JPS6126772A - Formation of accumulated film - Google Patents

Formation of accumulated film

Info

Publication number
JPS6126772A
JPS6126772A JP14603084A JP14603084A JPS6126772A JP S6126772 A JPS6126772 A JP S6126772A JP 14603084 A JP14603084 A JP 14603084A JP 14603084 A JP14603084 A JP 14603084A JP S6126772 A JPS6126772 A JP S6126772A
Authority
JP
Japan
Prior art keywords
carrier
raw material
gas
film
material gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14603084A
Other languages
Japanese (ja)
Other versions
JPH058269B2 (en
Inventor
Shunichi Ishihara
俊一 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14603084A priority Critical patent/JPS6126772A/en
Publication of JPS6126772A publication Critical patent/JPS6126772A/en
Publication of JPH058269B2 publication Critical patent/JPH058269B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To suppress heating temp. of a carrier itself lower to obtain accumulated film having good film characteristic, by preheating raw material gas for forming accumulated film, then heating, decomposing said gas at decomposition temp. or more, and supplying it on the carrier to form accumulated film. CONSTITUTION:The carrier 6 is arranged on a supporting base 2 in an accumulating chamber 1, and the desired pressure is maintained therein. Raw material gas from a bomb 13 is subjected to controls of pressure, flow rate, etc. at a gas pressure controller 12, a mass flow controller 11, and preheated less than decomposition temp. by a preheater 10 of a nozzle 8. Next, it is heated to said temp. or more by a heater 9 and decomposed, a radical 14 is generated and released toward the carrier 6 from a releasing hole 18, to form accumulated film thereon. In this way, heating of carrier 6 to gas decomposition temp. or more in unnecessary, a water cooling pipe 3 and a heater 4 are controlled by a controller circuit 5 to maintain the carrier 6 to the desired temp.

Description

【発明の詳細な説明】 (1)技術分野 本発明は、光導電膜、半導体膜あるいは絶縁性の膜等を
所望の担体上に形成させる堆積膜形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field The present invention relates to a deposited film forming method for forming a photoconductive film, a semiconductor film, an insulating film, etc. on a desired carrier.

(2)従来技術 以下、非晶質シリコン(以下、a−3iと略す)の堆積
膜を担体上に形成させる場合を例として、この種の技術
について説明する。
(2) Prior Art Hereinafter, this type of technology will be described using as an example a case where a deposited film of amorphous silicon (hereinafter abbreviated as a-3i) is formed on a carrier.

従来、a−3iの堆積膜形成方法としては、グロー放電
を利用したプラズマ分解法や所謂CVD(Chemic
al Vapor Diposition)法等が知ら
れている。その中で、モノシラン (SiH4)あるい
は四フフ化珪素(SiF4)を用い、グロー放電を利用
したプラズマ分解法で得られるa−9i膜は、未結合手
がHあるいはFによりターミネートされるために、未結
合手の数が少なく、高い光導電性を持ち、また不純物添
加による伝導性の制御も行なえるため、太陽電池、電子
写真体感光体、光センサー薄膜、トランジスター等の応
用が提案されている。
Conventionally, methods for forming a-3i deposited films include plasma decomposition using glow discharge and so-called CVD (Chemical
Al Vapor Diposition) method and the like are known. Among them, the a-9i film obtained by plasma decomposition method using glow discharge using monosilane (SiH4) or silicon tetrafluoride (SiF4) has dangling bonds terminated with H or F. Because it has a small number of dangling bonds, has high photoconductivity, and conductivity can be controlled by adding impurities, it has been proposed for applications in solar cells, electrophotographic photoreceptors, optical sensor thin films, transistors, etc. .

しかしながら、このようなグロー放電を利用したプラズ
マ分解法においては、堆積膜形成条件、例えば印加重力
、真空度、流入ガス量、電極構造、担体温度等が相互に
相関を°持ながら堆積膜の形成に影響を及ぼし、特に、
電子写真感光体のように、大面積で且つ厚い膜厚を要す
るものを作成する場合には、これら条件に起因する種々
の問題が生じている。
However, in such a plasma decomposition method using glow discharge, the deposition film formation conditions such as applied force, degree of vacuum, inflow gas amount, electrode structure, carrier temperature, etc. are correlated with each other. particularly,
When producing something that has a large area and requires a thick film, such as an electrophotographic photoreceptor, various problems arise due to these conditions.

すなわち、l)このような大面積のすべての部分で均一
なプラズマを長時間にわたって発生さ、せることが極め
て困難である、2)膜厚を厚くするためには、長時間の
堆積時間を要するが、堆積時間を短くするには、通常の
堆積膜作成条件とは異なった条件(例えば印加電力を高
くする、流入ガス量を増大する等)にしなければならず
、これによる膜特性の悪化が避1すられない、3)プラ
ズマ中には種々のイオンやラジカルが発生するが、その
中には膜特性に好ましくない影響をあたえるものも発生
し、特に印加重力が高くなるにしたがい分解されるもの
の種類が増加する等である。
That is, l) it is extremely difficult to generate uniform plasma over such a large area over a long period of time, and 2) a long deposition time is required to increase the film thickness. However, in order to shorten the deposition time, it is necessary to use conditions different from the normal deposited film formation conditions (for example, increase the applied power, increase the amount of gas inflow, etc.), and this may cause deterioration of the film properties. 3) Various ions and radicals are generated in plasma, and some of them have an unfavorable effect on membrane properties, and are decomposed especially as the applied load increases. For example, the variety of things will increase.

一方、CVD法は、モノシラン等の原料ガスを熱分解し
てラジカルを作成し、これを担体に付着させてa−Si
等の堆積膜を作成する方法である。すなわち、例えば5
i)L、ガスを500℃程度に加熱した担体にあてると
担体表面で 5i)(4→ SiH2+H2 の反応がおこり、SiH2ラジカルが発生する。このS
iH2ラジカルが担体表面に付着し、これとともにH2
の放出反応がおこりa−S i膜が担体上に堆積される
と考えられている。この方法においては、作成されるラ
ジカルは限定され、且つ膜特性に悪い影響を及ぼすと考
えられているイオンの発生はない。
On the other hand, in the CVD method, a raw material gas such as monosilane is thermally decomposed to create radicals, which are attached to a carrier to form a-Si.
This is a method for creating deposited films such as That is, for example 5
i) When L gas is applied to a carrier heated to about 500°C, the reaction 5i) (4→ SiH2 + H2 occurs on the carrier surface, generating SiH2 radicals.
iH2 radicals adhere to the carrier surface, and along with this, H2
It is believed that a release reaction occurs and an a-Si film is deposited on the carrier. In this method, the radicals created are limited and there is no generation of ions, which are believed to have a negative effect on membrane properties.

しかしながら、担体を500℃程度の高い温度にしなけ
ればならないため、耐熱性の悪い担体、例えばAI等の
担体を用いることができないと言った問題があった。ま
た、通常250〜300℃程度の温度で作成されるグロ
ー放電分解法によるa−9i膜を、 500℃程度まで
加熱すると、Si原子の未結合手をターミネイトしてい
るH原子がぬけ、膜特性が悪化するという現象が生じる
が、5il(、+ガスを高温度で分解して作成するCV
D法によるa−9i膜でも高温のために5iji子の未
結合手の数が多くなって良い特性の膜が得られないと言
った問題があった。
However, since the carrier must be heated to a high temperature of about 500° C., there is a problem in that a carrier with poor heat resistance, such as a carrier such as AI, cannot be used. In addition, when an a-9i film produced by glow discharge decomposition method, which is normally produced at a temperature of about 250 to 300 degrees Celsius, is heated to about 500 degrees Celsius, the H atoms terminating the dangling bonds of Si atoms are removed, and the film properties change. However, CV created by decomposing 5il (, + gas at high temperature)
Even in the a-9i film produced by method D, there is a problem in that the number of dangling bonds in the 5iji molecules increases due to the high temperature, making it impossible to obtain a film with good characteristics.

