JPS6333874A - Manufacture of fluorinated silicon germanium thin-film - Google Patents

Manufacture of fluorinated silicon germanium thin-film

Info

Publication number
JPS6333874A
JPS6333874A JP61176645A JP17664586A JPS6333874A JP S6333874 A JPS6333874 A JP S6333874A JP 61176645 A JP61176645 A JP 61176645A JP 17664586 A JP17664586 A JP 17664586A JP S6333874 A JPS6333874 A JP S6333874A
Authority
JP
Japan
Prior art keywords
film
mixed gas
gef4
gas
containing fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61176645A
Other languages
Japanese (ja)
Inventor
Makoto Toda
誠 戸田
Kiyoshi Yanagii
楊井 清志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP61176645A priority Critical patent/JPS6333874A/en
Publication of JPS6333874A publication Critical patent/JPS6333874A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • H01L31/204Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table including AIVBIV alloys, e.g. SiGe, SiC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a film having an arbitrary optical energy gap and excellent photoelectric characteristics easily by using silane containing fluorine, at least one kind of SiH4, Si2H6 and Si2F6 in quantity less than silane containing fluorine and a mixed gas containing GeF4 and H2 in a glow discharge method. CONSTITUTION:Silane containing fluorine represented by general formula SiHnF4-n (n: 0-3), at least one kind of SiH4, Si2H6 and Si2P6 in quantity less than silane containing fluorine and a mixed gas containing GeF4 and H2 are employed. All the gases have high safety, and need not be cautioned particularly on treatment. Optical forbidden band width is narrowed and the flow rate of the mixed gas is increased when the quantity of germanium in a raw material gas is augmented, but the forbidden band width is narrowed when discharge power is reduced. These conditions are selected properly, thus acquiring a film having desired optical forbidden band width.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光電変換素子(太陽電池、電子写真、センサー
、トランジスター)や熱電変換素子(熱電池、センサー
)として有用なa−8:lGe薄膜の製造法に関するも
のであり、特に任意の光学的エネルギーギャップを有し
、且つ光電特性の良好な膜を容易に得ることを目的とす
るものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides an a-8:lGe thin film useful as a photoelectric conversion element (solar cell, electrophotography, sensor, transistor) or a thermoelectric conversion element (thermal battery, sensor). The present invention relates to a manufacturing method, and particularly aims at easily obtaining a film having an arbitrary optical energy gap and good photoelectric properties.

〔従来の技術〕[Conventional technology]

近年5iGe薄膜はその光吸収波長瑞が、長波長側にあ
り、多用途にその良質なものが求められている。しかし
5iGe薄膜は一般にシランガス(SiH4)とゲルマ
ンガス(GeH4)との組合せから作製されているが、
所定の光学的エネルギーを有する膜を再現性良く作製す
ることが回部であり、しかも光電特性の良好な膜は得ら
れにくかった。
In recent years, the light absorption wavelength of 5iGe thin films is on the long wavelength side, and high quality 5iGe thin films are required for a variety of uses. However, 5iGe thin films are generally made from a combination of silane gas (SiH4) and germane gas (GeH4);
The challenge is to produce a film having a predetermined optical energy with good reproducibility, and it has been difficult to obtain a film with good photoelectric properties.

また5i)f4ガスは空気中で激しく燃焼する発火性の
ガスであシ、GeH4ガスも高温になると分解しやすい
ガスであることから取扱いにも難がある。
Furthermore, 5i) F4 gas is an ignitable gas that burns violently in the air, and GeH4 gas is also difficult to handle because it easily decomposes at high temperatures.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はかかる従来の製膜法の欠点を一掃するものであ
る。
The present invention eliminates the drawbacks of such conventional film forming methods.

すなわち本発明は (a)  −ff式5iHnF4−n (n ; O〜
3 )で衣わされる含フツ素シラン、 (b)  これより少量のSiH4、Si2H6、S1
□F6のうちの少くとも1種、および (c)  GeF4とH3を含む混合ガスを用いること
を特徴とするフッ素系シリコンゲルマニウム薄膜の製造
法である。
That is, the present invention provides (a) -ff formula 5iHnF4-n (n; O~
3) fluorine-containing silane coated with (b) smaller amounts of SiH4, Si2H6, S1
□This is a method for producing a fluorine-based silicon germanium thin film characterized by using a mixed gas containing at least one type of F6 and (c) GeF4 and H3.

