JPH058268B2 - - Google Patents

Info

Publication number
JPH058268B2
JPH058268B2 JP59146029A JP14602984A JPH058268B2 JP H058268 B2 JPH058268 B2 JP H058268B2 JP 59146029 A JP59146029 A JP 59146029A JP 14602984 A JP14602984 A JP 14602984A JP H058268 B2 JPH058268 B2 JP H058268B2
Authority
JP
Japan
Prior art keywords
gas
carrier
film
raw material
material gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59146029A
Other languages
Japanese (ja)
Other versions
JPS6126775A (en
Inventor
Shunichi Ishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14602984A priority Critical patent/JPS6126775A/en
Publication of JPS6126775A publication Critical patent/JPS6126775A/en
Publication of JPH058268B2 publication Critical patent/JPH058268B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating

Description

【発明の詳細な説明】 (1) 技術分野 本発明は、光導電膜、半導体膜あるいは絶縁性
の膜等を所望の担体上に形成させる堆積膜形成方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field The present invention relates to a deposited film forming method for forming a photoconductive film, a semiconductor film, an insulating film, etc. on a desired carrier.

(2) 従来技術 以下、非晶質シリコン(以下、a−Siと略す)
の堆積膜を担体上に形成させる場合を例として、
この種の技術について説明する。
(2) Prior art Hereinafter, amorphous silicon (hereinafter abbreviated as a-Si)
For example, when forming a deposited film on a carrier,
This type of technology will be explained.

従来、a−Siの堆積膜形成方法としては、グロ
ー放電を利用したプラズマ分解法や所謂CVD
(Chemical Vapor Diposition)法等が知られて
いる。その中で、モノシラン(SiH4)あるいは
四フツ化珪素(SiF4)を用い、グロー放電を利用
したプラズマ分解法で得られるa−Si膜は、未結
合手がHあるいはFによりターミネートされるた
めに、未結合手の数が少なく、高い光導電性を持
ち、また不純物添加による伝導性の制御も行なえ
るため、太陽電池、電子写真体感光体、光センサ
ー、薄膜トランジスター等の応用が提案されてい
る。
Conventionally, methods for forming deposited a-Si films include plasma decomposition using glow discharge and so-called CVD.
(Chemical Vapor Diposition) method, etc. are known. Among these, an a-Si film obtained by a plasma decomposition method using monosilane (SiH 4 ) or silicon tetrafluoride (SiF 4 ) using glow discharge has dangling bonds terminated with H or F. Because it has a small number of dangling bonds, has high photoconductivity, and conductivity can be controlled by adding impurities, it has been proposed to be used in solar cells, electrophotographic photoreceptors, optical sensors, thin film transistors, etc. ing.

しかしながらら、このようなグロー放電を利用
したプラズマ分解法においては、堆積膜形成条
件、例えば印加電力、真空度、流入ガス量、電極
構造、担体温度等が相互に相関を持ながら堆積膜
の形成に影響を及ぼし、特に、電子写真感光体の
ように、大面積で且つ厚い膜厚を要するものを作
成する場合には、これら条件に起因する種々の問
題が生じている。
However, in the plasma decomposition method using such glow discharge, the deposition film formation conditions, such as applied power, degree of vacuum, inflow gas amount, electrode structure, carrier temperature, etc., are correlated with each other. In particular, when manufacturing something that requires a large area and a thick film thickness, such as an electrophotographic photoreceptor, various problems arise due to these conditions.

