JPH058269B2 - - Google Patents

Info

Publication number
JPH058269B2
JPH058269B2 JP59146030A JP14603084A JPH058269B2 JP H058269 B2 JPH058269 B2 JP H058269B2 JP 59146030 A JP59146030 A JP 59146030A JP 14603084 A JP14603084 A JP 14603084A JP H058269 B2 JPH058269 B2 JP H058269B2
Authority
JP
Japan
Prior art keywords
carrier
raw material
temperature
material gas
deposited film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59146030A
Other languages
Japanese (ja)
Other versions
JPS6126772A (en
Inventor
Shunichi Ishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14603084A priority Critical patent/JPS6126772A/en
Publication of JPS6126772A publication Critical patent/JPS6126772A/en
Publication of JPH058269B2 publication Critical patent/JPH058269B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species

Description

【発明の詳細な説明】 (1) 技術分野 本発明は、光導電膜、半導体膜あるいは絶縁性
の膜等を所望の担体上に形成させる堆積膜形成方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field The present invention relates to a deposited film forming method for forming a photoconductive film, a semiconductor film, an insulating film, etc. on a desired carrier.

(2) 従来技術 以下、非晶質シリコン(以下、a−Siと略す)
の堆積膜を担体上に形成させる場合を例として、
この種の技術について説明する。
(2) Prior art Hereinafter, amorphous silicon (hereinafter abbreviated as a-Si)
For example, when forming a deposited film on a carrier,
This type of technology will be explained.

従来、a−Siの堆積膜形成方法としては、グロ
ー放電を利用したプラズマ分解法や所謂CVD
(Chemical Vapor Diposition)法等が知られて
いる。その中で、モノシラン(SiH4)あるいは
四フツ化珪素(SiF4)を用い、グロー放電を利用
したプラズマ分解法で得られるa−Si膜は、未結
合手がHあるいはFによりターミネートされるた
めに、未結合手の数が少なく、高い光導電性を持
ち、また不純物添加による伝導性の制御も行なえ
るため、太陽電池、電子写真体感光体、光センサ
ー薄膜、トランジスター等の応用が提案されてい
る。
Conventionally, methods for forming deposited a-Si films include plasma decomposition using glow discharge and so-called CVD.
(Chemical Vapor Diposition) method, etc. are known. Among these, an a-Si film obtained by a plasma decomposition method using monosilane (SiH 4 ) or silicon tetrafluoride (SiF 4 ) using glow discharge has dangling bonds terminated with H or F. Because it has a small number of dangling bonds, has high photoconductivity, and conductivity can be controlled by adding impurities, it has been proposed to be used in solar cells, electrophotographic photoreceptors, optical sensor thin films, transistors, etc. ing.

しかしながら、このようなグロー放電を利用し
たプラズマ分解法においては、堆積膜形成条件、
例えば印加電力、真空度、流入ガス量、電極構
造、担体温度等が相互に相関を持ながら堆積膜の
形成に影響を及ぼし、特に、電子写真感光体のよ
うに、大面積で且つ厚い膜厚を要するものを作成
する場合には、これら条件に起因する種々の問題
が生じている。
However, in the plasma decomposition method using such glow discharge, the deposited film formation conditions,
For example, applied power, degree of vacuum, amount of inflowing gas, electrode structure, carrier temperature, etc. influence the formation of a deposited film in a mutually correlated manner, and this is especially true for large areas and thick films such as electrophotographic photoreceptors. When creating something that requires this, various problems arise due to these conditions.

すなわち、1)このような大面積のすべての部
分で均一なプラズマを長時間にわたつて発生させ
ることが極めて困難である、2)膜厚を厚くする
ためには、長時間の堆積時間を要するが、堆積時
間を短くするには、通常の堆積膜作成条件とは異
なつた条件(例えば印加電力を高くする、流入ガ
ス量を増大する等)にしなければならず、これに
よる膜特性の悪化が避けられない、3)プラズマ
中には種々のイオンやラジカルが発生するが、こ
の中には膜特性に好ましくない影響をあたえるも
のも発生し、特に印加電力が高くなるにしたがい
分解されるものの種類が増加する等である。
That is, 1) It is extremely difficult to generate uniform plasma over a long period of time in all parts of such a large area, and 2) A long deposition time is required to increase the film thickness. However, in order to shorten the deposition time, it is necessary to use conditions different from the normal deposited film formation conditions (for example, increase the applied power, increase the amount of gas inflow, etc.), which may lead to deterioration of the film properties. Unavoidable, 3) Various ions and radicals are generated in plasma, and some of these have an unfavorable effect on membrane properties, and the types of ions and radicals that are decomposed are particularly important as the applied power increases. increases, etc.

