JPS61276976A - Method and apparatus for producing high quality thin film containing silicon by thermal cvd method using species in intermediate state - Google Patents

Method and apparatus for producing high quality thin film containing silicon by thermal cvd method using species in intermediate state

Info

Publication number
JPS61276976A
JPS61276976A JP11676285A JP11676285A JPS61276976A JP S61276976 A JPS61276976 A JP S61276976A JP 11676285 A JP11676285 A JP 11676285A JP 11676285 A JP11676285 A JP 11676285A JP S61276976 A JPS61276976 A JP S61276976A
Authority
JP
Japan
Prior art keywords
silicon
thin film
species
containing thin
intermediate state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11676285A
Other languages
Japanese (ja)
Other versions
JPH0365434B2 (en
Inventor
Hideki Matsumura
英樹 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP11676285A priority Critical patent/JPS61276976A/en
Publication of JPS61276976A publication Critical patent/JPS61276976A/en
Publication of JPH0365434B2 publication Critical patent/JPH0365434B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a high quality thin film contg. silicon, almost free from defects and undergoing no damage by plasma by thermally decomposing a gaseous mixture of species in an intermediate state such as SiF2 with decomposed species obtd. by bringing H2, SiH4 or the like into contact with a catalyst. CONSTITUTION:H2, SiH4, Si2H6, NH3 or N2O6 is brought into contact with a catalyst such as a platinum catalyst to obtain the decomposed species by a thermal reaction, a plasma reaction or a photoreaction. A gaseous starting material contg. a gaseous mixture of the decomposed species with the species in an intermediate state such as SiF2 or SiF as the principal component is thermally decomposed to deposit a thin film.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、シリコン含有高品質薄膜の製造方法及び装置
に関し、特に、中間状頼種を用いて熱CVDによりシリ
コン含有高品質薄膜を製造する方法と装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method and apparatus for producing a silicon-containing high-quality thin film, and in particular, for producing a silicon-containing high-quality thin film by thermal CVD using an intermediate material. METHODS AND APPARATUS.

(従来技術) アモルファスシリコンなどのアモルファス半導体薄膜は
、現在、シランなどを放電分解することにより形成され
ている。そのため、各種のアモルファス半導体膜を多層
に積み重ねて太陽電池などを形成する際に、を−間の界
面などが放電によるプラズマダメージを受け、その特性
の向上に1つの限界を与えている。これを解決する方法
として、光化学反応によりアモルファス半導体を形成す
ることも試みられているが、膜堆積部への光の導入法や
光源自体にも問題をかかえている。
(Prior Art) Amorphous semiconductor thin films such as amorphous silicon are currently formed by discharging and decomposing silane or the like. Therefore, when various amorphous semiconductor films are stacked in multiple layers to form a solar cell or the like, the interface between - and the like suffers plasma damage due to discharge, which puts a limit on the improvement of its properties. As a way to solve this problem, attempts have been made to form an amorphous semiconductor through a photochemical reaction, but there are also problems with the method of introducing light into the film deposition area and the light source itself.

一方、MO8)ランジスタ々どの半導体テハイスの製作
においては、良質な絶縁膜を低温で形成する技術の開発
が望まれている。そのため、プラズマ反応や光反応を用
いる絶縁膜堆積法が検討されているが、この場合も前舵
したアモルファス半導体薄膜製造法におけると同様の問
題をかかえている。
On the other hand, in the production of semiconductor technology such as MO8) transistors, it is desired to develop a technology for forming high-quality insulating films at low temperatures. For this reason, insulating film deposition methods using plasma reactions or photoreactions are being considered, but these methods also have the same problems as the more advanced amorphous semiconductor thin film manufacturing methods.

(発明が解決しようとする問題点) 本発明は、このような従来技術の問題点を解決するため
には、熱CVI)法を利用すれば良いのではないかとい
う考え方がその出発点となっている。すなわち、もし、
光感度などの高い良好なアモルファス半導体を熱CVD
法で作ることができれば、成膜装置が簡嚇で安価になる
ばかりか、成膜自体が安堂化すると思われる。また、良
質な絶縁膜が室温を含む低温にでの熱CVD法で作るこ
とができれば、半導体デバイス自体に損傷を与えない理
想的な絶縁膜形成法となる。
(Problems to be Solved by the Invention) The starting point of the present invention is the idea that in order to solve the problems of the prior art, it would be better to use the thermal CVI method. ing. That is, if
Thermal CVD of amorphous semiconductors with high photosensitivity, etc.
If it could be produced by a method, not only would the film deposition equipment be simpler and cheaper, but the film deposition itself would be cheaper. Furthermore, if a high-quality insulating film can be formed by thermal CVD at a low temperature including room temperature, it will be an ideal method for forming an insulating film that does not cause damage to the semiconductor device itself.

