, and an oxide of molybdenum or tungsten, wherein the sum of the number of moles of the oxide of molybdenum or tungsten is In the range of 2 × 10 -6 to 20 × 10 -6 mol / m 2 per unit specific surface area of the catalyst,
Catalytic reduction of nitrogen oxides using ammonia as a reducing agent, adjusted so that the total pore volume is 0.2 ml / g or more and the pore volume with a diameter of 30 mm or less is 25% or less of the total pore volume Catalyst.
【請求項2】酸化チタンとバナジウム、銅、鉄、マンガ
ンのうち1種以上の元素の酸化物とモリブデンまたはタ
ングステンの酸化物とからなる組成物に、アルミニウム
またはマグネシウムの硫酸塩を混練または含浸して乾
燥、焼成したことを特徴とする請求項1記載の窒素酸化
物の接触還元用触媒。
2. A composition comprising titanium oxide, an oxide of one or more of vanadium, copper, iron and manganese and an oxide of molybdenum or tungsten, kneaded or impregnated with a sulfate of aluminum or magnesium. 2. The catalyst for catalytic reduction of nitrogen oxides according to claim 1, wherein the catalyst is dried, calcined and dried.
【請求項3】酸化チタンとバナジウム、銅、鉄、マンガ
ンのうち1種以上の元素の酸化物とモリブデンまたはタ
ングステンの酸化物とからなる組成物に、ケイ酸エチル
またはシリカゾルを混練または含浸して乾燥、焼成した
ことを特徴とする請求項1記載の窒素酸化物の接触還元
用触媒。
3. A composition comprising titanium oxide, an oxide of one or more of vanadium, copper, iron and manganese and an oxide of molybdenum or tungsten, which is kneaded or impregnated with ethyl silicate or silica sol. The catalyst for catalytic reduction of nitrogen oxide according to claim 1, wherein the catalyst is dried and calcined.
【請求項4】酸化チタンを高温で焼成した担体または酸
化チタンにケイ酸エチル、チタニアゾルもしくはシリカ
ゾルを添加して焼成した担体に、酸化チタンとバナジウ
ム、銅、鉄、マンガンのうち1種以上の元素の酸化物と
モリブデンまたはタングステンの酸化物とからなる組成
物を担持したことを特徴とする請求項1記載の窒素酸化
物の接触還元用触媒。
4. A carrier obtained by calcining titanium oxide at a high temperature or a carrier calcined by adding ethyl silicate, titania sol or silica sol to titanium oxide, wherein titanium oxide and at least one element selected from vanadium, copper, iron and manganese are added. 2. The catalyst for catalytic reduction of nitrogen oxide according to claim 1, wherein the catalyst comprises a composition comprising an oxide of molybdenum and tungsten.
JP63118858A 1988-05-16 1988-05-16 Catalyst for catalytic reduction of nitrogen oxides Expired - Fee Related JP2638067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63118858A JP2638067B2 (en) 1988-05-16 1988-05-16 Catalyst for catalytic reduction of nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63118858A JP2638067B2 (en) 1988-05-16 1988-05-16 Catalyst for catalytic reduction of nitrogen oxides

Publications (2)

Publication Number Publication Date
JPH01288338A JPH01288338A (en) 1989-11-20
JP2638067B2 true JP2638067B2 (en) 1997-08-06

Family

ID=14746882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63118858A Expired - Fee Related JP2638067B2 (en) 1988-05-16 1988-05-16 Catalyst for catalytic reduction of nitrogen oxides

Country Status (1)

Country Link
JP (1) JP2638067B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2361653A (en) * 2000-04-28 2001-10-31 Johnson Matthey Plc Improvements in catalytic reduction of NOx
JP4709716B2 (en) * 2006-09-12 2011-06-22 バブコック日立株式会社 Denitration catalyst for coal combustion exhaust gas and exhaust gas purification method
JP5804836B2 (en) * 2011-08-03 2015-11-04 三菱日立パワーシステムズ株式会社 Denitration catalyst for catalytic catalytic reduction
KR101907147B1 (en) * 2012-03-28 2018-10-12 현대중공업 주식회사 Metallic filter for exhaust gas of marine
CN110523436A (en) * 2019-07-03 2019-12-03 南京工业大学 A kind of powdery denitrating catalyst and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064126B2 (en) * 1985-06-10 1994-01-19 株式会社日本触媒 Exhaust gas purification method

Also Published As

Publication number Publication date
JPH01288338A (en) 1989-11-20

Similar Documents

Publication Publication Date Title
KR100686381B1 (en) Vanadium/titania-based catalysts comprising of nmo(natural manganese ore) for removing nitrogen oxides and dioxine at wide operation temperature region, and using thereof
EP0787521B1 (en) Method and apparatus for treating combustion exhaust gases
KR930000642B1 (en) Process for purifying waste gases
JP5576023B2 (en) Ammonia oxidation catalyst for coal burning public facilities
US6054408A (en) Catalyst for reducing the nitrogen oxide concentration in a flowing medium and method for producing the catalyst
KR100549778B1 (en) Vanadium/titania-based catalyst for the removal of nitrogen oxide at low temperature, its uses and method of removing nitrogen oxide using the same
JP2583911B2 (en) Nitrogen oxide removal catalyst
US20090060810A1 (en) Preparation Method of Vanadium/Titania-Based Catalyst Showing Excellent Nitrogen Oxide-Removal Performance at Wide Temperature Winow Through Introduction of Ball Milling, and Use Thereof
JP3480596B2 (en) Dry desulfurization denitrification process
JPS63270541A (en) Adsorbent for arsenic compound and removing method for arsenic compound from combustion gas
US20160038920A1 (en) Catalysts possessing an improved resistance to poisoning
JP2594301B2 (en) Coal-fired boiler with denitration equipment
DE3031286C2 (en) Process for treating flue gas containing dust and sulfur oxide
JP2638067B2 (en) Catalyst for catalytic reduction of nitrogen oxides
CN112774687A (en) SCR catalyst for synergistically removing NO and VOCs and preparation method thereof
KR100973675B1 (en) Catalyst for reduction of nitrogen oxide and oxidation of mercury in exhaust gas and method for removing nitrogen oxide and mercury simultaneously using the catalyst
CN102083529A (en) Catalyst for treating discharge gas
JP6703924B2 (en) Mercury oxidation catalyst and method for manufacturing mercury oxidation treatment apparatus equipped with mercury oxidation catalyst
JP3745407B2 (en) Exhaust gas purification catalyst, production method thereof, and exhaust gas purification method
JP2583912B2 (en) Nitrogen oxide removal catalyst
JP6400379B2 (en) Denitration method for combustion exhaust gas
KR100382051B1 (en) Catalyst for Selective Catalytic Reduction of Nitrogen Oxides Including Sulfur Dioxide at Low Temperature
KR100549777B1 (en) Vanadium/Titania-based Catalyst Containing Vanadium Trioxide for Removing Nitrogen Oxide and/or Dioxin at Wide Active Temperature Window
JP3512454B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2638067C (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees