JPS6333782B2 - - Google Patents

Info

Publication number
JPS6333782B2
JPS6333782B2 JP58233602A JP23360283A JPS6333782B2 JP S6333782 B2 JPS6333782 B2 JP S6333782B2 JP 58233602 A JP58233602 A JP 58233602A JP 23360283 A JP23360283 A JP 23360283A JP S6333782 B2 JPS6333782 B2 JP S6333782B2
Authority
JP
Japan
Prior art keywords
resin
foam
particles
foaming
vinylidene chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58233602A
Other languages
Japanese (ja)
Other versions
JPS60125649A (en
Inventor
Masahiko Sakata
Nobuo Miura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP58233602A priority Critical patent/JPS60125649A/en
Priority to US06/678,416 priority patent/US4550003A/en
Priority to GB08431163A priority patent/GB2151231B/en
Priority to DE3445323A priority patent/DE3445323C1/en
Priority to FR8418995A priority patent/FR2556354B1/en
Priority to US06/747,036 priority patent/US4613626A/en
Publication of JPS60125649A publication Critical patent/JPS60125649A/en
Priority to US06/860,479 priority patent/US4785024A/en
Publication of JPS6333782B2 publication Critical patent/JPS6333782B2/ja
Priority to US07/224,004 priority patent/US4868055A/en
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】 本発明は、塩化ビニリデン系樹脂発泡体に関
し、更に詳しくは、例えばそのままで断熱材板、
緩衝成形容器として使用することができる広い断
面と自由な形状を有する新規な塩化ビニリデン系
樹脂発泡体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vinylidene chloride resin foam, and more specifically, it can be used as a heat insulating board, for example, as it is.
This invention relates to a novel vinylidene chloride resin foam having a wide cross section and free shape that can be used as a buffer molded container.

近来合成樹脂を発泡させる技術の研究は盛ん
で、その結果多くの合成樹脂が発泡可能となり、
樹脂種に応じて各々独自の技術分野を形成してい
る。
In recent years, research into technology for foaming synthetic resins has been active, and as a result, many synthetic resins can now be foamed.
Each type of resin has its own technical field.

その中にあつて塩化ビニリデン系樹脂は、今だ
に広断面形状寸法の良質発泡体を得る技術が完成
されておらず、従つて例えば、そのままで断熱材
板として用い得る様な広い断面形状、及び板面積
を有する発泡成形体は実在していない。
Among them, vinylidene chloride resin has a wide cross-sectional shape and a high-quality foam that has not yet been developed. There is no actual foam molded product having a plate area.

その理由として、一般に塩化ビニリデン系樹脂
は、 1 樹脂を溶融加工する加工温度と、分解が進む
分解温度と接近しすぎているため、押出加工工
程で樹脂の熱分解が起る。
The reasons for this are generally that for vinylidene chloride resins: 1. The processing temperature at which the resin is melt-processed is too close to the decomposition temperature at which decomposition proceeds, so thermal decomposition of the resin occurs during the extrusion processing process.

2 樹脂溶融点近辺の温度下で樹脂が鉄・銅等の
金属と接触するとき樹脂の分解が著るしく促進
される。
2. When resin comes into contact with metals such as iron and copper at temperatures near the resin's melting point, the decomposition of the resin is significantly accelerated.

3 樹脂のバリヤー性が高く樹脂への発泡剤の含
浸が困難である。
3. The barrier properties of the resin are high, making it difficult to impregnate the resin with a foaming agent.

4 発泡温度近辺での樹脂の粘弾性の温度に対す
る依存性が大きいために発泡条件の調整が難か
しい。
4. It is difficult to adjust the foaming conditions because the viscoelasticity of the resin is highly dependent on temperature near the foaming temperature.

等が挙げられており、熱分解を起さずに高度に発
泡した良好均質な発泡体を得ることは極めて困難
とされ、充分な技術開発が出来ていないのが現状
である。
It is considered extremely difficult to obtain a highly foamed, well-homogeneous foam without causing thermal decomposition, and the current state of the art is that sufficient technology has not been developed.