したがって、本発明はプラズマ反応や光反応を用いるこ
となく、熱CVD1のみを用いて、アモルファスシリコ
ンなどのアモルファス半導体薄膜やシリコンナイトライ
ドなどの絶縁膜などの、シリコンを含有する高品質薄膜
を形成する方法と装置f提供することを目的とする。
Therefore, the present invention forms high-quality silicon-containing thin films such as amorphous semiconductor thin films such as amorphous silicon and insulating films such as silicon nitride using only thermal CVD without using plasma reactions or photoreactions. It is an object of the present invention to provide a method and apparatus.

(問題点を解決するための手段) 本発明の方法は、天然には存在しない中間状態の種、特
に、その中で異例に寿命の長い二7フ化シリコンSiF
2又は嚇フッ化シリコンSiFを用い、これに水素H2
)シランSI H4、ジシランSi2H6、アンモニア
NH3、ヒドラジンN2H4などの熱分解柚、プラズマ
分解種又は光分解種を混ぜて、この混合ガスを主成分と
する素材ガスを熱分解させて堆積させる、熱CVD法に
より、アモルファスシリコンなどのアモルファス半導体
薄iやシリコンナイトライドなどの絶縁膜など、シリコ
ンを含有する高品質薄膜を形成することを特徴とする薄
膜形成法に関するものである。
(Means for Solving the Problems) The method of the present invention uses species in an intermediate state that does not exist in nature, especially silicon di7fluoride SiF, which has an unusually long lifespan among them.
2 or hydrogen fluoride SiF is used, and hydrogen H2 is added to it.
) Thermal CVD, in which pyrolysis, plasma decomposition species, or photodecomposition species such as silane SI H4, disilane Si2H6, ammonia NH3, and hydrazine N2H4 are mixed, and a material gas containing this mixed gas as the main component is pyrolyzed and deposited. The present invention relates to a thin film forming method characterized by forming a high quality thin film containing silicon, such as an amorphous semiconductor thin film such as amorphous silicon or an insulating film such as silicon nitride, by a method.

本発明の方法においては、二フッ化シリコン、5in2
又はそのフラグメントとしての嚇フッ化シリコンSiF
は、固体シリコンと四フッ化シリコンSiF4とを90
0℃以上において化学間16させることにより生成する
。また、二フッ化シリコンSiF2などは六フッ化工シ
リコンSi2F6などSim F’2m+2 (m =
 1.2.3・・・・・・)の化学式を持つ分子、又は
、5iF2H2などのその分子中のフッ素の一部を水素
で置き換えた分子を、熱反応、プラズマ反応又は光反応
により分解することによっても得ることができる。
In the method of the present invention, silicon difluoride, 5in2
or as a fragment thereof, fluorinated silicon SiF
is solid silicon and silicon tetrafluoride SiF4 at 90%
It is produced by chemical reaction at temperatures above 0°C. In addition, silicon difluoride SiF2 etc. is silicon hexafluoride Si2F6 etc.Sim F'2m+2 (m =
1.2.3...) or a molecule in which part of the fluorine in the molecule is replaced with hydrogen, such as 5iF2H2, is decomposed by thermal reaction, plasma reaction, or light reaction. It can also be obtained by

本発明の方法においては、これら二フッ化シリコンSi
F2  又は学フッ化シリコン5IFe、水素H2)シ
ランSiH,、ジシランSi2H6、アンモニアN T
T5又はヒドラジンN2H1などを熱反応、プラズマ反
応又は光反応により分解した種と混合し、その混合ガス
全基板上に加熱分解堆積(いわゆる熱Chemical
 Vaper T)eposition(CVD))す
ることを特徴としている。この時、二フッ化シリコンS
iF2などの中間状態種、又は、水素馬の分解!4(水
素原子)など各種の分解種の生成に、例えばプラズマ反
応を用いた場合においても、それらが基板表面上へ輸送
された後、基板表面はプラズマ、高エネルギー元々とに
さらされることによる損傷を受けることなく、基板−ヒ
にシリコン含有薄膜が熱CVI)することを発明の要点
と]7ている。
In the method of the present invention, these silicon difluoride Si
F2 or silicon fluoride 5IFe, hydrogen H2) silane SiH, disilane Si2H6, ammonia N T
T5 or hydrazine N2H1, etc. is mixed with a species decomposed by thermal reaction, plasma reaction, or photoreaction, and the mixed gas is deposited by thermal decomposition (so-called thermal chemical) on the entire substrate.
Vaper T)position (CVD)). At this time, silicon difluoride S
Intermediate state species such as iF2 or decomposition of hydrogen horses! Even when plasma reactions are used to generate various decomposed species such as 4 (hydrogen atoms), after they are transported onto the substrate surface, the substrate surface is damaged by being exposed to plasma and high-energy sources. The key point of the invention is that a silicon-containing thin film can be subjected to thermal CVI on a substrate without being subjected to thermal CVI.