一方、CVD法は、モノシラン等の原料ガスを
熱分解してラジカルを作成し、これを担体に付着
させてa−Si等の堆積膜を作成する方法である。
すなわち、例えばSiH4ガスを500℃程度に加熱し
た担体にあてると担体表面で SiH4 → SiH2+H2 の反応がおこり、SiH4ラジカルが発生する。こ
のSiH4ラジカルが担体表面に付着し、これとと
もにH2の放出反応がおこりa−Si膜が担体上に
堆積されると考えられている。この方法において
は、作成されるラジカルは限定され、且つ膜特性
に悪い影響を及ぼすと考えられているイオンの発
生はない。
On the other hand, the CVD method is a method in which radicals are created by thermally decomposing a raw material gas such as monosilane, and the radicals are attached to a carrier to create a deposited film of a-Si or the like.
That is, for example, when SiH 4 gas is applied to a carrier heated to about 500° C., a reaction of SiH 4 → SiH 2 +H 2 occurs on the surface of the carrier, and SiH 4 radicals are generated. It is believed that these SiH 4 radicals adhere to the surface of the carrier, and together with this, a H 2 release reaction occurs, and an a-Si film is deposited on the carrier. In this method, the radicals created are limited and there is no generation of ions, which are believed to have a negative effect on membrane properties.

しかしながら、担体を500℃程度の高い温度に
しなければならないため、耐熱性の悪い担体、例
えばAl等の担体を用いることができないと言つ
た問題があつた。また、通常250〜300℃程度の温
度で作成されるグロー放電分解法によるa−Si膜
を、500℃程度まで加熱すると、Si原子の未結合
手をターミネイトしているH原子がぬけ、膜特性
が悪化するという現象が生じるが、SiH4ガスを
高温度で分離して作成するCVD法によるa−Si
膜でも高温のためにSi原子の未結合手の数が多く
なつて良い特性の膜が得られないと言つた問題が
あつた。
However, since the carrier must be heated to a high temperature of about 500°C, there was a problem in that a carrier with poor heat resistance, such as a carrier such as Al, could not be used. In addition, when an a-Si film produced by glow discharge decomposition, which is normally produced at a temperature of about 250 to 300 degrees Celsius, is heated to about 500 degrees Celsius, the H atoms terminating the dangling bonds of Si atoms are removed, resulting in film properties. However, a-Si produced by the CVD method, which separates SiH 4 gas at high temperature,
Even in films, there was a problem in that the number of dangling bonds of Si atoms increased due to the high temperature, making it impossible to obtain films with good properties.

(3) 発明の開示 本発明は上記の諸点に鑑み成されたものであつ
て、本発明の目的は、従来の堆積膜形成方法、中
でもCVD法の問題点を解消し、高い膜堆積速度
を有し且つ膜特性に優れた堆積膜の作成を可能に
ならしめる新規な堆積膜形成方法を提供すること
にある。
(3) Disclosure of the Invention The present invention has been made in view of the above points, and an object of the present invention is to solve the problems of conventional deposited film forming methods, especially the CVD method, and to achieve a high film deposition rate. It is an object of the present invention to provide a novel method for forming a deposited film, which makes it possible to create a deposited film having the above properties and excellent film properties.

本発明の上記目的は、以下の本発明によつて達
成される。
The above objects of the present invention are achieved by the following present invention.

担体が配置された堆積室内に、分解温度未満の
温度に予備加熱、更にこれを分解温度以上の温度
に加熱して分解した原料ガスを導入し、該担体上
に堆積膜を形成することを特徴とする堆積膜形成
方法。
A deposited film is formed on the carrier by introducing a raw material gas that has been preheated to a temperature below the decomposition temperature and further heated to a temperature above the decomposition temperature to form a decomposed material into a deposition chamber in which the carrier is placed. A method for forming a deposited film.