現に、文献等で紹介されている塩化ビニリデン
系樹脂の発泡体、及びその製法でも、例えば特公
昭39―3968号公報、特公昭42―16419号公報、米
国特許第2948048号公告明細書等に開示されてい
る技術は、特殊な化学発泡剤を選び、押出発泡さ
せているもので得られる発泡体は、発泡倍率が約
2〜3倍と低く、その断面もせいぜい人工籐、人
工籐芯、かざり糸等で代表される小さい断面形状
のものにすぎない。又、発泡することの利用目的
も表面光沢の調節、柔軟性の付与程度に止まつて
いる。
In fact, vinylidene chloride resin foams and their manufacturing methods that have been introduced in literature are disclosed in, for example, Japanese Patent Publication No. 39-3968, Japanese Patent Publication No. 16419-1982, and US Patent No. 2948048. The technology used involves selecting a special chemical foaming agent and extrusion foaming.The resulting foam has a low expansion ratio of about 2 to 3 times, and its cross section is similar to that of artificial rattan, artificial rattan core, or decoration. It is nothing more than a small cross-sectional shape such as thread. Furthermore, the purpose of foaming is limited to adjusting surface gloss and imparting flexibility.

又物理発泡剤を用い高発泡させる技術としては
米国特許第3983080号公告明細書の開示がある。
この記載では、細かく粉砕した塩化ビニリデン系
樹脂と物理発泡剤を混合し、これを低温(約120
〜150℃)で押出発泡させると、密度が約240Kg/
m3以下、気泡径が約0.1〜1mmの発泡体が得られ
るとしている。
Further, a technique for achieving high foaming using a physical foaming agent is disclosed in US Pat. No. 3,983,080.
In this description, finely ground vinylidene chloride resin is mixed with a physical blowing agent, and then the mixture is heated at a low temperature (approximately 120
When extruded and foamed at ~150℃), the density is approximately 240Kg/
It is said that a foam with a cell diameter of about 0.1 to 1 mm can be obtained.

しかしながら、本発明者等の追試によると、こ
の方法では、表面が凹凸で気泡径が著るしく不揃
いの紐状押出発泡物が短時間得られるに止まり、
熱分解を安定して制御することは困難で樹脂の熱
分解が進行して来て押出発泡を継続させることが
できないのが実状である。
However, according to additional tests conducted by the present inventors, this method can only produce a string-like extruded foam with an uneven surface and significantly irregular cell diameters for a short period of time.
In reality, it is difficult to stably control thermal decomposition, and the thermal decomposition of the resin progresses, making it impossible to continue extrusion foaming.

更に一方、特公昭42―26524号公報、及び特開
昭49―59168号公報では、揮発性液状発泡剤を熱
可塑性樹脂状共重合体で被覆内蔵した、直径約1
〜50μmの単細胞状の球状粒子を提案している。
ここの記載では、熱可塑性樹脂共重合体の定義の
中に塩化ビニリデンとアクリロニトリル又はブチ
ルアクリレートとの共重合体が包含されており、
更に実施例の一部分で該粒子を加熱膨張融着させ
ると発泡体様のものが形成される記載がある。し
かしながら上記発泡体と本発明の発泡体は発泡の
原理、発泡体の構造、性能、従つて用途も異にす
るもので、ここで予めその技術上の相違について
ふれ、両者間の区分を明確にしておく。
Furthermore, on the other hand, Japanese Patent Publication No. 42-26524 and Japanese Patent Application Laid-open No. 49-59168 disclose a device with a diameter of approximately
We propose unicellular spherical particles of ~50 μm.
In this description, the definition of thermoplastic resin copolymer includes a copolymer of vinylidene chloride and acrylonitrile or butyl acrylate,
Further, in some of the examples, there is a description that a foam-like material is formed when the particles are thermally expanded and fused. However, the above-mentioned foam and the foam of the present invention are different in terms of foaming principle, foam structure, performance, and therefore usage.Here, we will first touch on the technical differences and clarify the distinction between the two. I'll keep it.