本発明においては、シリコン源としてSiF、、SiH
F3.81HzFx、およびSiH,F’のフルオロシ
ラン類を用いるものであり、これらのガスはいずれも安
全性の高いガスでおシ、取扱上特に注意を要することは
ない。本発明においては、これらのフルオロシラン類に
対し、これよシもプラズマ雰囲気下において分解し易い
ガスを第二のシリコン源として用いるものである。これ
より分解し易いガスとしては、具体的にはシラン(Si
H4)、ジシラン(814Hg)、ヘキサフルオロジシ
ラン(SizFs)が挙げられ、特に、第一のシリコン
源としてSit。
In the present invention, the silicon source is SiF, SiH.
F3.81HzFx, SiH, and F' fluorosilanes are used, and these gases are all highly safe gases and do not require special care in handling. In the present invention, a gas that is more easily decomposed in a plasma atmosphere than these fluorosilanes is used as the second silicon source. Specifically, a gas that is easier to decompose is silane (Si
H4), disilane (814Hg), hexafluorodisilane (SizFs), in particular Sit as the first silicon source.

を用いる場合には、第二のシリコン源としてヘキサフル
オロジシラン(SizFs )も有効である。
When using SizFs, hexafluorodisilane (SizFs) is also effective as the second silicon source.

また、Ge源としてはGeF4を用い、これらのガスに
更にH!を添加した混合ガスを使用する。
In addition, GeF4 is used as the Ge source, and H! is added to these gases. Use a mixed gas with added

本発明者らは、SiF4.5iHF8、Sin、F、お
よびSiH,Fのフルオロシラン類をシリコン源として
用い、ゲルマニウム源としてGeF4を用い、更に、こ
れにH3を添加した混合ガスを用いてプラズマCvDを
おこなって得た腺は元″を特性が良好であり、特に光学
的禁制帯幅1.5eV付近での光電特性に優れているこ
とを見い出した。しかし、膜の形成速度が必ずしも十分
でなく、工業的な製膜とは言い難い。
The present inventors used fluorosilanes such as SiF4.5iHF8, Sin, F, and SiH,F as a silicon source, GeF4 as a germanium source, and further used a mixed gas containing H3 to perform plasma CVD. We found that the glands obtained by this process had good properties, especially in the photoelectric properties near the optical forbidden band width of 1.5 eV. However, the film formation rate was not necessarily sufficient. , it can hardly be called industrial film formation.

本発明においては、シリコン源としてフルオロシラン以
外に更に、これより少量のシラン(SiH4)、ジシラ
ン(Si!Ha)、ヘキサフルオロジシラン(SizF
s)を添加することにより、jt、11特性を荷に落と
すことなく堆積速度を飛躍的に大きくすることができる
ものである。
In the present invention, in addition to fluorosilane, smaller amounts of silane (SiH4), disilane (Si!Ha), and hexafluorodisilane (SizF) are used as silicon sources.
By adding s), the deposition rate can be dramatically increased without compromising the jt, 11 characteristics.

本発明においては、ゲルマニウム源としでGeF4を用
い、また水素ガスを併用するものであるが、このほかに
ヘリウム、アルゴン、ネオン、キセノン等の希ガス類を
併用してもよい。また、フルオロシラン類と併用して用
いるシラン、ジシランの量は、シリコン源全体の0.1
%から50%までの範囲が好ましく、より好ましくは、
0.5チから20%までの範囲である。これより少ない
と、シラン、ジシランの併用の効果が少なく、膜形成速
度の増大が図れない。また、これより多いと良好な光電
物性が得られない。
In the present invention, GeF4 is used as a germanium source, and hydrogen gas is used in combination, but rare gases such as helium, argon, neon, and xenon may also be used in combination. In addition, the amount of silane and disilane used in combination with fluorosilanes is 0.1 of the total silicon source.
% to 50%, more preferably,
It ranges from 0.5 inch to 20%. If the amount is less than this, the effect of using silane and disilane in combination will be small and it will not be possible to increase the film formation rate. Moreover, if the amount is more than this, good photoelectric properties cannot be obtained.

また、SiF、と併用してSi!F@を用いる場合には
、ド限は、シラン、ジシランを用いる場合と同様である
が、上限については特に制限はない。
Also, Si! can be used in combination with SiF! When using F@, the limit is the same as when using silane or disilane, but there is no particular restriction on the upper limit.