形成されるアモルファス半導体薄膜は、アモルファスシ
リコン、アモルファスシリコンカーバイト、アモルファ
スシリコンゲルマニウム、父は、これらのフッ素含有物
からなるもので、これらが微結晶化若しくは多結晶化し
た薄膜も含まれる。
The amorphous semiconductor thin film formed is made of amorphous silicon, amorphous silicon carbide, amorphous silicon germanium, or a fluorine-containing substance thereof, and also includes thin films made of microcrystallized or polycrystalline materials.

また、形成される絶縁膜は、窒化シリコン、酸化シリコ
ン又は窃酸化シリコン々どシリコンを含有するものであ
るが、また、これらの膜中には同時に7ノ素又は水素又
はその両方が含有される場合もある。
In addition, the insulating film to be formed contains silicon such as silicon nitride, silicon oxide, or stolen silicon oxide, but these films also contain 7 atoms or hydrogen or both at the same time. In some cases.

薄膜を堆積させる際の基板は室温以上であり、特に、ア
モルファス半導体薄膜を形成する際には基板飄貨け15
0℃から400℃の範囲にあることが望ましい。
The temperature of the substrate when depositing a thin film is above room temperature, and especially when forming an amorphous semiconductor thin film, the temperature of the substrate is
It is desirable that the temperature is in the range of 0°C to 400°C.

分解種を発生させる方法としては、白熱又は赤熱したタ
ングステン、白金又はパラジウムなどの熱触媒反応を起
こす合間に水素、シラン、ジシラン、アンモニア・又り
支ヒドラジンなど全接触させる方法がある。
As a method for generating decomposition species, there is a method in which hydrogen, silane, disilane, ammonia, or hydrazine, etc. are brought into full contact during a thermal catalytic reaction of incandescent or red-hot tungsten, platinum, or palladium.

本発明の装置は、中間状態種発生部、中間状態種発生部
に連通していて基板を中に収容してこれを所定温度に加
熱する加熱装置を備えた膜堆積部、中間状111m発生
部と膜堆積部の連結部付近に設けられた分解欅の原料ガ
ス導入部、この導入部と基板加熱部との間のガス通路中
若しくけ膜堆積部近傍に設けられた分解種発生部、から
構成されている。
The apparatus of the present invention includes an intermediate state seed generation section, a film deposition section equipped with a heating device that communicates with the intermediate state seed generation section and accommodates a substrate therein and heats it to a predetermined temperature, and an intermediate state 111m generation section. and a decomposition species generation part provided in the gas passage between the introduction part and the substrate heating part or near the membrane deposition part; It consists of

分解種発生部の例としては、タングステン、白金、パラ
ジウムなどの熱触媒反応を起こす金属のヒータからなっ
ている。
An example of the decomposition species generating section is a metal heater that causes a thermal catalytic reaction, such as tungsten, platinum, or palladium.

(実施例) 次に、本発明のシリコン含有簿膜の製造方法と製造装置
の1例を添付の図面を参照しながら説明する。
(Example) Next, an example of the method and apparatus for manufacturing a silicon-containing film of the present invention will be described with reference to the accompanying drawings.