(3)発明の開示 本発明は上記の諸点に鑑み成されたものであって、本発
明の目的は、従来の堆積膜形成方法、中でもCVD法の
問題点を解消し、高い膜堆積速度を有し且つ膜特性に優
れた堆積膜の作成を可、能にならしめる新規な堆積膜形
成方法を提供することにある。
(3) Disclosure of the Invention The present invention has been made in view of the above-mentioned points, and an object of the present invention is to solve the problems of conventional deposited film forming methods, especially the CVD method, and to achieve a high film deposition rate. It is an object of the present invention to provide a novel method for forming a deposited film which enables the creation of a deposited film having the above properties and excellent film properties.

本発明の上記目的は、以下の本発明によって達成される
The above objects of the present invention are achieved by the present invention as follows.

担体が配置された堆積室内に、分解温度未満の温度に予
備加熱し、更にこれを分解温度以上の温度に加熱して分
解した原料ガスを導入し、該担体上に堆積膜を形成する
ことを特徴とする堆積膜形成方法。
A deposited film is formed on the carrier by introducing a raw material gas which is preheated to a temperature below the decomposition temperature and further heated to a temperature above the decomposition temperature to decompose the carrier into a deposition chamber in which the carrier is disposed. Characteristic deposited film formation method.

上記の如< CVD法の大きな問題点は、堆積膜形成用
の原料ガスを担体を加熱することによって分解し膜形成
を行なうため、担体自体を原料ガスの分解温度以上の高
温、例えばa−9i膜を作成するのであれば500℃程
度の高温にしなければならないことにあるが、本発明で
は上記の如き原料ガスを用いることで、担体自体を高温
に加熱する必要をなくして、この問題を解消するととも
に、原料ガスを予備加熱することで、原料ガスの加熱分
解を容易にし、膜堆積速度の増大をはかっている。
As mentioned above, the major problem with the CVD method is that the raw material gas for forming the deposited film is decomposed by heating the carrier to form the film, so the carrier itself must be heated to a high temperature higher than the decomposition temperature of the raw material gas, for example, a-9i. In order to create a film, it is necessary to heat the material to a high temperature of about 500°C, but in the present invention, by using the above-mentioned raw material gas, there is no need to heat the carrier itself to a high temperature, and this problem is solved. At the same time, by preheating the raw material gas, thermal decomposition of the raw material gas is facilitated, and the film deposition rate is increased.

(4)発明の実施態様 以下、第1図を参照しつつ本発明の方法を詳細に説明す
る。
(4) Embodiments of the invention The method of the invention will be explained in detail below with reference to FIG.

第1図は担体上に堆積膜、例えばa−srs等を形成さ
せるための堆積膜形成装置の概略構成図である。
FIG. 1 is a schematic diagram of a deposited film forming apparatus for forming a deposited film such as a-srs on a carrier.

堆積膜の形成は、堆積室lの内部で行なわれる。堆積室
lは、不図示のロータリーポンプ、ディフィージョンポ
ンプ等で構成される排気系により、室内を所望の圧力に
保持することができるようになっている。堆積室l内の
担体支持台2に配置された担体61本例では平板状基板
の表面に、そのガスの分解温度未満の温度に予備加熱さ
れ、更にこれを分解温度以上の温度に加熱することによ
って分解された原料ガスを、原料ガス放出用ノズル8か
ら放出し、該担体6上に該ガスを原料とする堆積膜を形
成する。
Formation of the deposited film takes place inside the deposition chamber l. The deposition chamber 1 can be maintained at a desired pressure by an exhaust system including a rotary pump, a diffusion pump, etc. (not shown). In this example, the surface of the carrier 61 placed on the carrier support 2 in the deposition chamber 1 is preheated to a temperature below the decomposition temperature of the gas, and then further heated to a temperature above the decomposition temperature. The decomposed raw material gas is discharged from the raw material gas discharge nozzle 8, and a deposited film using the gas as the raw material is formed on the carrier 6.

原料ガス放出用ノズル8には、該ノズル8に原料ガス、
例えば前述のモノシラン等を供給するための原料ガスポ
ンベ13、該ガスの供給圧力を調整するためのガス圧調
整器12あるいは該ガスの供給量を調整するためのマス
フローコントローラー11等により構成される原料ガス
供給系から、所望の圧力、流量等に調整された原料ガス
が供給される。ノズル8に供給された原料ガスは、該ノ
ズル8に設けられた原料ガス予備加熱用ヒーター10に
よって分解温度(例えば前述のモノシランであれば60
0〜700℃)未満の温度に予備加熱された後、原料ガ
ス加熱用ヒーター9によって分解温度以上の温度に加熱
されて分解される。この原料ガスの熱分解によって生じ
たラジカル14が、ノズル8に設けられた原料ガス放出
孔18から担体6に向って放出され、担体6に付着する
とともに担体6表面で反応を生じて担体6上に堆積膜が
形成される。従って本方法では、担体6自体を原料ガス
の分解温度以上の高温に加熱することなく堆積膜を担体
6上に形成することができる。
The raw material gas discharge nozzle 8 includes a raw material gas,
For example, a raw material gas composed of a raw material gas pump 13 for supplying the aforementioned monosilane, etc., a gas pressure regulator 12 for adjusting the supply pressure of the gas, a mass flow controller 11 for adjusting the supply amount of the gas, etc. A source gas adjusted to desired pressure, flow rate, etc. is supplied from the supply system. The raw material gas supplied to the nozzle 8 is heated to a decomposition temperature (for example, 60°C for the monosilane mentioned above) by a heater 10 for preheating the raw material gas provided in the nozzle 8.
After being preheated to a temperature lower than 0 to 700[deg.] C.), the raw material gas is heated to a temperature higher than the decomposition temperature by the raw material gas heating heater 9 and decomposed. Radicals 14 generated by the thermal decomposition of the raw material gas are emitted toward the carrier 6 from the raw material gas discharge hole 18 provided in the nozzle 8, adhere to the carrier 6, and cause a reaction on the surface of the carrier 6, resulting in a reaction on the carrier 6. A deposited film is formed on the surface. Therefore, in this method, a deposited film can be formed on the carrier 6 without heating the carrier 6 itself to a high temperature higher than the decomposition temperature of the source gas.

原料ガスの加熱分解によって生じるラジカル14は反応
性が高いので、堆積膜形成の直前に原料ガスを加熱分解
するのが好ましい。このため本例では、原料ガス放出孔
1Bの直前に原料ガス加熱用ヒーター9を図の如くに設
け、放出直前に該ヒーター9によって原料ガスを分解す
るようにしている。また、ヒーター9を大容量(本例で
は2 Kw)にして、原料ガスを短時間で分解すること
ができるようにしている。
Since the radicals 14 generated by thermal decomposition of the raw material gas are highly reactive, it is preferable to thermally decompose the raw material gas immediately before forming the deposited film. Therefore, in this example, a heater 9 for heating the raw material gas is provided immediately before the raw material gas discharge hole 1B as shown in the figure, and the raw material gas is decomposed by the heater 9 immediately before discharge. Further, the heater 9 has a large capacity (2 Kw in this example) so that the raw material gas can be decomposed in a short time.

本発明では予備加熱用ヒーター10を用いて原料ガスを
分解温度未満の所望の温度に予備加熱しておくので1M
料ガスを短時間で分解温度以上に加熱することができる
0本例では予備加熱用ヒーターlOを、堆積室1外に設
けであるが、もちろん堆積室l内に設けても良い。予備
加熱温度が原料ガスの分解温度を越えると、ノズル8内
に堆積膜が形成され、これがノズル閉塞の原因になった
り、形成される堆積膜の特性を劣化させたりして好まし
くない。従って、本例の如くの加熱用ヒーター9と予備
加熱用ヒーター10の間にノズル冷却用水冷パイプ15
を設ける等して、予備加熱ガスが分解温度以上の温度に
加熱されないようにする等の工夫をすることが好ましい
In the present invention, since the raw material gas is preheated to a desired temperature below the decomposition temperature using the preheating heater 10, 1M
In this example, the preheating heater 10, which can heat the raw material gas to a temperature higher than the decomposition temperature in a short time, is provided outside the deposition chamber 1, but it may of course be provided inside the deposition chamber 1. If the preheating temperature exceeds the decomposition temperature of the source gas, a deposited film is formed in the nozzle 8, which is undesirable because it causes nozzle blockage or deteriorates the properties of the deposited film formed. Therefore, a water cooling pipe 15 for cooling the nozzle is installed between the heating heater 9 and the preheating heater 10 as in this example.
It is preferable to take measures to prevent the preheated gas from being heated to a temperature higher than the decomposition temperature by providing a.