本発明の原料ガスの組合せにおいては、容易に光学的禁
制帯幅の制御が可能であり、例えば原料ガス中のゲルマ
ニウムの量を大きくすると、光学的禁制帯幅は狭くなる
。また、混合ガスの流量を大きくするか、放電電力を小
さくすると狭くなる。これらの条件を適宜選択して所望
の光学的禁制帯幅の膜を得ることができる。
In the raw material gas combination of the present invention, the optical forbidden band width can be easily controlled; for example, when the amount of germanium in the raw material gas is increased, the optical forbidden band width becomes narrower. In addition, if the flow rate of the mixed gas is increased or the discharge power is decreased, the width becomes narrower. By appropriately selecting these conditions, a film having a desired optical bandgap width can be obtained.

展形成は通常のグロー放電可能な反応型中にa−8iG
e膜を形成すべき単結晶シリコン、ガラス、ステンレス
スチール、セラミックマたはそれらの異面に導電住換を
コーティングしたもの等の基板を配置する。ついで原料
の混合ガスを該反応室内に供給しつつ、放電エネルギー
を与え、減圧下に該基板上にa−8iGe膜を形成する
ものである。
Expansion formation is a-8iG in a reaction type capable of normal glow discharge.
A substrate, such as single crystal silicon, glass, stainless steel, ceramic material, or a substrate coated with a conductive material on a different surface thereof, on which the e-film is to be formed is arranged. Next, while supplying a mixed gas of raw materials into the reaction chamber, discharge energy is applied to form an a-8iGe film on the substrate under reduced pressure.

a −5iGe膜の形成速度は、主として原料ガス組成
比、ガス流量、圧力、族1!電力に依存し、流量、圧力
、放電電力のいずれかを犬とすることで膜の形成速度は
大となるが、ガス流量、放電電力を大きくすると、光学
内素1ttlJ帯幅のコントロールが困峻となり圧力を
大きくすることにより、膜買の低下を招き、好ましくな
い。また、これらの条件を通常行なわれる範囲内で変化
させることによる膜形成速度の増大には限度があ夛、必
ずしも十分なものではない。これに対し、本発明におい
てはシリコン源としてシラン、ジシランを添加するのみ
でかかる不都合を排除でき、しかも光電特性も良好な膜
を容易に得ることができるものである。
The formation rate of the a-5iGe film is mainly determined by the raw material gas composition ratio, gas flow rate, pressure, and Group 1! It depends on the electric power, and the film formation speed can be increased by adjusting the flow rate, pressure, or discharge power, but if the gas flow rate or discharge power is increased, it becomes difficult to control the optical element 1ttlJ bandwidth. Therefore, increasing the pressure will lead to a decrease in membrane resistance, which is undesirable. Furthermore, there are many limits to increasing the film formation rate by changing these conditions within the usual range, and it is not necessarily sufficient. In contrast, in the present invention, such disadvantages can be eliminated by simply adding silane or disilane as a silicon source, and a film with good photoelectric properties can also be easily obtained.

得られるa −5iGe薄膜の半導体特性は、上記の原
料ガス組成比、流量、圧力、放電電力および基板温度等
の因子によp変化するが、原料ガス中のゲルマニウム比
率が小さく流量を犬とすることにより、光を特性を良好
にできる。また、基板温度は200〜350 ℃の範囲
が好ましい。
The semiconductor properties of the obtained a-5iGe thin film vary depending on factors such as the above-mentioned source gas composition ratio, flow rate, pressure, discharge power, and substrate temperature, but the germanium ratio in the source gas is small and the flow rate is low. By doing so, the characteristics of the light can be improved. Further, the substrate temperature is preferably in the range of 200 to 350°C.

実施例1.2.3、比較例1 SiF4−8iH,−GeF4−H,の混合ガスを用い
、13.56MHz高周波電源を有するプラズマCVD
装置にて、全ガス流量55SOOM、基板温度300℃
、放電電力密度0 、 I 3 w/i、ガス圧力20
07nTOrrの条件でコーニング7059ガラス基板
上に膜形成をおこなった。(実施例1.2)また比較の
ため同−条件にてSiF4−()8F4−Hlの混合ガ
スを用いて、成膜をおこなった。また同−条件で5iF
4−8i、F、 −GeF4−H,のガスを用いて成膜
をおこなった。
Example 1.2.3, Comparative Example 1 Plasma CVD using a mixed gas of SiF4-8iH, -GeF4-H and having a 13.56MHz high frequency power source
In the device, the total gas flow rate was 55SOOM, and the substrate temperature was 300℃.
, discharge power density 0, I 3 w/i, gas pressure 20
A film was formed on a Corning 7059 glass substrate under conditions of 0.07 nTOrr. (Example 1.2) For comparison, film formation was performed under the same conditions using a mixed gas of SiF4-()8F4-Hl. Also under the same conditions 5iF
The film was formed using a gas of 4-8i, F, -GeF4-H,.