すなわち、1)このような大面積のすべての部
分で均一なプラズマを長時間にわたつて発生させ
ることが極めて困難である、2)膜厚を厚くする
ためには、長時間の堆積時間を要するが、堆積時
間を短くするには、通常の堆積膜作成条件とは異
なつた条件(例えば印加電力を高くする、流入ガ
ス量を増大する等)にしなければならず、これに
よる膜特性の悪化が避けられない、3)プラズマ
中には種々のイオンやラジカルが発生するが、そ
の中には膜特性に好ましくない影響をあたえるも
のも発生し、特に印加電力が高くなるにしたがい
分解されるものの種類が増加する等である。
That is, 1) It is extremely difficult to generate uniform plasma over a long period of time in all parts of such a large area, and 2) A long deposition time is required to increase the film thickness. However, in order to shorten the deposition time, it is necessary to use conditions different from the normal deposited film formation conditions (for example, increase the applied power, increase the amount of gas inflow, etc.), which may lead to deterioration of the film properties. 3) Various ions and radicals are generated in plasma, and some of them have an undesirable effect on membrane properties, and the types of ions and radicals that are decomposed are particularly important as the applied power increases. increases, etc.

一方、CVD法は、モノシラン等の原料ガスを
熱分解してラジカルを作成し、これを担体に付着
させてa−Si等の堆積膜を作成する方法である。
すなわち、例えばSiH4ガスを500℃程度に加熱し
た担体にあてると担体表面で SiH4 → SiH4+H2 の反応がおこり、SiH4ラジカルが発生する。こ
のSiH2ラジカルが担体表面に付着し、これとと
もにH2の放出反応がおこりa−Si膜が担体上に
堆積されると考えられている。この方法において
は、作成されるラジカルは限定され、且つ膜特性
に悪い影響を及ぼすと考えられているイオンの発
生はない。
On the other hand, the CVD method is a method in which radicals are created by thermally decomposing a raw material gas such as monosilane, and the radicals are attached to a carrier to create a deposited film of a-Si or the like.
That is, for example, when SiH 4 gas is applied to a carrier heated to about 500° C., a reaction of SiH 4 → SiH 4 +H 2 occurs on the surface of the carrier, and SiH 4 radicals are generated. It is believed that these SiH 2 radicals adhere to the surface of the carrier, and together with this, an H 2 release reaction occurs, and an a-Si film is deposited on the carrier. In this method, the radicals created are limited and there is no generation of ions, which are believed to have a negative effect on membrane properties.

しかしながら、担体を500℃程度の高い温度に
しなければならないため、耐熱性の悪い担体、例
えばAl等の担体を用いることができないと言つ
た問題があつた。また、通常250〜300℃程度の温
度で作成されるグロー放電分解法によるa−Si膜
を、500℃程度まで加熱すると、Si原子の未結合
手をターミネイトているH原子がぬけ、膜特性が
悪化するという現象が生じるが、SiH4ガスを高
温度で分解して作成するCVD法によるa−Si膜
でも高温のためにSi原子の未結合手の数が多くな
つて良い特性の膜が得られないと言つた問題があ
つた。
However, since the carrier must be heated to a high temperature of about 500°C, there was a problem in that a carrier with poor heat resistance, such as a carrier such as Al, could not be used. In addition, when an a-Si film produced by glow discharge decomposition method, which is normally produced at a temperature of about 250 to 300 degrees Celsius, is heated to about 500 degrees Celsius, the H atoms terminating the dangling bonds of Si atoms are removed, and the film properties deteriorate. However, even with an a-Si film produced by the CVD method, which is created by decomposing SiH 4 gas at high temperatures, the number of dangling bonds between Si atoms increases due to the high temperature, making it difficult to obtain a film with good characteristics. There was a problem that I was told could not be done.

(3) 発明の開示 本発明は上記の諸点に鑑み成れたものであつ
て、本発明の目的は、従来の堆積膜形成方法、中
でもCVD法の問題点を解消し、膜特性に優れた
堆積膜の作成を可能にならしめる新規な堆積膜形
成方法を提供することにある。
(3) Disclosure of the invention The present invention was developed in view of the above points, and the purpose of the present invention is to solve the problems of conventional deposited film forming methods, especially the CVD method, and to provide a film with excellent film properties. It is an object of the present invention to provide a novel method for forming a deposited film that makes it possible to create a deposited film.