先ず技術上の最大の相違として、本発明の発泡
体は後述する通り、樹脂に発泡剤を含浸(溶解)
させていることで回復力、反撥力に富む多泡質体
を単位とする集合発泡体を得、更にその集合体形
成を型内成形の技術で達成させる結果として、独
立気泡率に富み機械的強度に優れる利点を発泡体
に付与することに成功しているのである。これに
対し上記公報記載のものは樹脂でできた小さな風
船の中に液状の発泡剤を内蔵している構造(いわ
ゆるマイクロバルーン)であるから、仮にこれを
加熱膨張融着した場合でも、得られる成形発泡体
は風船状の単一気泡粒子を単位とした集合体とな
り、独立気泡率が低く機械的特性も悪いものであ
る。
First of all, the biggest technical difference is that the foam of the present invention is made by impregnating (dissolving) a foaming agent into the resin, as described below.
As a result of this, we can obtain an aggregate foam made up of multicellular units with high resilience and repulsion, and further, as a result of achieving the aggregate formation using in-mold molding technology, it has a high closed cell ratio and is mechanically resistant. They have succeeded in imparting the advantage of superior strength to the foam. On the other hand, the one described in the above publication has a structure in which a liquid foaming agent is contained within a small balloon made of resin (a so-called microballoon), so even if it were to be heated and expanded and fused, it would still be possible to obtain The molded foam is an aggregate of balloon-shaped single cell particles, and has a low closed cell ratio and poor mechanical properties.

更にはマイクロバルーンは専ら壁紙などに立体
模様を施すためにインキ、塗料などに混合して使
用されるものでその粒径は前出の通り1〜50μm
と非常に小さいためこれを型内成型しようとして
も型内に均一に充填出来ないし、スチームが成型
体の内部まで通らない等の問題があり、本発明が
対象にしている型内発泡成形では、集合体にする
ことが出来ない粒子である点で基本的に相違する
のである。
Furthermore, microballoons are used exclusively by mixing with ink, paint, etc. to create three-dimensional patterns on wallpaper, etc., and their particle size is 1 to 50 μm as mentioned above.
Because it is extremely small, even if you try to mold it in a mold, you will not be able to fill it uniformly in the mold, and there will be problems such as steam not passing through to the inside of the molded product. They differ fundamentally in that they are particles that cannot be aggregated.

本発明はこのような状況下になされたもので、
その目的の第1は、塩化ビニリデン系樹脂の持つ
特質(即ち例えば、難燃性、耐油・耐化学薬品
性、ガスバリヤ性、機械的強度等)を活かした発
泡体を、そのまま例えば断熱材用板体として使用
できる断面及び形状寸法で提供することであり、
目的の第2は、上記第1の目的が、その形状構造
の設計上で選べる自由度が広く、且つ目標寸法に
そつた状態のものとして提供することであり、目
的の第3は、上記第1第2の目的が、低い熱伝導
率(断熱性に優れること)を長期に亘つて維持で
きる特色をもつた発泡体として提供することであ
る。
The present invention was made under such circumstances,
The first purpose is to produce foams that take advantage of the properties of vinylidene chloride resin (e.g., flame retardancy, oil/chemical resistance, gas barrier properties, mechanical strength, etc.) as they are, for example, as insulation boards. It is to provide a cross section and shape that can be used as a body,
The second purpose is to provide a product that has a wide degree of freedom in designing its shape and structure and is in line with target dimensions, and the third purpose is to satisfy the above first purpose. 1. The second objective is to provide a foam that has the characteristic of maintaining low thermal conductivity (excellent heat insulation properties) over a long period of time.

上記目的を満す塩化ビニリデン系発泡体は、従
来その出現を待望されながら実在することのなか
つた、全く新規な発泡体である。
The vinylidene chloride foam that satisfies the above objectives is a completely new foam that has been long awaited but has never actually existed.

本発明の上記目的は、本発明の要旨即ち実質非
晶性である塩化ビニリデン系樹脂でできた多胞質
発泡粒子の多数個が、相隣れる粒子相互を密に接
して融着し、発泡体を形成していることを特徴と
する塩化ビニリデン系樹脂型内発泡成形体を採用
することで容易に達成することが出来る。
The above-mentioned object of the present invention is to achieve the gist of the present invention, that is, a large number of porous foamed particles made of substantially amorphous vinylidene chloride resin are brought into close contact with each other and fused together, resulting in foaming. This can be easily achieved by employing an in-mold foam molded product of vinylidene chloride resin, which is characterized by forming a polyurethane resin.