本発明では上記の如く、堆積膜形成用の原料ガスを予備
加熱した後、これを分解温度以上の温度に加熱して分解
し、担体上に堆積膜を形成させるので、担体を加熱する
ことは必ずしも必要ではないが、担体温度を均一にして
膜形成条件の最適化をはかる等の目的で、担体を加熱し
たり或いは冷却したりすることを妨げるものではない。
In the present invention, as described above, after preheating the raw material gas for forming the deposited film, it is heated to a temperature higher than the decomposition temperature to decompose it and form the deposited film on the carrier, so it is not necessary to heat the carrier. Although not necessarily required, this does not prevent the carrier from being heated or cooled for the purpose of making the carrier temperature uniform and optimizing the film forming conditions.

例えば本例の場合、担体6は、担体支持台2に設けられ
た担体冷却用水冷パイプ3と担体加熱用ヒーター4とに
より、冷却と加熱が行なわれ、所望の温度に制御される
ようになっている。このため担体支持台2には、不図示
の冷却水供給源に接続された水冷パイプ3が、担体6を
均一に冷却できるように配設されている。ヒーター4は
担体温度を制御するための制御回路5に接続されており
、担体温度検知のための熱電対7 (本例では、アロメ
ルークロメル熱電対)で検知した温度に基いて、不図示
の電力供給源からヒーター4に印加される電力を制御回
路5で制御することで、担体温度の制御が行なわれる。
For example, in the case of this example, the carrier 6 is cooled and heated by a water cooling pipe 3 for cooling the carrier and a heater 4 for heating the carrier provided on the carrier support base 2, and is controlled to a desired temperature. ing. For this reason, a water cooling pipe 3 connected to a cooling water supply source (not shown) is arranged on the carrier support base 2 so that the carrier 6 can be uniformly cooled. The heater 4 is connected to a control circuit 5 for controlling the carrier temperature, and based on the temperature detected by a thermocouple 7 (in this example, an allomelo-cromel thermocouple) for detecting the carrier temperature, a control circuit (not shown) is activated. The carrier temperature is controlled by controlling the power applied to the heater 4 from the power supply source by the control circuit 5.

このような本発明に使用しうる担体としては、特に限定
はないが、従来は高温のため使用できなかった耐熱性の
低い材料、例えば前述のAI等のほか紙等も使用するこ
とが可能であり、担体の形状や大きさ等は、その使用す
る用途等に応じて適宜選択することができる。
Although there are no particular limitations on the carrier that can be used in the present invention, it is possible to use materials with low heat resistance that could not be used conventionally due to high temperatures, such as the aforementioned AI, as well as paper and the like. The shape and size of the carrier can be appropriately selected depending on the intended use.

また、本発明における原料ガスとしては、前述のモノシ
ランや四フッ化珪素等の他、光導電膜、半導体膜あるい
は絶縁膜等の形成すべき堆積膜の用途に応じて、種々の
原料ガスを単独で、あるいは混合する等して使用するこ
とができる。
In addition to the above-mentioned monosilane and silicon tetrafluoride, various raw material gases may be used as raw material gases in the present invention, depending on the purpose of the deposited film to be formed, such as a photoconductive film, a semiconductor film, or an insulating film. It can be used separately or mixed.

これ等ガスを加熱する手段としては、前述のヒーター等
の他、一般にガスを加熱する手段として知られている各
種の手段等を広く使用することが可能である。
As means for heating the gas, in addition to the above-mentioned heater, various means generally known as means for heating gas can be widely used.

これ等ガスを堆積室に導入する手段は、上記の如きノズ
ルに限定されるものではなく、原料ガスの予備加熱と献
ガスの加熱分解を行なえるような手段であれば広く使用
することができる。また。
The means for introducing these gases into the deposition chamber are not limited to the nozzle as described above, and any means that can preheat the raw material gas and thermally decompose the donor gas can be used. . Also.

前述の如きノズルを用いる場合にも、例えば複数のノズ
ルをアレー状に並べる等して、大面積の担体に堆積膜を
形成する等のことも可使である。
Even when using the above-mentioned nozzles, it is also possible to arrange a plurality of nozzles in an array to form a deposited film on a large area carrier.