本発明の上記目的は、以下の本発明によつて達
成される。
The above objects of the present invention are achieved by the following present invention.

担体が配置された堆積室内に、原料ガスと該原
料ガスを分解するための加熱ガスとを導入し、該
担体上に堆積膜を形成することを特徴とする堆積
膜形成方法。
A method for forming a deposited film, which comprises introducing a raw material gas and a heating gas for decomposing the raw material gas into a deposition chamber in which a carrier is disposed, and forming a deposited film on the carrier.

上記の如くCVD法の大きな問題点は、堆積膜
形成用の原料ガスを熱分解して膜形成を行なうた
め担体自体を原料ガスの分解温度以上の高温、例
えばa−Si膜を作成するのであれば500℃程度の
高温にしなければならないことにあるが、本発明
では上記の如き加熱ガスを用いることで、この問
題を解消している。
As mentioned above, the major problem with the CVD method is that the film is formed by thermally decomposing the raw material gas for forming the deposited film, so the carrier itself is heated to a temperature higher than the decomposition temperature of the raw material gas, for example to create an a-Si film. For example, the temperature must be raised to a high temperature of about 500° C., but the present invention solves this problem by using the above-mentioned heating gas.

(4) 発明の実施態様 以下、第1図を参照しつつ本発明の方法を詳細
に説明する。
(4) Embodiments of the invention The method of the invention will be described in detail below with reference to FIG.

第1図は担体上に堆積膜、例えばa−Si膜等を
形成させるための堆積膜形成装置の概略構成図で
ある。
FIG. 1 is a schematic diagram of a deposited film forming apparatus for forming a deposited film, such as an a-Si film, on a carrier.

堆積膜の形成は、図中に点線で示した堆積室1
0の内部で行なわれる。堆積室10は、不図示の
ロータリーポンプ、デイフイージヨンポンプ等で
構成される排気系により室内を所望の圧力に保持
することができるようになつている。堆積室10
内に配置された担体1、本例では平板状のAl基
板の表面に、原料ガス7、例えば前述のモノシラ
ン等が、不図示の原料ガス供給系(例えばボンベ
やバルブや配管等によつて構成される)に接続さ
れた原料ガス放出用ノズル3から担体に放出され
る。これとは別のガス供給系に接続された加熱ガ
ス放出用ノズル4から、ノズル4に設置されたガ
ス加熱用ヒーター5によつて加熱された加熱ガス
8、例えば希ガス等を原料ガス7と混合するよう
に担体1に向つて放出する。したがつて、ノズル
3とノズル4は、原料ガス7と加熱ガス8が混合
しやすいように、例えば図の如く両者の配置を斜
めにする等の工工夫をする必要がある。原料ガス
7と加熱ガス8が混合すると、原料ガス7が加熱
ガス8によつて加熱され、原料ガス7がラジカル
に分解し、担体表面に堆積膜が形成される。すな
わち本方法では、原料ガス7の分解を加熱ガス8
で行なうので、担体1を原料ガス7の分解温度以
上の高温に加熱することなく堆積膜を担体1上に
形成することができる。
The deposition film is formed in the deposition chamber 1 indicated by the dotted line in the figure.
This is done inside 0. The deposition chamber 10 can be maintained at a desired pressure by an exhaust system including a rotary pump, a diffusion pump, etc. (not shown). Deposition chamber 10
A raw material gas 7, such as the above-mentioned monosilane, is supplied to the surface of the carrier 1, which is a flat Al substrate in this example, placed in the carrier 1, by means of a raw material gas supply system (not shown) (for example, a cylinder, a valve, piping, etc.). The raw material gas is discharged from the raw material gas discharge nozzle 3 connected to the carrier. A heated gas 8, such as a rare gas, heated by a gas heating heater 5 installed in the nozzle 4 is supplied to the source gas 7 from a heated gas discharge nozzle 4 connected to a separate gas supply system. It is discharged towards the carrier 1 so as to mix. Therefore, it is necessary to arrange the nozzles 3 and 4 at an angle, for example, as shown in the figure, so that the raw material gas 7 and the heating gas 8 can easily mix. When raw material gas 7 and heating gas 8 are mixed, raw material gas 7 is heated by heating gas 8, raw material gas 7 is decomposed into radicals, and a deposited film is formed on the surface of the carrier. That is, in this method, the raw material gas 7 is decomposed using the heating gas 8.
Therefore, the deposited film can be formed on the carrier 1 without heating the carrier 1 to a high temperature higher than the decomposition temperature of the raw material gas 7.