(実施例3)これらのガス組成および、得られた膜の光
学的禁制帯幅、膜堆積速度、光導電率、暗導を率の測定
結果をlX1表に示す。(He−Neレーザー632.
8 m、300μW/crIiで測定)(以下余ロー、
−シ 1’−1j 第  1  表 このように、比較例1のSiF4 Ge14 Hlの系
では、光電特性は良好であるが、換の堆積速度が十分で
ない、これに対し実施例1ではSiF4の約1/100
、実施?lJ 2では豹2/100 t−よシ分解し易
いSiH4を混入させるのみで、堆積速度が2倍以上に
増加した。
(Example 3) These gas compositions and the measurement results of the optical bandgap, film deposition rate, photoconductivity, and dark conductivity of the obtained films are shown in Table 1X1. (He-Ne laser 632.
8 m, measured at 300μW/crIi) (hereinafter referred to as "Yuro")
-Si1'-1j Table 1 As described above, the SiF4 Ge14 Hl system of Comparative Example 1 has good photoelectric properties, but the deposition rate of SiF4 is not sufficient. 1/100
,implementation? In lJ2, the deposition rate was increased by more than twice by simply adding SiH4, which is more easily decomposed than 2/100 t-.

実施例4、比較例2 実施例]と同一条件にてSiH’F3−8iH4−Ge
F4−H2の混合ガスによシ膜形成をおこなった。また
比較のために5iHF1−GeF4−Hlの混合ガスを
用いて成膜をおこなった。(ただし、全ガス流量は60
SOCM) この結果を第2表に示す。このように堆積速度に著しい
差がある。
Example 4, Comparative Example 2 SiH'F3-8iH4-Ge under the same conditions as Example]
Film formation was performed using a mixed gas of F4-H2. For comparison, film formation was performed using a mixed gas of 5iHF1-GeF4-Hl. (However, the total gas flow rate is 60
SOCM) The results are shown in Table 2. There is thus a significant difference in deposition rate.

第2表 実施例5.6、比較例3 実施例】の装置を用い放電電力密度を0.07’IIA
raとする以外は同様の条件によシ、SiH,F’、 
−8iH,−GeF4Hz(実施例5)、Si、H3P
、−!91.H6−GeF4−H,(実施例6)の混合
ガスにより成膜を行なった。また比較のために5iH2
F、−GeF4−H2の混合ガスについて成膜を行なっ
た。
Table 2 Example 5.6, Comparative Example 3 Using the device in Example, the discharge power density was 0.07'IIA.
SiH, F', under the same conditions except for ra.
-8iH, -GeF4Hz (Example 5), Si, H3P
,-! 91. Film formation was performed using a mixed gas of H6-GeF4-H (Example 6). Also for comparison 5iH2
Film formation was performed using a mixed gas of F, -GeF4-H2.

この結果を第3表に示すが、堆積速度に大きな差が生じ
た。
The results are shown in Table 3, and a large difference occurred in the deposition rate.

第 3 表 実施例7、比較νす4.5.6 実施例1の装置を用い同様の条件でSiH3F−SiH
4−GeF4− H,の混合ガスによシ成膜を行なった
。また比較のために5iH3F−GeF4−H,の混合
ガスについて成膜を行なった。(比較例4)また、5i
H4−GeH4−H,の混合ガスにより成膜を行なった
(条件は200F7tTOrr、300℃、0.03W
/cni)(比較例5)。さらにまた5iF4−8iH
4−GeH4−H2の混合ガスにより成膜を行なった。
Table 3 Example 7, Comparison 4.5.6 SiH3F-SiH using the apparatus of Example 1 and under the same conditions.
The film was formed using a mixed gas of 4-GeF4-H. For comparison, a film was formed using a mixed gas of 5iH3F-GeF4-H. (Comparative Example 4) Also, 5i
Film formation was performed using a mixed gas of H4-GeH4-H (conditions were 200F7tTorr, 300℃, 0.03W
/cni) (Comparative Example 5). Furthermore, 5iF4-8iH
Film formation was performed using a mixed gas of 4-GeH4-H2.