第1図は、本発明の方法の1つの例と1−で、固体シリ
コンと四フッ化シリコンSiF、  の化学反応により
二フッ化シリコンSiF’2などを発生させ、水素と白
熱17たタングステンとの熱触媒反応により水素の分解
種つまり水素原子を発生させ、これらの二フッ化シリコ
ンと水素原子の混合ガスを用いてアモルファスシリコン
を形成する装置の概略を示したものである。この装置は
、固体シリコン6を結める石英管等の高耐熱管5とこの
高耐熱管全加熱するための゛電気炉3とからなる中間状
態種発生部1と、基板8を中に収容する石英管等の第2
の高耐熱管7とこの高齢(1〔カ 熱管を通して基板f所定湛妾に加熱する第2の電気炉4
とからなる膜堆積部gと、第1の高耐熱管5の出口と第
2の高耐熱管70入口との連結部付近に設けられた水素
等の分解抽の原料ガス導入口9と、この導入口9と基板
の加熱部との間のガス通路中若しくは、基板8近傍に設
けられたタングステンヒータ10と、から主として構成
されている。
FIG. 1 shows one example of the method of the present invention and 1. This figure shows an outline of an apparatus that generates hydrogen decomposition species, that is, hydrogen atoms, through a thermal catalytic reaction, and forms amorphous silicon using a mixed gas of silicon difluoride and hydrogen atoms. This device includes an intermediate state species generating section 1 consisting of a highly heat-resistant tube 5 such as a quartz tube that connects solid silicon 6 and an electric furnace 3 for completely heating the highly heat-resistant tube, and a substrate 8 housed therein. The second type of quartz tube etc.
A high heat resistant tube 7 and a second electric furnace 4 which heats the substrate f through the heating tube to a predetermined temperature
a film deposition part g consisting of a film deposition part g, a raw material gas inlet 9 for decomposition extraction of hydrogen etc. provided near the connection part between the outlet of the first high heat resistant tube 5 and the inlet of the second high heat resistant tube 70; It mainly consists of a tungsten heater 10 provided in the gas passage between the inlet 9 and the heating section of the substrate or near the substrate 8.

四フッ化シリコンSiF4は固体シリコン6の詰められ
た石英管又は高耐熱管5へと導入される。
Silicon tetrafluoride SiF4 is introduced into a quartz tube or high temperature tube 5 filled with solid silicon 6.

その際、管5は電気炉3により900℃以上、1200
℃前後に加熱されており、そこで化学反応により二フッ
化シリコンSiF2  などが生成される。生成された
二フッ化シリコンSiF2はただちに膜堆積部?へ導入
される。膜堆積部こでは電気炉4により基板8の温間が
設定置′に保たれている。また、膜堆積部2には分解梱
原料ガス導入口9から水素H2も同時に導入されている
At that time, the tube 5 is heated to 900°C or higher and 1200°C in the electric furnace 3.
It is heated to around 10°C, where silicon difluoride, SiF2, etc. are produced through a chemical reaction. The generated silicon difluoride SiF2 is immediately transferred to the film deposition area? will be introduced to In the film deposition section, the substrate 8 is kept warm at a set position by an electric furnace 4. Furthermore, hydrogen H2 is also simultaneously introduced into the film deposition section 2 from the decomposition and packaging raw material gas inlet 9.

導入され次水素112は膜堆積部2のガス導入側又は基
板8の近傍に置かれたタングステンヒータ10と接触し
、熱触媒反応により分解されて水素原子となる。この熱
触媒反応を赳としうる金属としてrl、白金、パラジウ
ム々ども用いられる。−f−L ’−C、基板8上にこ
の水素原子とニフノ化シリコンSiF2が輸送され、ア
モルファスシリコンが形成される。この時の基板m I
l&jが150℃から400 ℃の時に良好な光感度を
持つアモルファスノリコンが作られ、特に、基板謳変が
200℃から350℃の間でその光感以は峡大となる。
After being introduced, the hydrogen 112 comes into contact with the tungsten heater 10 placed on the gas introduction side of the film deposition section 2 or near the substrate 8, and is decomposed into hydrogen atoms by a thermal catalytic reaction. Rl, platinum, palladium, etc. are used as metals that can support this thermal catalytic reaction. -fL'-C, the hydrogen atoms and silicon niphnoide SiF2 are transported onto the substrate 8, and amorphous silicon is formed. At this time, the board m I
When l&j is between 150°C and 400°C, amorphous silicon with good photosensitivity is produced, and in particular, when the substrate variation is between 200°C and 350°C, the photosensitivity becomes great.

第2図V1、タングステンヒータ10に流t−vt流、
及び、パイロメータで1側したその時のタングステンヒ
ータ10の温度の関りとして、アモルファスシリコンの
成膜速度を示したものである。タングステンヒータ′屯
流か増すにつれて水素のW44%率が−L昇し、それに
ともなって、成膜速度も向上する。本装智の場合には、
47X/ sec’まで少なくとも成膜速度を向上でき
る。
FIG. 2 V1, t-vt flow in the tungsten heater 10,
Also, the film formation rate of amorphous silicon is shown as a function of the temperature of the tungsten heater 10 at that time as measured by the pyrometer. As the tungsten heater's flow rate increases, the W44% ratio of hydrogen increases by -L, and the film forming rate increases accordingly. In the case of Honsochi,
The film formation rate can be improved to at least 47X/sec'.