以下、本発明の内容を詳述するに当り、新規な
発泡体である点で先ずその製法上の要点を述べる
ことで、従来の不能事項をどう可能になし得たか
の説明を行い、更に本発明の発泡体の構成要件に
至る関係を明確にする。
Hereinafter, in detailing the content of the present invention, we will first describe the main points of the manufacturing method since it is a new foam, and explain how we were able to accomplish what was previously impossible. Clarify the relationships that lead to the constituent requirements of the foam.

本発明の発泡体を完成せしめた製法上の要点
は、 イ 基材樹脂に実質非晶性の塩化ビニリデン系樹
脂を採用したこと、 ロ 発泡剤に揮発性有機発泡剤を選び、且つその
樹脂への含有は、例えば懸濁重合法で得られる
様な微細樹脂粒子の持つ、比表面積の大きさを
利用した発泡剤との接触含浸法を採用したこ
と、 ハ 発泡体の形成には、膨張性樹脂粒子(代表的
にはポリスチレン発泡性粒子)に依る型内発泡
成形法として公知の成形法を採用出来るように
したこと、 の上記イ)ロ)ハ)の組合せであると要約でき
る。
The key points in the manufacturing method that completed the foam of the present invention are: (a) The use of a substantially amorphous vinylidene chloride resin as the base resin; (b) The selection of a volatile organic blowing agent as the blowing agent, and the use of the resin. For example, the inclusion of the foam is based on the use of a contact impregnation method with a foaming agent that takes advantage of the large specific surface area of fine resin particles such as those obtained by suspension polymerization. It can be summarized as a combination of the above-mentioned (a), (b) and (c), which enables the adoption of a known molding method as an in-mold foam molding method using resin particles (typically expandable polystyrene particles).

その理由を説明の便宜上、イ)ロ)ハ)の区分
の順で説明する。
For convenience of explanation, the reason will be explained in the order of categories a), b), and c).

先ずイ)の必要性は、樹脂内に含浸された発泡
剤を多泡質の発泡粒子となる発泡能として取出し
得る樹脂の表面状態(内部構造を含む)になすこ
と、及び、発泡温度近辺での樹脂の流動粘弾性特
性を発泡するに適した状態にするためのものであ
る。このところの状況を端的に示すものとして第
1図A,Bを示す。即ち第1図A,Bは、基材樹
脂に当る塩化ビニリデン系樹脂粒子の表面状態を
示した図で、Aは本発明でいう実質非晶性の樹
脂、Bは比較の結晶性樹脂のものである。両者は
共に電子顕微鏡に依る拡大観察図である。
First of all, the necessity of (a) is that the surface condition of the resin (including the internal structure) is such that the foaming agent impregnated in the resin can be extracted as a foaming ability that becomes multifoamed foam particles, and that This is to make the flow viscoelastic properties of the resin suitable for foaming. Figures 1A and 1B are shown to clearly illustrate the current situation. That is, FIGS. 1A and 1B are diagrams showing the surface state of vinylidene chloride resin particles corresponding to the base resin, where A is a substantially amorphous resin according to the present invention and B is a comparative crystalline resin. It is. Both are enlarged views taken using an electron microscope.

第1図A,Bの対比で明らかなように、非晶質
Aは、表面にすきまや割目がなく、且つ比較的平
滑であるのに対し、結晶質のBは紐状物が集積し
た形のブロツク状のものが集合して全体として凹
凸の表面を表面を形成し、且つ空隙き裂が生じて
見える。この両者の状態はおそらく粒子の内部構
造も同じ状態にあると想像される。このブロツク
の形成は樹脂の結晶質に由来するものと考案され
る。
As is clear from the comparison between A and B in Figure 1, amorphous A has no gaps or cracks on its surface and is relatively smooth, whereas crystalline B has an accumulation of string-like materials. The block-like shapes come together to form an uneven surface as a whole, and voids and cracks appear to occur. It is assumed that the internal structure of the particle is probably the same in both states. The formation of this block is thought to be due to the crystalline nature of the resin.