(条件は200 m’rorr、 300℃、O,I3
W/i)第  4  表 比較例6においては堆積速度は大きいが、光導xiが低
く、良好な光電物性は得られなかった。
(Conditions are 200 m'rorr, 300℃, O, I3
W/i) Table 4 In Comparative Example 6, the deposition rate was high, but the light guide xi was low and good photoelectric properties could not be obtained.

特許出願人  セントラル硝子株式会社; ・  −・ fl    1 を警□−2JPatent applicant: Central Glass Co., Ltd.; fl 1 Police□-2J

Claims (1)

【特許請求の範囲】[Claims] (1)グロー放電法において、 (a)一般式SiHnF_4_−_n(n;0〜3)で
表わされる含フッ素シラン、 (b)これより少量のSiH_4、Si_2H_■、S
i_2F_6のうち少くとも1種、および (c)GeF_4とH_2を含む混合ガスを用いること
を特徴とするフッ素系シリコンゲルマニウム薄膜の製造
法。
(1) In the glow discharge method, (a) a fluorine-containing silane represented by the general formula SiHnF_4_-_n (n; 0 to 3), (b) smaller amounts of SiH_4, Si_2H_■, S
A method for producing a fluorine-based silicon germanium thin film, the method comprising using at least one type of i_2F_6 and (c) a mixed gas containing GeF_4 and H_2.
JP61176645A 1986-07-29 1986-07-29 Manufacture of fluorinated silicon germanium thin-film Pending JPS6333874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61176645A JPS6333874A (en) 1986-07-29 1986-07-29 Manufacture of fluorinated silicon germanium thin-film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61176645A JPS6333874A (en) 1986-07-29 1986-07-29 Manufacture of fluorinated silicon germanium thin-film

Publications (1)

Publication Number Publication Date
JPS6333874A true JPS6333874A (en) 1988-02-13

Family

ID=16017202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61176645A Pending JPS6333874A (en) 1986-07-29 1986-07-29 Manufacture of fluorinated silicon germanium thin-film

Country Status (1)

Country Link
JP (1) JPS6333874A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02260666A (en) * 1989-03-31 1990-10-23 Mitsubishi Electric Corp Manufacture of amorphous solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02260666A (en) * 1989-03-31 1990-10-23 Mitsubishi Electric Corp Manufacture of amorphous solar cell

Similar Documents

Publication Publication Date Title
US4720395A (en) Low temperature silicon nitride CVD process
BR8305222A (en) PROCESS FOR FORMING AMORPHIC SEMICONDUCTOR ALLOYS AND DEVICE USING MICROWAVE ENERGY
JPH05335257A (en) Formation of p-type silicon carbide
KR960032641A (en) Semiconductor device and method of forming insulating film
US6893749B2 (en) SiC-formed material
US4485121A (en) Method for producing a fluorine-containing amorphous semiconductor
US3503798A (en) Silicon nitride film deposition method
US5082696A (en) Method of forming semiconducting amorphous silicon films from the thermal decomposition of dihalosilanes
US4344984A (en) Process for producing a layer containing silicon
JPS6333874A (en) Manufacture of fluorinated silicon germanium thin-film
JP3084395B2 (en) Semiconductor thin film deposition method
JPH0587171B2 (en)
JP3977878B2 (en) Thin film thermistor and manufacturing method thereof
JPH04298023A (en) Manufacture of single crystal silicon thin film
JP3555221B2 (en) Method for producing fluorine-containing silicon oxide film
JPS6333873A (en) Manufacture of silicon germanium alloy thin-film
JPS5955441A (en) Formation of hydrogenated amorphous silicon film
JPH03218682A (en) Hydrogenated crystal silicon thin film and solar cell
JPS5957909A (en) Formation of amorphous silicon film
JPS60144940A (en) Method of producing silicon oxide
JPS61276976A (en) Method and apparatus for producing high quality thin film containing silicon by thermal cvd method using species in intermediate state
JPS63285124A (en) Production of quartz glass thin film
JPH04188879A (en) Photoelectric conversion element and manufacture thereof
Chakravarthy et al. Low Temperature Synthesis and Characterization of Silicon Dioxide Films
JPS61234533A (en) Fabrication of silicon nitride coating