(5)実施例 以下に実施例を示し、本発明について更に詳細に説明す
る。
(5) Examples The present invention will be explained in further detail using examples below.

[実施例1] 第1図の装置を用い、平板状の石英ガラス基板上に堆積
膜を形成した。
[Example 1] Using the apparatus shown in FIG. 1, a deposited film was formed on a flat quartz glass substrate.

原料ガスとしてジシラン(Si2H6)を用い、該ガス
を予備加熱用ヒーターlOで350℃まで予備加熱し、
これを更にガス加熱用ヒーター9で550℃に加熱して
分解し、原料ガス放出孔16から放出速度20cc/w
inで石英ガラス基板6に放出した。原料ガス放出孔1
Bを直径21腸とし、石英ガラス基板を該放出孔16か
ら5墓■離れたところに設置した。また、担体温度を3
00℃に設定し、堆積室内の圧力を 100■薦Tor
rに保った。この状態を保持したところ、1時間後に石
英ガラス基板上に膜厚1.5μのa−5i膜が形成され
た。
Disilane (Si2H6) is used as a raw material gas, and the gas is preheated to 350°C with a preheating heater lO,
This is further heated to 550°C with a gas heating heater 9 to decompose it, and released from the raw material gas release hole 16 at a rate of 20cc/w.
was released onto the quartz glass substrate 6 at in. Raw material gas release hole 1
B had a diameter of 21 cm, and a quartz glass substrate was placed 5 cm away from the discharge hole 16. In addition, the carrier temperature was
Set the pressure in the deposition chamber to 100 Torr.
I kept it at r. When this state was maintained, an a-5i film having a thickness of 1.5 μm was formed on the quartz glass substrate after 1 hour.

得られたa−9i膜上に0.2mm間隔のくし型AI電
極を真空蒸着により作成した後、2 X 1014ph
oton/crn’のHe−Meレーザーを照射し、暗
導電率及び引導電率を測定したところ、それぞれad=
 7.7 X 1O−10(Ω−cm)−’、σp= 
8.5  X 10−’(Ω−crs )−’の良好な
光導電性を有していることが分った。
After creating comb-shaped AI electrodes with a spacing of 0.2 mm on the obtained a-9i film by vacuum evaporation, 2×1014ph
When irradiated with an oton/crn' He-Me laser and measured the dark conductivity and attractive conductivity, ad=
7.7 X 1O-10(Ω-cm)-', σp=
It was found that it had a good photoconductivity of 8.5 x 10-'(Ω-crs)-'.

[実施例2〕 原料ガスとして(CH3)3 S izH3ガスを用い
、予備加熱温度を300℃、加熱分解温度を550℃と
する以外は、実施例1と同様の条件で堆積膜を作成した
ところ、膜厚1.6鱗のa−9i膜を得た。得られたa
−3i膜を実施例2と同様にして評価したところ、σd
= 8 X 10−”(Ω−am)−”、σp=5X1
0°7 (Ω−c m ) −’の良好な光導電性を有
していることが分った。
[Example 2] A deposited film was created under the same conditions as in Example 1, except that (CH3)3S izH3 gas was used as the raw material gas, the preheating temperature was 300°C, and the thermal decomposition temperature was 550°C. , an a-9i film with a film thickness of 1.6 scales was obtained. Obtained a
-3i film was evaluated in the same manner as in Example 2, and it was found that σd
= 8 X 10-”(Ω-am)-”, σp=5X1
It was found that it had a good photoconductivity of 0°7 (Ω-cm) −'.