本発明では原料ガスの分解を加熱ガスで行なう
ので、担体を加熱することは必ずしも必要ではな
いが、担体温度を均一にして膜形成条件の最適化
をはかる等の目的で、担体を加熱したり或いは冷
却したりすることを妨げるものではない。例えば
本例の場合、担体1は、これと図の如く接触した
水冷ステンレス板2と担体加熱用ヒーター6とに
より、冷却と加熱が行なわれ、所望の温度に制御
されるようになつている。このため水冷ステンレ
ス板2内には、不図示の冷却水供給源に接続され
た冷却パイプが、担体1を均一に冷却できるよう
に配設されている。ヒーター6は担体温度を制御
するための制御回路11に接続されており、担体
温度検知のための熱電対9で検知した温度に基い
て、不図示の電力供給源からヒーター6に印加さ
れる電力を制御御回路11で制御することで、担
体温度の制御が行なわれる。
In the present invention, since the raw material gas is decomposed using heated gas, it is not necessarily necessary to heat the carrier, but it is possible to heat the carrier for the purpose of uniformizing the carrier temperature and optimizing the film forming conditions. Or it does not prevent cooling. For example, in the case of this example, the carrier 1 is cooled and heated by a water-cooled stainless steel plate 2 and a heater 6 for heating the carrier, which are in contact with the carrier 1 as shown in the figure, and are controlled to a desired temperature. For this reason, a cooling pipe connected to a cooling water supply source (not shown) is disposed inside the water-cooled stainless steel plate 2 so as to uniformly cool the carrier 1. The heater 6 is connected to a control circuit 11 for controlling the carrier temperature, and electric power is applied to the heater 6 from a power supply source (not shown) based on the temperature detected by a thermocouple 9 for detecting the carrier temperature. The carrier temperature is controlled by the control circuit 11.

このような本発明に使用しうる担体としては、
上記のAlの他、従来は高温のため使用できなか
つた耐熱性の低い材料、例えば紙等も使用するこ
とが可能でであり、担体の形状や大きさ等は、そ
の使用する用途等に応じて適宜選択することがで
きる。
Such carriers that can be used in the present invention include:
In addition to Al mentioned above, it is also possible to use materials with low heat resistance, such as paper, which could not be used in the past due to high temperatures, and the shape and size of the carrier will depend on the intended use. can be selected as appropriate.

また、本発明における原料ガスとしては、前述
のモノシランや四フツ化珪素等の他、光導電膜、
半導体膜あるいは絶縁膜等の形成すべき堆積膜の
用途に応じて、種々の原料ガスを使用することが
できる。
In addition, as the raw material gas in the present invention, in addition to the above-mentioned monosilane and silicon tetrafluoride, photoconductive films,
Various raw material gases can be used depending on the purpose of the deposited film to be formed, such as a semiconductor film or an insulating film.