このA,B粒子の双方に、見掛け上同量の発泡
剤を含有させて加熱発泡させようとすると、A側
は高度に発泡した多胞質粒子になり得るのに対
し、B側の方は発泡したとは云えない程度にしか
変化しないという相違になつて表われるのであ
る。
If both A and B particles contain apparently the same amount of foaming agent and are heated and foamed, the A side will become highly foamed porous particles, whereas the B side will become highly foamed porous particles. This difference manifests itself in the fact that the change is only to the extent that it cannot be said that it has foamed.

上記現象の相違は、おそらく、A側樹脂への発
泡剤の含有は樹脂内に発泡剤が溶解している形の
発泡剤の含浸であるのに対し、B側は空隙き裂を
通じての発泡剤の含有であるために、A側では多
数の気泡核が形成しそれが成長する形での力強い
発泡膨張をして発泡剤の膨張能が活用されるのに
比べ、B側はき裂からの発泡剤の逸散が大きいた
めに発泡剤の発泡能が活用され難く、且つその上
にB側では、溶融樹脂が冷却される過程に生じる
結晶質が、樹脂の流動的伸張を阻害し、気泡の形
成とその成長を難かしいものにしている現象と推
察され、本発明での非晶性樹脂の持つ役割を示す
ものとして注目されるものである。
The difference in the above phenomenon is probably that the inclusion of the blowing agent in the resin on the A side is due to the impregnation of the blowing agent in the form of the blowing agent dissolved in the resin, whereas on the B side, the blowing agent is introduced through the void cracks. On the A side, a large number of bubble nuclei are formed and they grow to make use of the expansion ability of the blowing agent, whereas on the B side, the expansion ability of the blowing agent is utilized. Because the foaming agent dissipates so much, it is difficult to utilize the foaming ability of the foaming agent, and in addition, on the B side, crystals generated during the cooling process of the molten resin impede the fluid expansion of the resin, causing air bubbles to form. It is presumed that this is a phenomenon that makes the formation and growth of the amorphous resin difficult, and this phenomenon is attracting attention as it indicates the role of the amorphous resin in the present invention.

次に第2図は、本発明で使用する樹脂の粒子径
と最大発泡倍率の関係を示す実験例図である。こ
の第2図が示す意味は、上記イ)の非晶質樹脂の
採用に加え上記ロ)即ち小粒径粒子にして接触含
浸法を用いることの必要性の一端を示すものであ
る。
Next, FIG. 2 is an experimental diagram showing the relationship between the particle size of the resin used in the present invention and the maximum expansion ratio. The meaning shown in FIG. 2 is that, in addition to the use of an amorphous resin as described in (a) above, it is also necessary to use the contact impregnation method as described in (b), that is, small particle size particles.

即ち、一般に塩化ビニリデン系樹脂は、揮発性
発泡剤、ことにフレオン系有機発泡剤に対してバ
リヤ性が高く、これを均質な多胞質が得られるよ
うに発泡剤の含浸を行うことは困難と考えられて
いた。しかるに本発明では、樹脂の上記選択と小
粒径樹脂の組合せの採用によつて、これを可能に
し第2図に示す様に、適宜な寸法範囲の粒径を選
ぶことによつて、高度に発泡する発泡剤の含浸を
工業的な条件下で、容易に達成することが出来る
ようになつた事実を示している。
In other words, vinylidene chloride-based resins generally have a high barrier property against volatile blowing agents, especially freon-based organic blowing agents, and it is difficult to impregnate them with a blowing agent to obtain a homogeneous porous structure. It was thought that However, in the present invention, this is made possible by adopting a combination of the above selection of resin and a small particle size resin, and as shown in Figure 2, by selecting a particle size within an appropriate size range, highly This shows the fact that impregnation with a foaming agent can now be easily achieved under industrial conditions.

第3図は、発泡剤を含浸した本発明でいう樹脂
の、発泡剤(発泡能)の保持性(持続性)の1例
を示す図である。この第3図は本発明でいう樹脂
への発泡剤の含浸が、粒子の単なる比表面積の大
きさだけを利用したものであれば、発泡剤の逸散
量もその比表面積に比例して大きくなり、発泡能
が持続できないはずとする仮定を強く否定する現
象として注目できる現象である。
FIG. 3 is a diagram showing an example of the retention (sustainability) of the foaming agent (foaming ability) of the resin referred to in the present invention impregnated with the foaming agent. Figure 3 shows that if the blowing agent is impregnated into the resin in the present invention by simply utilizing the size of the specific surface area of the particles, the amount of blowing agent dissipated will be large in proportion to the specific surface area. This is a remarkable phenomenon that strongly refutes the assumption that the foaming ability cannot be sustained.