上記の如くCVD法の大きな問題点は、堆積膜
形成用の原料ガスを担体を加熱することによつて
分解し膜形成を行なうため、担体自体を原料ガス
の分解温度以上の高温、例えばa−Si膜を作成す
るのであれば500℃程度の高温にしなければなら
ないことにあるが、本発明では上記の如き原料ガ
スを用いることで、担体自体を高温に加熱する必
要をなくして、この問題を解消するとともに、原
料ガスを予備加熱することで、原料ガスの加熱分
解を容易にし、膜堆積速度の増大をはかつてい
る。
As mentioned above, the major problem with the CVD method is that the raw material gas for forming the deposited film is decomposed by heating the carrier to form the film, so the carrier itself is heated to a temperature higher than the decomposition temperature of the raw material gas, e.g. In order to create a Si film, the temperature must be raised to a high temperature of about 500°C, but in the present invention, by using the above-mentioned raw material gas, this problem is solved by eliminating the need to heat the carrier itself to a high temperature. By preheating the raw material gas, thermal decomposition of the raw material gas is facilitated, and the film deposition rate is increased.

(4) 発明の実施態様 以下、第1図を参照しつつ本発明の方法を詳細
に説明する。
(4) Embodiments of the invention The method of the invention will be described in detail below with reference to FIG.

第1図は担体上に堆積膜、例えばa−Si膜等を
形成させるための堆積膜形成装置の概略構成図で
ある。
FIG. 1 is a schematic diagram of a deposited film forming apparatus for forming a deposited film, such as an a-Si film, on a carrier.

堆積膜の形成は、堆積室1の内部で行なわれ
る。堆積室1は、不図示のロータリーポンプ、デ
イフイージヨンポンプ等で構成される排気系によ
り、室内を所望の圧力に保持することができるよ
うになつている。堆積室1内の担体支持台2に配
置された担体6、本例では平板状基板の表面に、
そのガスの分解温度未満の温度に予備加熱され、
更にこれを分解温度以上の温度に加熱することに
よつて分解された原料ガスを、原料ガス放出用ノ
ズル8から放出し、該担体6上に該ガスを原料と
する堆積膜を形成する。
Formation of the deposited film is performed inside the deposition chamber 1. The deposition chamber 1 can be maintained at a desired pressure by an exhaust system including a rotary pump, a diffusion pump, etc. (not shown). On the surface of a carrier 6, in this example a flat substrate, placed on a carrier support stand 2 in the deposition chamber 1,
preheated to a temperature below the decomposition temperature of the gas;
Further, by heating this to a temperature higher than the decomposition temperature, the decomposed raw material gas is discharged from the raw material gas discharge nozzle 8, and a deposited film using the gas as the raw material is formed on the carrier 6.

原料ガス放出用ノズル8には、該ノズル8に原
料ガス、例えば前述のモノシラン等を供給するた
めの原料ガスボンベ13、該ガスの供給圧力を調
整するためのガス圧調整器12あるいは該ガスの
供給量を調整するためのマスフローコントローラ
ー11等により構成される原料ガス供給系から、
所望の圧力、流量等に調整された原料ガスが供給
される。ノズル8に供給された原料ガスは、該ノ
ズル8に設けられた原料ガス予備加熱用ヒーター
10によつて分解温度(例えば前述のモノシラン
であれば600〜700℃)未満の温度に予備加熱され
た後、原料ガス加熱用ヒーター9によつて分解温
度以上の温度に加熱されて分解される。この原料
ガスの熱分解によつて生じたラジカル14が、ノ
ズル8に設けられた原料ガス放出孔16から担体
6に向つて放出され、担体6に付着するとともに
担体6表面で反応を生じて担体6上に堆積膜が形
成される。従つて本方法では、担体6自体を原料
ガスの分解温度以上の高温に加熱することなく堆
積膜を担体6上に形成することができる。
The raw material gas discharge nozzle 8 includes a raw material gas cylinder 13 for supplying the raw material gas, such as the above-mentioned monosilane, to the nozzle 8, a gas pressure regulator 12 for adjusting the supply pressure of the gas, or a supply of the gas. From a raw material gas supply system composed of a mass flow controller 11 etc. for adjusting the amount,
Raw material gas adjusted to desired pressure, flow rate, etc. is supplied. The raw material gas supplied to the nozzle 8 is preheated to a temperature below the decomposition temperature (for example, 600 to 700 ° C. in the case of monosilane described above) by a heater 10 for preheating the raw material gas provided in the nozzle 8. Thereafter, the raw material gas is heated to a temperature higher than the decomposition temperature by the raw material gas heating heater 9 and decomposed. Radicals 14 generated by the thermal decomposition of the raw material gas are released from the raw material gas discharge hole 16 provided in the nozzle 8 toward the carrier 6, adhere to the carrier 6, and cause a reaction on the surface of the carrier 6, resulting in a A deposited film is formed on 6. Therefore, in this method, a deposited film can be formed on the carrier 6 without heating the carrier 6 itself to a high temperature higher than the decomposition temperature of the source gas.

原料ガスの加熱分解によつて生じるラジカル1
4は反応性が高いので、堆積膜形成の直前に原料
ガスを加熱分解するのが好ましい。このため本例
では、原料ガス放出孔16の直前に原料ガス加熱
用ヒーター9を図の如くに設け、放出直前に該ヒ
ーター9によつて原料ガスを分解するようにして
いる。また、ヒーター9を大容量(本例では
2Kw)にして、原料ガスを短時間で分解するこ
とができるようにしている。
Radicals 1 generated by thermal decomposition of raw material gas
Since No. 4 has high reactivity, it is preferable to thermally decompose the raw material gas immediately before forming the deposited film. For this reason, in this example, a heater 9 for heating the raw material gas is provided just before the raw material gas discharge hole 16 as shown in the figure, and the raw material gas is decomposed by the heater 9 immediately before discharge. In addition, the heater 9 can be set to a large capacity (in this example,
2Kw) so that the raw material gas can be decomposed in a short time.

本発明では予備加熱用ヒーター10を用いて原
料ガスを分解温度未満の所望の温度に予備加熱し
ておくので、原料ガスを短時間で分解温度以上に
加熱することができる。本例では予備加熱用ヒー
ター10を、堆積室1外に設けてあるが、もちろ
ん堆積室1内に設けても良い。予備加熱温度が原
料ガスの分解温度を越えると、ノズル8内に堆積
膜が形成され、これがノズル閉塞の原因になつた
り、形成される堆積膜の特性を劣化させたりして
好ましくない。従つて、本例の如くの加熱用ヒー
ター9と予備加熱用ヒーター10の間にノズル冷
却用水冷パイプ15を設ける等して、予備加熱ガ
スが分解温度以上の温度に加熱されないようにす
る等の工夫をすることが好ましい。
In the present invention, since the raw material gas is preheated to a desired temperature below the decomposition temperature using the preheating heater 10, the raw material gas can be heated to the decomposition temperature or higher in a short time. In this example, the preheating heater 10 is provided outside the deposition chamber 1, but it may of course be provided inside the deposition chamber 1. If the preheating temperature exceeds the decomposition temperature of the raw material gas, a deposited film will be formed in the nozzle 8, which may cause nozzle blockage or deteriorate the properties of the deposited film formed, which is undesirable. Therefore, it is necessary to prevent the preheating gas from being heated to a temperature higher than the decomposition temperature by, for example, providing a water cooling pipe 15 for nozzle cooling between the heating heater 9 and the preheating heater 10 as in this example. It is preferable to come up with some ideas.

本発明では上記の如く、堆積膜形成用の原料ガ
スを予備加熱した後、これを分解温度以上の温度
に加熱して分解し、担体上に堆積膜を形成させる
ので、担体を加熱することは必ずしも必要ではな
いが、担体温度を均一にして膜形成条件の最適化
をはかる等の目的で、担体を加熱したり或いは冷
却したりすることを妨げるものではない。例えば
本例の場合、担体6は担体支持台2に設けられた
担体冷却用水冷パイプ3と担体加熱用ヒーター4
とにより、冷却と加熱が行なわれ、所望の温度に
制御されるようになつている。このため担体支持
台2には、不図示の冷却水供給源に接続された水
冷パイプ3が、担体6を均一に冷却できるように
配設されている。ヒーター4は担体温度を制御す
るための制御回路5に接続されており、担体温度
検知のための熱電対7(本例では、アロメルクロ
メル熱電対)で検知した温度に基いて、不図示の
電力供給源からヒーター4に印加される電力を制
御回路5で制御することで、担体温度の制御が行
なわれる。
In the present invention, as described above, after preheating the raw material gas for forming the deposited film, it is heated to a temperature higher than the decomposition temperature to decompose it and form the deposited film on the carrier, so it is not necessary to heat the carrier. Although not necessarily required, this does not prevent the carrier from being heated or cooled for the purpose of making the carrier temperature uniform and optimizing the film forming conditions. For example, in the case of this example, the carrier 6 includes a water cooling pipe 3 for cooling the carrier and a heater 4 for heating the carrier provided on the carrier support stand 2.
By this means, cooling and heating are performed and the temperature is controlled to a desired temperature. For this reason, a water cooling pipe 3 connected to a cooling water supply source (not shown) is arranged on the carrier support base 2 so that the carrier 6 can be uniformly cooled. The heater 4 is connected to a control circuit 5 for controlling the carrier temperature, and based on the temperature detected by a thermocouple 7 (in this example, an allomer-chromel thermocouple) for detecting the carrier temperature, a control circuit (not shown) is activated. The carrier temperature is controlled by controlling the power applied to the heater 4 from the power supply source by the control circuit 5.