(8)発明の効果 以上に説明した如く、本発明では、堆積膜形成用の原料
ガスを、該ガスの分解温度未満の温度に予備加熱した後
、これを分解温度以上の温度に加熱して分解し、担体上
に堆積膜を形成するので、従来の如く担体自体を原料ガ
スの分解温度以・上の温度に加熱する必要がなくなり、
良好な膜特性を有する堆積膜を比較的低い温度で形成で
きるようになった。このため、従来は使用できなかった
耐熱性の低い材料を担体として使用することができるよ
うになった。
(8) Effects of the Invention As explained above, in the present invention, the raw material gas for forming a deposited film is preheated to a temperature below the decomposition temperature of the gas, and then heated to a temperature above the decomposition temperature. Since it decomposes and forms a deposited film on the carrier, there is no need to heat the carrier itself to a temperature higher than or equal to the decomposition temperature of the raw material gas, as was the case in the past.
Deposited films with good film properties can now be formed at relatively low temperatures. Therefore, it has become possible to use materials with low heat resistance as carriers, which could not be used in the past.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法に用いられる堆積膜形成装置の
一例の概略構成図である。 1−m−堆積室 2−−一担体支持台 3−−一担体冷却用水冷パイブ 4−m−担体加熱用ヒーター 5−m−制御回路 6−m−担体 7−m−熱電対 8−m−原料ガス放出用ノズル 8−m−原料ガス加熱用ヒーター 10−−一原料ガス予備加熱用ヒーター11−m−マス
フローコントローラー 12−−−ガス圧調整器 13−m−ガスボンベ 14−m−ラジカル 15−一−ノズル冷却用水冷パイプ 16−−−原料ガス放出孔
FIG. 1 is a schematic diagram of an example of a deposited film forming apparatus used in the method of the present invention. 1-m-Deposition chamber 2--1-Carrier support stand 3--1Water cooling pipe for cooling carrier 4-m-Heater for heating carrier 5-m-Control circuit 6-m-Carrier 7-m-Thermocouple 8-m - Nozzle for releasing raw material gas 8 - m - Heater for heating raw material gas 10 - - Heater for preheating raw material gas 11 - m - Mass flow controller 12 - - Gas pressure regulator 13 - m - Gas cylinder 14 - m - Radical 15 -1- Water cooling pipe 16 for cooling the nozzle --- Raw material gas discharge hole

Claims (1)

【特許請求の範囲】[Claims] 担体が配置された堆積室内に、分解温度未満の温度に予
備加熱し、更にこれを分解温度以上の温度に加熱して分
解した原料ガスを導入し、該担体上に堆積膜を形成する
ことを特徴とする堆積膜形成方法。
A deposited film is formed on the carrier by introducing a raw material gas which is preheated to a temperature below the decomposition temperature and further heated to a temperature above the decomposition temperature to decompose the carrier into a deposition chamber in which the carrier is disposed. Characteristic deposited film formation method.
JP14603084A 1984-07-16 1984-07-16 Formation of accumulated film Granted JPS6126772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14603084A JPS6126772A (en) 1984-07-16 1984-07-16 Formation of accumulated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14603084A JPS6126772A (en) 1984-07-16 1984-07-16 Formation of accumulated film

Publications (2)

Publication Number Publication Date
JPS6126772A true JPS6126772A (en) 1986-02-06
JPH058269B2 JPH058269B2 (en) 1993-02-01

Family

ID=15398513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14603084A Granted JPS6126772A (en) 1984-07-16 1984-07-16 Formation of accumulated film

Country Status (1)

Country Link
JP (1) JPS6126772A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0257302A2 (en) * 1986-08-21 1988-03-02 Dornier Gmbh Method of producing amorphous layers
US4981103A (en) * 1987-10-08 1991-01-01 Anelva Corporation Apparatus for forming a metal thin film utilizing temperature controlling means
US5274150A (en) * 1990-08-06 1993-12-28 Mitsui Toatsu Chemicals, Incorporated Process for producing 3,5-di(α-methylbenzyl)salicyclic acid derivative, and use of polyvalent-metal-modified product thereof as color developer
US5326739A (en) * 1990-08-06 1994-07-05 Mitsui Toatsu Chemicals, Incorporated Process for producing 3,5-di(α-methylbenzyl)salicylic acid derivative, and use of polyvalent-metal-modified product thereof as color developer
EP1193325A1 (en) * 2000-09-27 2002-04-03 Yamanashi Prefectural Federation of Societies, of Commerce and Industry Process and apparatus for forming semiconductor thin film
US7001831B2 (en) 2002-03-12 2006-02-21 Kyocera Corporation Method for depositing a film on a substrate using Cat-PACVD
JP2006173540A (en) * 2004-12-20 2006-06-29 Taiyo Nippon Sanso Corp Vapor-phase epitaxy device
JP2007081315A (en) * 2005-09-16 2007-03-29 Taiyo Nippon Sanso Corp Device for depositing semiconductor film
JP2008050683A (en) * 2006-08-23 2008-03-06 Chugoku Sarin Kigyo Kofun Yugenkoshi Cvd equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839171A (en) * 1971-09-22 1973-06-08
JPS5785221A (en) * 1980-11-18 1982-05-27 Seiko Epson Corp Manufacture of amorphous semiconductor thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839171A (en) * 1971-09-22 1973-06-08
JPS5785221A (en) * 1980-11-18 1982-05-27 Seiko Epson Corp Manufacture of amorphous semiconductor thin film