本発明の加熱ガスは原料ガスを加熱分解するた
めに使用されるので、原料ガスを加熱分解するだ
けで原料ガスとは反応しないガス、例えばHe,
Ne,Ar等の希ガスやN2等の不活性ガス等を加熱
したものが好ましいものとして挙げられる。これ
等ガスの他、形成される堆積膜に混入しても膜特
性に悪影旗旗響を与えないガス、例えば形成され
る堆積膜の主要構成成分とはならず、且つ原料ガ
スとしても使用し得るようなガス(例えばa−Si
膜を形成するのであればH2等)等を加熱ガスと
して使用することも可能である。これ等ガスを加
熱する手段としては、前述のヒーター等の他、一
般にガスを加熱する手段として知られている各種
の手段等を広く使用することが可能である。また
その加熱温度は、原料ガスがその分解温度に到達
するように、原料ガスの使用割合に応じて適宜設
定する。
Since the heating gas of the present invention is used to thermally decompose the raw material gas, it is possible to use a gas that only thermally decomposes the raw material gas but does not react with the raw material gas, such as He,
Preferred examples include those obtained by heating a rare gas such as Ne or Ar, or an inert gas such as N 2 . In addition to these gases, gases that do not adversely affect the film properties even if mixed into the deposited film that is formed, such as gases that do not become the main constituents of the deposited film that is formed and are also used as raw material gases. gases that can be used (e.g. a-Si
If a film is to be formed, it is also possible to use H2 , etc.) as the heating gas. As means for heating the gas, in addition to the above-mentioned heater, various means generally known as means for heating gas can be widely used. Further, the heating temperature is appropriately set according to the usage ratio of the raw material gas so that the raw material gas reaches its decomposition temperature.

(5) 実施例 以下に実施例を示し、本発明について更に詳細
に説明する。
(5) Examples The present invention will be explained in more detail by showing examples below.

実施例 1 第1図の装置を用い、平板状のAl基板上に堆
積膜を形成した。
Example 1 Using the apparatus shown in FIG. 1, a deposited film was formed on a flat Al substrate.

原料ガスとしてジシラン(Si2H6)を用い、そ
の中心部に直径1mmのガス放出孔を有する原料ガ
ス放出用ノズル3から、該ガスを放出速度10c.c./
minでAl基板1に向つて放出した。これと同時
に、加熱ガスとして用いるArガスを、その中心
部に直径1mmのガス放出孔を有する加熱ガス放出
用ノズル4から、該ノズル4に設けたガス加熱用
ヒーター5で1000℃に加熱して、放出速度10c.c./
minでAl基板に向つて放出した。原料ガスと加熱
ガスとが充分に混合するように、予めノズル3と
4を配置しておいた。また、水冷ステンレス板2
と担体加熱用ヒーター6により、Al基板1の温
度を300℃にコントロールした。この状態を保持
したときろ、1時間後にAl基板1上に膜厚1.5μm
のa−Si膜が形成された。
Disilane (Si 2 H 6 ) is used as a raw material gas, and the gas is discharged from a raw material gas discharge nozzle 3 having a gas discharge hole with a diameter of 1 mm in the center at a rate of 10 c.c./
It was released toward the Al substrate 1 at min. At the same time, Ar gas used as a heating gas is heated to 1000°C by a gas heating heater 5 provided in the nozzle 4 through a heating gas discharge nozzle 4 having a gas discharge hole with a diameter of 1 mm in its center. , release rate 10c.c./
It was released toward the Al substrate at min. Nozzles 3 and 4 were arranged in advance so that the raw material gas and heating gas were sufficiently mixed. In addition, water-cooled stainless steel plate 2
The temperature of the Al substrate 1 was controlled at 300° C. using the heater 6 for heating the carrier. When this state was maintained, a film with a thickness of 1.5 μm was formed on the Al substrate 1 after 1 hour.
An a-Si film was formed.

実施例 2 実施例1のAl基板のかわりに、石英ガラス基
板を用い、実施例1と同様の堆積膜の形成を行な
つた。石英ガラス基板上に実施例1と同様のa−
Si膜が、膜厚1.5μmで形成された。
Example 2 A deposited film similar to that in Example 1 was formed using a quartz glass substrate instead of the Al substrate in Example 1. The same a- as in Example 1 was placed on a quartz glass substrate.
A Si film was formed with a thickness of 1.5 μm.