このような本発明に使用しうる担体としては、
特に限定はないが、従来は高温のため使用できな
かつた耐熱性の低い材料、例えば前述のAl等の
ほか紙等も使用することが可能であり、担体の形
状や大きさ等は、その使用する用途等に応じて適
宜選択することができる。
Such carriers that can be used in the present invention include:
Although there are no particular limitations, it is possible to use materials with low heat resistance that could not previously be used due to high temperatures, such as the aforementioned Al, as well as paper, etc. The shape and size of the carrier will depend on the use It can be selected as appropriate depending on the intended use.

また、本発明における原料ガスとしては、前述
のモノシランや四フツ化珪素等の他、光導電膜、
半導体膜あるいは絶縁膜等の形成すべき堆積膜の
用途に応じて、種々の原料ガスを単独で、あるい
は混合する等して使用することができる。
In addition to the above-mentioned monosilane and silicon tetrafluoride, the raw material gas in the present invention includes photoconductive films,
Depending on the purpose of the deposited film to be formed, such as a semiconductor film or an insulating film, various raw material gases can be used alone or in combination.

これ等ガスを加熱する手段としては、前述のヒ
ーター等の他、一般にガスを加熱する手段として
知られている各種の手段等を広く使用することが
可能である。
As means for heating the gas, in addition to the above-mentioned heater, various means generally known as means for heating gas can be widely used.

これ等ガスを堆積室に導入する手段は、上記の
如きノズルに限定されるものではなく、原料ガス
の予備加熱と該ガスの加熱分解を行なえるような
手段であれば広く使用することができる。また、
前述の如きノズルを用いる場合にも、例えば複数
のノズルをアレー状に並べる等して、大面積の担
体に堆積膜を形成する等のことも可能である。
The means for introducing these gases into the deposition chamber are not limited to the nozzle as described above, and any means that can preheat the source gas and thermally decompose the gas can be used. . Also,
When using the above-mentioned nozzles, it is also possible to form a deposited film on a large-area carrier by arranging a plurality of nozzles in an array, for example.

(5) 実施例 以下に実施例を示し、本発明について更に詳細
に説明する。
(5) Examples The present invention will be explained in more detail by showing examples below.

実施例 1 第1図の装置を用い、平板状の石英ガラス基板
上に堆積膜を形成した。
Example 1 Using the apparatus shown in FIG. 1, a deposited film was formed on a flat quartz glass substrate.

原料ガスとしてジシランン(Si2H6)を用い、
該ガスを予備加熱用ヒーター10で350℃まで予
備加熱し、これを更にガス加熱用ヒーター9で
550℃に加熱して分解し、原料ガス放出孔16か
ら放出速度20c.c./minで石英ガラス基板6に放出
した。原料ガス放出孔16を直径2mmとし、石英
ガラス基板を該放出孔16から5mm離れたところ
に設置した。また、担体温度を300℃に設定し、
堆積室内の圧力を100mmTorrに保つた。この状態
を保持したところ、1時間後に石英ガラス基板上
に膜厚1.5μmのa−Si膜が形成された。
Using disilane (Si 2 H 6 ) as the raw material gas,
The gas is preheated to 350°C with a preheating heater 10, and then further heated with a gas heating heater 9.
It was heated to 550° C. to decompose, and was released from the raw material gas release hole 16 onto the quartz glass substrate 6 at a release rate of 20 c.c./min. The raw material gas discharge hole 16 had a diameter of 2 mm, and the quartz glass substrate was placed 5 mm away from the discharge hole 16. Also, set the carrier temperature to 300℃,
The pressure inside the deposition chamber was maintained at 100 mmTorr. When this state was maintained, an a-Si film with a thickness of 1.5 μm was formed on the quartz glass substrate after 1 hour.