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0257302A2 (en) * 1986-08-21 1988-03-02 Dornier Gmbh Method of producing amorphous layers
US4981103A (en) * 1987-10-08 1991-01-01 Anelva Corporation Apparatus for forming a metal thin film utilizing temperature controlling means
US5274150A (en) * 1990-08-06 1993-12-28 Mitsui Toatsu Chemicals, Incorporated Process for producing 3,5-di(α-methylbenzyl)salicyclic acid derivative, and use of polyvalent-metal-modified product thereof as color developer
US5326739A (en) * 1990-08-06 1994-07-05 Mitsui Toatsu Chemicals, Incorporated Process for producing 3,5-di(α-methylbenzyl)salicylic acid derivative, and use of polyvalent-metal-modified product thereof as color developer
EP1193325A1 (en) * 2000-09-27 2002-04-03 Yamanashi Prefectural Federation of Societies, of Commerce and Industry Process and apparatus for forming semiconductor thin film
US6472299B2 (en) 2000-09-27 2002-10-29 Yamanashi Prefectural Federation Of Societies Of Commerce And Industry Method and apparatus for treating a substrate with hydrogen radicals at a temperature of less than 40 K
KR100787285B1 (en) * 2000-09-27 2007-12-20 야마나시 쇼꼬카이 렌고카이 Process and Apparatus for Forming Semiconductor Thin Film
US7001831B2 (en) 2002-03-12 2006-02-21 Kyocera Corporation Method for depositing a film on a substrate using Cat-PACVD
JP2006173540A (en) * 2004-12-20 2006-06-29 Taiyo Nippon Sanso Corp Vapor-phase epitaxy device
JP4598506B2 (en) * 2004-12-20 2010-12-15 大陽日酸株式会社 Vapor growth equipment
JP2007081315A (en) * 2005-09-16 2007-03-29 Taiyo Nippon Sanso Corp Device for depositing semiconductor film
JP2008050683A (en) * 2006-08-23 2008-03-06 Chugoku Sarin Kigyo Kofun Yugenkoshi Cvd equipment

Also Published As

Publication number Publication date
JPH058269B2 (en) 1993-02-01

Similar Documents

Publication Publication Date Title
JPH0651909B2 (en) Method of forming thin film multilayer structure
JPS62152171A (en) Thin-film transistor
US5154135A (en) Apparatus for forming a deposited film
JPS6126772A (en) Formation of accumulated film
JPH0459390B2 (en)
JPS62151572A (en) Deposited film forming device
JPS6126775A (en) Formation of accumulated film
JP2626701B2 (en) MIS type field effect semiconductor device
JPS6126773A (en) Formation of accumulated film
JP2636215B2 (en) Deposition film forming equipment
JP2555209B2 (en) Thin film manufacturing method
JP2531649B2 (en) Deposited film formation method
JPH0645882B2 (en) Deposited film formation method
JPH057462B2 (en)
JPS62136663A (en) Electrophotographic sensitive body and method and apparatus for producing said body
JPS63234513A (en) Deposition film formation
JPS61289622A (en) Deposited film forming device
JPS6319210B2 (en)
JPH0645883B2 (en) Deposited film formation method
JPS62163314A (en) Thin-film multilayer structure and forming method thereof
JPH0429217B2 (en)
JPH0651907B2 (en) Method of forming thin film multilayer structure
JPS63166214A (en) Deposition film forming method
JPS62230978A (en) Deposited film forming device
JPS61278131A (en) Manufacture of silicon group alloy thin-film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term