得られたa−Si膜上に0.2mm間隔のくし型Al電
極を作成し、2.2×1014photon/cm2のHe−Neレー
ザーを照射し、暗導電率及び明導電率を測定した
ところ、それぞれσd=8.2×10-10(Ω−cm)-1、σp
=7.3×10-7(Ω−cm)-1の良好な光導電性を有し
ていることが分つた。
Comb-shaped Al electrodes with a spacing of 0.2 mm were created on the obtained a-Si film, irradiated with a He-Ne laser of 2.2 × 10 14 photon/cm 2 , and the dark conductivity and bright conductivity were measured. σd=8.2×10 -10 (Ω−cm) -1 , σp, respectively
It was found that it had good photoconductivity of =7.3×10 -7 (Ω-cm) -1 .

実施例 3 原料ガスとして(CH33Si2H3ガスを用いる他
は、実施例1と同様の条件で堆積膜を作成したと
ころ、膜厚1.4μmのa−Si膜を得た。得られたa
−Si膜を実施例2と同様にして評価したところ、
良好な光導電性を有していることが分つた。
Example 3 A deposited film was produced under the same conditions as in Example 1, except that (CH 3 ) 3 Si 2 H 3 gas was used as the source gas, and an a-Si film with a thickness of 1.4 μm was obtained. Obtained a
-When the Si film was evaluated in the same manner as in Example 2,
It was found that it had good photoconductivity.

実施例 4 加熱ガスとしてH2ガスを用いる他は、実施例
1と同様の条件で堆積膜を作成したところ、膜厚
1.5μmのa−Si膜を得た。得られたa−Si膜を実
施例2と同様にして評価したところ、良好な光導
電性を有していることが分つた。
Example 4 A deposited film was created under the same conditions as Example 1 except that H2 gas was used as the heating gas.
A 1.5 μm a-Si film was obtained. When the obtained a-Si film was evaluated in the same manner as in Example 2, it was found to have good photoconductivity.

加熱ガスとしてN2ガス、Heガスを用いた場合
にも、上記同様の良好な光導電性を有するa−Si
膜が得られた。実施例 5 石英ガラス基板を用いる以外は、実施例3及び
4と同様の条件で堆積膜を作成し、実施例3及び
4と同様にして評価したところ、いずれも良好な
光導電性を有していることが分つた。
Even when N2 gas or He gas is used as the heating gas, a-Si has the same good photoconductivity as above.
A membrane was obtained. Example 5 Deposited films were created under the same conditions as in Examples 3 and 4, except for using a quartz glass substrate, and evaluated in the same manner as in Examples 3 and 4. Both films had good photoconductivity. I found out that