第3図は、タングステンヒータ鋺靭の関数として、成膜
されたアモルファスシリコンの光導電車Δσ4、暗導電
率σd、光感変Δσ、/σd?示したもので、ここでは
光導電率Δσ、は、100mW/crF?のAM−1光
を用いて計測されている。
Figure 3 shows photoconductor Δσ4, dark conductivity σd, photosensitivity change Δσ, /σd? of the deposited amorphous silicon as a function of tungsten heater toughness. Here, the photoconductivity Δσ is 100 mW/crF? It was measured using AM-1 light.

タングステンヒータ電流が8A以下では、光感度Δσ、
/σdけ106にも達し、従来からの放電分解法により
作られたアモルファスシリコンにおける光感1が10’
から105であるのを上回る高品質のアモルファスシリ
コンが形成されていることがわかる。また、このアモル
ファスシリコンのESR測定により求めたシリコンの未
結合手による欠陥に対応するスピン密には、10150
m−Sと、従来からの放電分解法により作られたアモル
ファスシリコンにおける一般的なM 10”am””よ
りも低い。
When the tungsten heater current is 8A or less, the photosensitivity Δσ,
/σd reaches 106, and the photosensitivity 1 in amorphous silicon made by the conventional discharge decomposition method is 10'.
It can be seen that amorphous silicon of higher quality than that of 105 is formed. In addition, the spin density corresponding to defects due to dangling bonds in silicon determined by ESR measurement of this amorphous silicon is 10150
m-S, which is lower than the typical M 10 "am"" in amorphous silicon made by conventional discharge decomposition methods.

タングステンヒータ電流を増すと、第2図に示すように
成膜速1Fi向上するが、膜中にタングステンが混入し
、膜質は劣化する。例えば、ヒータ電流が13Aで20
0pPmものタングステンが混入してしまう。ヒータ電
流が6Aでは、それは9pl)m以下に抑えられて、い
る。こ(1■ の金属の混入は、白金などの低温度で熱触媒反応を起こ
す金属の使用などにより防ぐことができる。
When the tungsten heater current is increased, the film formation rate is increased by 1 Fi as shown in FIG. 2, but tungsten is mixed into the film and the film quality is deteriorated. For example, if the heater current is 13A,
As much as 0 pPm of tungsten is mixed in. When the heater current is 6 A, it is suppressed to 9 pl)m or less. This metal contamination (1) can be prevented by using a metal that causes a thermal catalytic reaction at low temperatures, such as platinum.

なお、第2図、第3図中に示しである成膜条件を表わす
記号のうち、 F R(G) 、T8、Pgは、各々、
ガスGの流量(sect)、基板謳変(℃)、ガス圧(
’rorr)を示す。
In addition, among the symbols representing the film forming conditions shown in FIGS. 2 and 3, F R (G), T8, and Pg are respectively,
Gas G flow rate (sect), substrate variation (°C), gas pressure (
'rorr).

(発明の効果) 本発明の方法と装置により作られたシリコン含有薄膜は
、プラズマなどによるダメージを受けていなむ)ので、
上l己アモルファスシリコンを例にさって示したように
、低欠陥、高品質のものである。そのため、形成された
薄膜がアモルファスシリコン、アモルファスシリコンカ
ーバイト、アモルファスシリコンゲルマニウムなどのア
モルファス半導体である場合には、高効率な太陽電池、
電子写真感光体、薄膜トランジスタ、撮像管などに使用
できる。また、形成された薄膜が悩化シリコン、酸化シ
リコンなどの絶縁薄膜である場合には、トランジスタの
ゲート絶縁膜、フィールド絶縁11は、フィールド絶縁
膜及び、集積回路における局部酸化(L o e a 
10xidization、 LOGO8)  技術に
用いるマスク用の密化シリコン膜として用いることがで
きる。トランジスタ及び集積回路などの電子デバイスへ
本発明を応用する場合には、特に窒化シリコン、酸化シ
リコンなどの絶縁膜が低温の熱CVD法により形成でき
る点が、本発明の大きな長所である。
(Effects of the Invention) The silicon-containing thin film produced by the method and apparatus of the present invention is not damaged by plasma etc.
As shown above using amorphous silicon as an example, it has low defects and high quality. Therefore, when the formed thin film is an amorphous semiconductor such as amorphous silicon, amorphous silicon carbide, or amorphous silicon germanium, highly efficient solar cells,
Can be used in electrophotographic photoreceptors, thin film transistors, image pickup tubes, etc. In addition, when the formed thin film is an insulating thin film such as troubled silicon or silicon oxide, the gate insulating film of the transistor and the field insulating film 11 may be affected by local oxidation (L o e a ) in the field insulating film and the integrated circuit.
It can be used as a dense silicon film for masks used in 10xidization, LOGO8) technology. When the present invention is applied to electronic devices such as transistors and integrated circuits, a great advantage of the present invention is that insulating films such as silicon nitride and silicon oxide can be formed by low-temperature thermal CVD.