更に第4図は、本発明でいう発泡剤を含浸した
発泡性樹脂粒を、3段階に亘つて発泡膨張させた
ときに示す各段階での発泡倍率を累積する形で示
した実験図である。第4図の示す意味は、本発明
でいう樹脂に含浸された発泡剤は、当初の加熱発
泡で未消費の発泡剤は予備発泡粒子樹脂内に残存
し得ることの事実を示し、且つ該樹脂は、多段階
の膨張発泡にも耐える粘弾性特性を持つた樹脂で
あることの事実を示すものである。上記第3,4
図の発泡能の保持性は、樹脂の持つガスバリヤ性
に基づく現象と推察される。
Further, FIG. 4 is an experimental diagram showing the cumulative expansion ratio at each stage when the foamable resin particles impregnated with the foaming agent referred to in the present invention are foamed and expanded in three stages. . The meaning shown in FIG. 4 is that the blowing agent impregnated into the resin as used in the present invention indicates that the unconsumed blowing agent during the initial heat foaming can remain in the pre-expanded particle resin, and This shows that the resin has viscoelastic properties that can withstand multiple stages of expansion and foaming. 3rd and 4th above
The retention of foaming ability shown in the figure is presumed to be a phenomenon based on the gas barrier properties of the resin.

上記現象に加えて更におどろくべき現象を示し
たのが第5図である。第5図は、一旦予備発泡し
た本発明でいう樹脂発泡粒子を大気中に保持した
場合、その粒子が再加熱により示す再膨張能の大
きさの経時変化を示す実験例図である。第5図が
示す現象は当初の発泡で使用されたはずの気泡内
の発泡剤内圧が、大気の呼び込み作用で元の気圧
に以上になる現象と考えられ、塩化ビニリデン系
樹脂では本発明者等によつて初めて究明された特
筆すべき現象である。
In addition to the above phenomenon, FIG. 5 shows an even more surprising phenomenon. FIG. 5 is an experimental diagram illustrating the change over time in the re-expansion ability of the pre-expanded resin foam particles according to the present invention upon reheating when the particles are kept in the atmosphere. The phenomenon shown in Fig. 5 is thought to be a phenomenon in which the internal pressure of the blowing agent inside the bubbles, which was originally used for foaming, becomes higher than the original pressure due to the attraction of the atmosphere. This is a remarkable phenomenon that was first investigated by.

次にハ)の必要性は、熱分解し易い塩化ビニリ
デン系樹脂を、より低い温度で且つより短い時間
で広い滞留時間分布をもたすことなく一律にきわ
めて効率良く加熱し、これを発泡成形体にするた
めのものである。
Next, the need for c) is to uniformly and efficiently heat vinylidene chloride resin, which is easily thermally decomposed, at a lower temperature and in a shorter time without having a wide residence time distribution, and to foam-form it. It is meant for the body.

ここで用いられる型内成形は、多数の小穴を有
した壁でできた金型に発泡性樹脂粒又は予備発泡
粒子を充填し、型壁の外部から小穴を通じて水蒸
気等の流体で加熱することによつて発泡膨張を生
じさせ、粒子間空隙を埋めて融着させて後、これ
を急冷して成形体にするのである。
The in-mold molding used here involves filling a mold with a wall with many small holes with foamable resin particles or pre-foamed particles, and heating the mold with a fluid such as steam through the small holes from outside the mold wall. As a result, foaming is caused to expand, the interparticle voids are filled and fused, and then this is rapidly cooled to form a molded product.

更にこの際、前記イ)による非結晶性樹脂の採
用は、従来の結晶性樹脂に比べて、ビカツト軟化
点が50〜60℃以上低い値を示すことから、型内成
形で常用される120℃以下の水蒸気での加熱発泡
成形を充分に可能にし、発泡温度を樹脂の分解温
度より大巾に下廻る温度に設定することができる
のである。
Furthermore, in this case, the use of amorphous resin according to (a) above shows a Vikato softening point 50 to 60°C lower than that of conventional crystalline resins. This makes it possible to fully perform the following heat foaming molding with water vapor, and the foaming temperature can be set to a temperature that is well below the decomposition temperature of the resin.