(6) 発明の効果 以上に説明した如く、本発明では、堆積膜形成
用の原料ガスを、該ガスを加熱分解するための加
熱ガスを用いて加熱分解し、担体上に堆積膜を形
成するので、従来の如く担体自体を原料ガスの分
解温度以上の温度に加熱する必要がなくなり、良
好な膜特性を有する堆積膜を比較的低い温度で形
成できるようになつた。このため、従来は使用で
きなかつた耐熱性の低い材料を担体として使用す
ることができるようになつた。
(6) Effects of the Invention As explained above, in the present invention, a raw material gas for forming a deposited film is thermally decomposed using a heating gas for thermally decomposing the gas to form a deposited film on a carrier. Therefore, it is no longer necessary to heat the carrier itself to a temperature higher than the decomposition temperature of the source gas as in the past, and it has become possible to form a deposited film with good film properties at a relatively low temperature. Therefore, it has become possible to use materials with low heat resistance as carriers, which could not be used in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法に用いられる堆積膜形
成装置の一例の概略構成図である。 1…担体、2…水冷ステンレス板、3…原料ガ
ス放出用ノズル、4…加熱ガス放出用ノズル、5
…ガス加熱用ヒーター、6…担体加熱用ヒータ
ー、7…原料ガス、8…加熱ガス、9…熱電対、
10…堆積室、11…制御回路。
FIG. 1 is a schematic diagram of an example of a deposited film forming apparatus used in the method of the present invention. DESCRIPTION OF SYMBOLS 1...Carrier, 2...Water-cooled stainless steel plate, 3...Nozzle for releasing raw material gas, 4...Nozzle for releasing heated gas, 5
... Gas heating heater, 6... Carrier heating heater, 7... Raw material gas, 8... Heating gas, 9... Thermocouple,
10... Deposition chamber, 11... Control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 担体が配置された堆積室内に、原料ガスと該
原料ガスを分解するための加熱ガスとを導入し、
該担体上に堆積膜を形成することを特徴とする堆
積膜形成方法。
1. Introducing a raw material gas and a heating gas for decomposing the raw material gas into the deposition chamber in which the carrier is placed,
A method for forming a deposited film, which comprises forming a deposited film on the carrier.
JP14602984A 1984-07-16 1984-07-16 Formation of accumulated film Granted JPS6126775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14602984A JPS6126775A (en) 1984-07-16 1984-07-16 Formation of accumulated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14602984A JPS6126775A (en) 1984-07-16 1984-07-16 Formation of accumulated film

Publications (2)

Publication Number Publication Date
JPS6126775A JPS6126775A (en) 1986-02-06
JPH058268B2 true JPH058268B2 (en) 1993-02-01

Family

ID=15398493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14602984A Granted JPS6126775A (en) 1984-07-16 1984-07-16 Formation of accumulated film

Country Status (1)

Country Link
JP (1) JPS6126775A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0811178B2 (en) * 1987-06-24 1996-02-07 日本合成ゴム株式会社 High temperature reaction processor
CZ285937B6 (en) * 1992-01-16 1999-12-15 Hoechst Aktiengesellschaft Aryl cycloalkyl derivatives, process of preparing such derivatives and their use
JP3872363B2 (en) 2002-03-12 2007-01-24 京セラ株式会社 Cat-PECVD method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785221A (en) * 1980-11-18 1982-05-27 Seiko Epson Corp Manufacture of amorphous semiconductor thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785221A (en) * 1980-11-18 1982-05-27 Seiko Epson Corp Manufacture of amorphous semiconductor thin film

Also Published As

Publication number Publication date
JPS6126775A (en) 1986-02-06

Similar Documents

Publication Publication Date Title
JPH0651909B2 (en) Method of forming thin film multilayer structure
JPS62152171A (en) Thin-film transistor
JPS6248753B2 (en)
JPH058269B2 (en)
JPH058268B2 (en)
JPH084070B2 (en) Thin film semiconductor device and method of forming the same
JPS6331110A (en) Manufacture of semiconductor device
JPH0651908B2 (en) Method of forming thin film multilayer structure
JP3084395B2 (en) Semiconductor thin film deposition method
JP2636215B2 (en) Deposition film forming equipment
JP2555209B2 (en) Thin film manufacturing method
JPS6126773A (en) Formation of accumulated film
JPS60247917A (en) Manufacture of amorphous silicon thin film
JP3040247B2 (en) Manufacturing method of silicon thin film
JPH0645882B2 (en) Deposited film formation method
JPS6319210B2 (en)
JPS61276976A (en) Method and apparatus for producing high quality thin film containing silicon by thermal cvd method using species in intermediate state
JP2968085B2 (en) Vapor phase growth equipment
JPH0645883B2 (en) Deposited film formation method
JP2565684B2 (en) Method for manufacturing polycrystalline silicon thin film
JPH0645895B2 (en) Deposited film forming equipment
JPH057462B2 (en)
JPS6262043B2 (en)
JPS62163314A (en) Thin-film multilayer structure and forming method thereof
JPH0651907B2 (en) Method of forming thin film multilayer structure

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term