本発明け、アモルファス半導体又はその微結晶化若しく
け多結ム化した薄膜のみならず、シリコンを含有する絶
縁膜の形成に関するもので、その産業に与える影響は極
めて大きくまた広い。
The present invention relates not only to the formation of amorphous semiconductors or their microcrystalline or multicrystalline thin films, but also to the formation of silicon-containing insulating films, and has an extremely large and wide-ranging impact on industry.

なお、本発明の方法における熱分解による分解種の発生
は、上記した例のような触媒反応を用いるものには限定
されない。また、分解櫨の発生は、熱分解以外に、プラ
ズマ反応による分解、光反応による分解なども可能であ
る。
Note that the generation of decomposed species by thermal decomposition in the method of the present invention is not limited to the method using a catalytic reaction as in the above-mentioned example. In addition to thermal decomposition, decomposition can also be caused by decomposition by plasma reaction, decomposition by photoreaction, etc.

(1つ(one

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による装置の1例の概要図、第2図はヒ
ータ電流と暎成長速蜜との関係を示す特性曲線のグラフ
、第3図はヒータ電流と成膜された薄膜の特性を光導電
率Δσ9、暗導電率σd、光感変△σp/σdを例にと
って示したグラフである。
Fig. 1 is a schematic diagram of an example of the apparatus according to the present invention, Fig. 2 is a graph of a characteristic curve showing the relationship between heater current and the growth rate, and Fig. 3 is a characteristic curve of the heater current and the thin film formed. It is a graph showing photoconductivity Δσ9, dark conductivity σd, and photosensitivity change Δσp/σd as examples.

Claims (10)