得られたa−Si膜上に0.2mm間隔のくし型Al電
極を真空蒸着により作成した後、2×
1014photon/cm2のHe―Neレーザーを照射し、暗
導電率及び明導電率を測定したところ、それぞれ
σd=7.7×10−10(Ω−cm)−1、σp=8.5×10−7(Ω
−cm)−1の良好な光導電性を有していることが分
つた。
After creating comb-shaped Al electrodes with a spacing of 0.2 mm on the obtained a-Si film by vacuum evaporation, 2×
When irradiated with a He-Ne laser of 10 14 photon/cm 2 and measured the dark conductivity and bright conductivity, σd = 7.7× 10−10 (Ω−cm) −1 and σp = 8.5× 10−7 , respectively. (Ω
-cm) -1 .

実施例 2 原料ガスとして(CH33Si2H3ガスを用い、予
備加熱温度を300℃、加熱分解温度を550℃とする
以外は、実施例1と同様の条件で堆積膜を作成し
たところ、膜厚1.6μmのa−Si膜を得た。得られ
たa−Si膜を実施例2と同様にして評価したとこ
ろ、σd=8×10−10(Ω−cm)−1、σp=5×10−7
(Ω−cm)−1の良好な光導電性を有していること
が分つた。
Example 2 A deposited film was created under the same conditions as in Example 1, except that (CH 3 ) 3 Si 2 H 3 gas was used as the raw material gas, the preheating temperature was 300°C, and the thermal decomposition temperature was 550°C. As a result, an a-Si film with a thickness of 1.6 μm was obtained. When the obtained a-Si film was evaluated in the same manner as in Example 2, σd=8× 10−10 (Ω−cm) −1 , σp=5× 10−7
It was found that it had a good photoconductivity of (Ω-cm) -1 .

(6) 発明の効果 以上に説明した如く、本発明では、堆積膜形成
用の原料ガスを、該ガスの分解温度未満の温度に
予備加熱した後、これを分解温度以上の温度に加
熱して分解し、担体上に堆積膜を形成するので、
従来の如く担体自体を原料ガスの分解温度以外の
温度に加熱する必要がなくなり、良好な膜特性を
有する堆積膜を比較的低い温度で形成できるよう
になつた。このため、従来は使用できなかつた耐
熱性の低い材料を担体として使用することができ
るようになつた。
(6) Effects of the Invention As explained above, in the present invention, the raw material gas for forming a deposited film is preheated to a temperature below the decomposition temperature of the gas, and then heated to a temperature above the decomposition temperature. decomposes and forms a deposited film on the carrier, so
It is no longer necessary to heat the carrier itself to a temperature other than the decomposition temperature of the source gas as in the past, and it has become possible to form a deposited film with good film properties at a relatively low temperature. Therefore, it has become possible to use materials with low heat resistance as carriers, which could not be used in the past.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法に用いられる堆積膜形
成装置の一例の概略構成図である。 1…堆積室、2…担体支持台、3…担体冷却用
水冷パイプ、4…担体加熱用ヒーター、5…制御
回路、6…担体、7…熱電対、8…原料ガス放出
用ノズル、9…原料ガス加熱用ヒーター、10…
原料ガス予備加熱用ヒーター、11…マスフロー
コントローラー、12…ガス圧調整器、13…ガ
スボンベ、14…ラジカル、15…ノズル冷却用
水冷パイプ、16…原料ガス放出孔。
FIG. 1 is a schematic diagram of an example of a deposited film forming apparatus used in the method of the present invention. DESCRIPTION OF SYMBOLS 1...Deposition chamber, 2...Carrier support stand, 3...Water-cooled pipe for cooling the carrier, 4...Heater for heating the carrier, 5...Control circuit, 6...Carrier, 7...Thermocouple, 8...Nozzle for releasing source gas, 9... Heater for heating raw material gas, 10...
Heater for preliminary heating of raw material gas, 11... Mass flow controller, 12... Gas pressure regulator, 13... Gas cylinder, 14... Radical, 15... Water cooling pipe for nozzle cooling, 16... Raw material gas discharge hole.