【特許請求の範囲】[Claims] (1)二フッ化シリコンS_iF_2、単フッ化シリコ
ンS_iFなどの中間状態の種に、水素H_2、シラン
S_iH_4、ジシランS_i_2H_6、アンモニア
NH_3又はヒドラジンN_2H_6などを熱反応、プ
ラズマ反応又は光反応により分解した種を混ぜ、この混
合ガスを主成分とする素材ガスを熱分解して堆積させる
ことによりシリコン含有薄膜を形成することを特徴とす
るシリコン含有薄膜の製造方法。
(1) Seeds in which hydrogen H_2, silane S_iH_4, disilane S_i_2H_6, ammonia NH_3 or hydrazine N_2H_6 are decomposed into intermediate state seeds such as silicon difluoride S_iF_2 and silicon monofluoride S_iF by thermal reaction, plasma reaction or photo reaction. 1. A method for producing a silicon-containing thin film, the method comprising forming a silicon-containing thin film by thermally decomposing and depositing a material gas containing this mixed gas as a main component.
(2)特許請求の範囲第1項において、形成されるシリ
コン含有薄膜が、アモルファスシリコン、フッ素含有ア
モルファスシリコン、アモルファスシリコンカーバイト
、フッ素含有アモルファスシリコンカーバイト、アモル
ファスシリコンゲルマニウム、フッ素含有アモルファス
シリコンゲルマニウムなどのアモルファス半導体薄膜又
はそれらが微結晶化若しくは多結晶化した膜であること
を特徴とするシリコン含有薄膜の製造方法。
(2) In claim 1, the silicon-containing thin film to be formed is amorphous silicon, fluorine-containing amorphous silicon, amorphous silicon carbide, fluorine-containing amorphous silicon carbide, amorphous silicon germanium, fluorine-containing amorphous silicon germanium, etc. A method for producing a silicon-containing thin film, characterized in that the amorphous semiconductor thin film is a microcrystalline or polycrystalline film.
(3)特許請求の範囲第1項において、形成されるシリ
コン含有薄膜が、窒化シリコン、酸化シリコン、窒酸化
シリコンなどの絶縁薄膜であることを特徴とするシリコ
ン含有薄膜の製造方法。
(3) The method for manufacturing a silicon-containing thin film according to claim 1, wherein the silicon-containing thin film formed is an insulating thin film of silicon nitride, silicon oxide, silicon nitride, or the like.
(4)特許請求の範囲第1項において形成されるシリコ
ン含有薄膜が窒化シリコン、酸化シリコン、窒酸化シリ
コンなどの絶縁膜であり、この絶縁膜中にはフッ素又は
水素又はその両方が含有されることを特徴とするシリコ
ン含有薄膜の製造方法。
(4) The silicon-containing thin film formed in claim 1 is an insulating film of silicon nitride, silicon oxide, silicon nitride oxide, etc., and this insulating film contains fluorine, hydrogen, or both. A method for producing a silicon-containing thin film, characterized by:
(5)特許請求の範囲第1項から第3項いずれかにおい
て、薄膜を堆積させる際の熱分解温度が室温以上である
ことを特徴とするシリコン含有薄膜の製造方法。
(5) A method for producing a silicon-containing thin film according to any one of claims 1 to 3, characterized in that the thermal decomposition temperature during deposition of the thin film is room temperature or higher.
(6)特許請求の範囲第1項から第5項いずれかにおい
て、薄膜を堆積させる際の熱分解温度が150℃から4
00℃の範囲にあることを特徴とするシリコン含有薄膜
の製造方法。
(6) In any one of claims 1 to 5, the thermal decomposition temperature when depositing the thin film is from 150°C to 4°C.
A method for producing a silicon-containing thin film, characterized in that the temperature is in the range of 00°C.
(7)特許請求の範囲第1項から第6項いずれかにおい
て、白熱又は赤熱したタングステン、白金又はパラジウ
ムなどの熱触媒反応を起こす金属に水素H_2、シラン
S_iH_4、ジシランS_i_2H_6、アンモニア
NH_3又はヒドラジンN_2H_4など接触させるこ
とによって分解種を発生させることを特徴とするシリコ
ン含有薄膜の製造方法。
(7) In any one of claims 1 to 6, hydrogen H_2, silane S_iH_4, disilane S_i_2H_6, ammonia NH_3 or hydrazine N_2H_4 is added to a metal that causes a thermal catalytic reaction such as incandescent or red-hot tungsten, platinum or palladium. A method for producing a silicon-containing thin film, characterized in that decomposed species are generated by contacting the silicon-containing thin film.
(8)特許請求の範囲第1項から第7項いずれかにおい
て、薄膜を堆積させる際に薄膜堆積基板表面をプラズマ
又は高エネルギー光にさらすことを防止し、熱分解のみ
により薄膜を堆積させることを特徴とするシリコン含有
薄膜の製造方法。
(8) In any one of claims 1 to 7, the thin film is deposited only by thermal decomposition without exposing the surface of the thin film deposition substrate to plasma or high-energy light when depositing the thin film. A method for producing a silicon-containing thin film characterized by:
(9)中間状態種発生部、中間状態種発生部に連通して
いて基板を中に収容してこれを所定温度に加熱する加熱
装置を備えた膜堆積部、中間状態種発生部と膜堆積部の
連結部付近に設けられた分解種の原料ガス導入部、この
導入部と基板加熱部との間のガス通路中若しくは膜堆積
部近傍に設けられた分解種発生部、から構成されている
ことを特徴とするシリコン含有薄膜の製造装置。
(9) An intermediate state species generation section, a film deposition section that communicates with the intermediate state species generation section and includes a heating device that accommodates a substrate therein and heats it to a predetermined temperature, an intermediate state species generation section, and film deposition. The decomposition species source gas introduction section is provided near the connection part of the part, and the decomposition species generation part is provided in the gas passage between this introduction part and the substrate heating part or near the film deposition part. An apparatus for manufacturing a silicon-containing thin film, which is characterized by:
(10)特許請求の範囲第9項において、分解種発生部
はタングステン、白金又はパラジウムなどの熱分解反応
を起こす金属からなるヒータからなっていることを特徴
とするシリコン含有薄膜の製造装置。
(10) The device for manufacturing a silicon-containing thin film according to claim 9, wherein the decomposition species generating section is comprised of a heater made of a metal that causes a thermal decomposition reaction, such as tungsten, platinum, or palladium.
JP11676285A 1985-05-31 1985-05-31 Method and apparatus for producing high quality thin film containing silicon by thermal cvd method using species in intermediate state Granted JPS61276976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11676285A JPS61276976A (en) 1985-05-31 1985-05-31 Method and apparatus for producing high quality thin film containing silicon by thermal cvd method using species in intermediate state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11676285A JPS61276976A (en) 1985-05-31 1985-05-31 Method and apparatus for producing high quality thin film containing silicon by thermal cvd method using species in intermediate state