Claims (1)

【特許請求の範囲】[Claims] 1 担体が配置された堆積室内に、分解温度未満
の温度に予備加熱し、更にこれを分解温度以上の
温度に加熱して分解した原料ガスを導入し、該担
体上に堆積膜を形成することを特徴とする堆積膜
形成方法。
1. Introducing a raw material gas that has been preheated to a temperature lower than the decomposition temperature and further heated to a temperature higher than the decomposition temperature to form a deposited film on the carrier. A deposited film forming method characterized by:
JP14603084A 1984-07-16 1984-07-16 Formation of accumulated film Granted JPS6126772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14603084A JPS6126772A (en) 1984-07-16 1984-07-16 Formation of accumulated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14603084A JPS6126772A (en) 1984-07-16 1984-07-16 Formation of accumulated film

Publications (2)

Publication Number Publication Date
JPS6126772A JPS6126772A (en) 1986-02-06
JPH058269B2 true JPH058269B2 (en) 1993-02-01

Family

ID=15398513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14603084A Granted JPS6126772A (en) 1984-07-16 1984-07-16 Formation of accumulated film

Country Status (1)

Country Link
JP (1) JPS6126772A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3628443C1 (en) * 1986-08-21 1988-02-11 Dornier System Gmbh Process for the production of amorphous layers
US4963423A (en) * 1987-10-08 1990-10-16 Anelva Corporation Method for forming a thin film and apparatus of forming a metal thin film utilizing temperature controlling means
DE69117611T2 (en) * 1990-08-06 1996-10-10 Mitsui Toatsu Chemicals A process for producing a derivative of 3,5-di (alpha-methylbenzyl) salicylic acid and using a product modified therewith with polyvalent metal as a color developer
US5326739A (en) * 1990-08-06 1994-07-05 Mitsui Toatsu Chemicals, Incorporated Process for producing 3,5-di(α-methylbenzyl)salicylic acid derivative, and use of polyvalent-metal-modified product thereof as color developer
JP2002110551A (en) * 2000-09-27 2002-04-12 Yamanashiken Shokokai Rengokai Method and apparatus for forming semiconductor thin film
JP3872363B2 (en) 2002-03-12 2007-01-24 京セラ株式会社 Cat-PECVD method
JP4598506B2 (en) * 2004-12-20 2010-12-15 大陽日酸株式会社 Vapor growth equipment
JP4719541B2 (en) * 2005-09-16 2011-07-06 大陽日酸株式会社 Semiconductor thin film growth equipment
TW200811310A (en) * 2006-08-23 2008-03-01 Kinik Co Apparatus for chemical gas phase thin film sedimentation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839171A (en) * 1971-09-22 1973-06-08
JPS5785221A (en) * 1980-11-18 1982-05-27 Seiko Epson Corp Manufacture of amorphous semiconductor thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839171A (en) * 1971-09-22 1973-06-08
JPS5785221A (en) * 1980-11-18 1982-05-27 Seiko Epson Corp Manufacture of amorphous semiconductor thin film

Also Published As

Publication number Publication date
JPS6126772A (en) 1986-02-06

Similar Documents

Publication Publication Date Title
JPH0651909B2 (en) Method of forming thin film multilayer structure
JPS62152171A (en) Thin-film transistor
JPH058269B2 (en)
US6881684B2 (en) Method of forming silicon nitride deposited film
JPS6248753B2 (en)
JPH058268B2 (en)
JPS6331110A (en) Manufacture of semiconductor device
JPH0651908B2 (en) Method of forming thin film multilayer structure
JPS6126773A (en) Formation of accumulated film
JP2636215B2 (en) Deposition film forming equipment
JPS6319210B2 (en)
JPH09162131A (en) Plasma cvd system
JP3040247B2 (en) Manufacturing method of silicon thin film
JPH0645882B2 (en) Deposited film formation method
JP2565684B2 (en) Method for manufacturing polycrystalline silicon thin film
JPH0645895B2 (en) Deposited film forming equipment
JPS62163314A (en) Thin-film multilayer structure and forming method thereof
JPH0645883B2 (en) Deposited film formation method
JPH0651907B2 (en) Method of forming thin film multilayer structure
JPS61289622A (en) Deposited film forming device
JPS61278131A (en) Manufacture of silicon group alloy thin-film
JPH05102041A (en) Plasma cvd apparatus
JPH06216029A (en) Crystallization of silicon film
JPS60218827A (en) Formation of deposited film
JPS6043818A (en) Thin film growing device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term