Publications (2)

Publication Number Publication Date
JPS61276976A true JPS61276976A (en) 1986-12-06
JPH0365434B2 JPH0365434B2 (en) 1991-10-11

Family

ID=14695106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11676285A Granted JPS61276976A (en) 1985-05-31 1985-05-31 Method and apparatus for producing high quality thin film containing silicon by thermal cvd method using species in intermediate state

Country Status (1)

Country Link
JP (1) JPS61276976A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2639632A1 (en) * 1988-11-30 1990-06-01 Kemira Oy PROCESS FOR THE PREPARATION OF CERAMIC RAW MATERIALS FROM SILICON FLUORIDE AND AMMONIA OR HYDROCARBON
JPH02217469A (en) * 1989-02-17 1990-08-30 Hitachi Ltd Formation of thin film and forming device
US4981723A (en) * 1987-10-19 1991-01-01 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Chemical vapor deposition of tungsten silicide using silicon sub-fluorides
JPH0790589A (en) * 1993-09-24 1995-04-04 G T C:Kk Formation of silicon oxidized film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041047A (en) * 1983-08-16 1985-03-04 Canon Inc Formation of deposited film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041047A (en) * 1983-08-16 1985-03-04 Canon Inc Formation of deposited film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981723A (en) * 1987-10-19 1991-01-01 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Chemical vapor deposition of tungsten silicide using silicon sub-fluorides
FR2639632A1 (en) * 1988-11-30 1990-06-01 Kemira Oy PROCESS FOR THE PREPARATION OF CERAMIC RAW MATERIALS FROM SILICON FLUORIDE AND AMMONIA OR HYDROCARBON
JPH02217469A (en) * 1989-02-17 1990-08-30 Hitachi Ltd Formation of thin film and forming device
JPH0790589A (en) * 1993-09-24 1995-04-04 G T C:Kk Formation of silicon oxidized film

Also Published As

Publication number Publication date
JPH0365434B2 (en) 1991-10-11

Similar Documents

Publication Publication Date Title
JP5005170B2 (en) Method for forming ultra-high quality silicon-containing compound layer
US7262116B2 (en) Low temperature epitaxial growth of silicon-containing films using close proximity UV radiation
Heya et al. Low-temperature crystallization of amorphous silicon using atomic hydrogen generated by catalytic reaction on heated tungsten
AU594107B2 (en) Method for preparation of multi-layer structure film
JP2566914B2 (en) Thin film semiconductor device and method of forming the same
TW200406503A (en) Methods for producing silicon nitride films and silicon oxynitride films by thermal chemical vapor deposition
JPH01119029A (en) High speed heat plasma multiple treatment reactor and its application
JPH0651909B2 (en) Method of forming thin film multilayer structure
JPH07267621A (en) Formation of silicon membrane
JPS6340314A (en) Manufacture of thin film by catalytic cvd method and device therefor
JPS62152171A (en) Thin-film transistor
JPS61234534A (en) Fabrication of silicon nitride coating
JPS61276976A (en) Method and apparatus for producing high quality thin film containing silicon by thermal cvd method using species in intermediate state
JPH04342122A (en) Manufacture of hydrogenated amorphous silicon thin film
JPH02138471A (en) Production of thin film
JPS62158873A (en) Multi-layered structure of thin film and its formation
JPH02125875A (en) Chemical vapor deposition using disilane
JPS5957909A (en) Formation of amorphous silicon film
JPH0462073B2 (en)
JP2004308012A (en) Mocvd of tungsten nitride thin film using w(co)6 and nh3 for application to copper barrier
JPH058268B2 (en)
JPH03222321A (en) Manufacture of amorphous semiconductor thin film
JPH071753B2 (en) Method for manufacturing semiconductor device
JPS59147434A (en) Formation of silicon oxide film
Griffith et al. Advanced amorphous materials for photovoltaic conversion. Semiannual report, October 1, 1979-March 31, 1980

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term