又、懸濁重合法で得られる細粒樹脂をそのまま
発泡剤を含浸させて発泡性樹脂にする場合は、例
えば押出造粒法などでさもなくば受けるであろう
加熱溶融や機械的剪断を不要のものにする点で、
そこから生じる樹脂の変質・熱分解を完全に除外
するし、更にこれを防ごうとしてとられる可塑剤
や熱安定剤類の添加をも不要とするので、樹脂の
持つ本質的な特性(例えばガスバリヤ性、難燃性
等)をそのまま活用することにもつながるのであ
る。
In addition, when fine-grained resin obtained by suspension polymerization is directly impregnated with a foaming agent to make a foamable resin, there is no need for heat melting or mechanical shearing that would otherwise be required in extrusion granulation, for example. In terms of making it a
This completely eliminates the deterioration and thermal decomposition of the resin that occurs, and also eliminates the need for the addition of plasticizers and heat stabilizers that are used to prevent this. This also leads to the utilization of the properties (e.g., fire resistance, flame retardance, etc.) as they are.

以上本発明の発泡体は、上記イ)ロ)ハ)で要
約される特質を巧みに応用した製法によつて、初
めて完成した新規な発泡体であるが、その製法は
上記特性の応用の仕方で様々に変化するので、目
標とする発泡体に応じて適宜選ぶことが出来る。
As described above, the foam of the present invention is a novel foam that has been completed for the first time by a manufacturing method that skillfully applies the characteristics summarized in (a), (b), and (c) above. Since it varies in various ways, it can be selected appropriately depending on the target foam.

次に本発明の発泡体について述べる。 Next, the foam of the present invention will be described.

第6図は、本発明の発泡体の断面拡大要図で、
その構造を分り易くするために、割り裂いたとき
の断面を電子顕微鏡写真で示している。
FIG. 6 is an enlarged cross-sectional view of the foam of the present invention,
To make the structure easier to understand, a cross-section of the structure is shown using an electron microscope.

第6図が示す通り本発明の発泡体は、実質非晶
質である塩化ビニリデン系樹脂を基材樹脂として
できた多胞質体粒子の多数個の集合体であつて、
該粒子は相隣れる粒子の外表面を密に接して融着
し、一体をなす発泡成形体が形成されている構造
となつている。この構造は正に、上記詳述した本
発明の発泡体を完成させた型内成形法の特徴を正
確に表現したものになつている。
As shown in FIG. 6, the foam of the present invention is an aggregate of a large number of porous particles made of a substantially amorphous vinylidene chloride resin as a base resin.
The particles have a structure in which the outer surfaces of adjacent particles are closely contacted and fused together to form an integral foamed molded product. This structure accurately expresses the characteristics of the in-mold molding method that completed the foam of the present invention as detailed above.

第7,8,9、図は、本発明の発泡体が示す有
益な特質の代表例で、第7図は発泡体密度と5%
圧縮するときに必要な圧縮応力との関係例図、第
8図は本発明の発泡体が示す断熱性能の持続性を
示す例図、第9図は本発明の基材樹脂が示す難燃
性能(酸素指数)の例図である。
Figures 7, 8, and 9 are representative examples of the beneficial attributes exhibited by the foams of the present invention; Figure 7 shows foam density and 5%
An example diagram showing the relationship with the compressive stress required when compressing. Figure 8 is an example diagram showing the sustainability of the heat insulation performance exhibited by the foam of the present invention. Figure 9 is a diagram showing the flame retardant performance exhibited by the base resin of the present invention. (Oxygen index) is an example diagram.

これ等はいずれも、塩化ビニリデン系樹脂の特
質を、熱分解或は変質させることなく発揮させる
ように工夫した本発明の発泡体の製法上の特質
が、ここに示され、本発明の発泡体を産業界に有
益なものにしているのである。
All of these demonstrate the characteristics of the manufacturing method of the foam of the present invention, which is devised to exhibit the characteristics of vinylidene chloride-based resin without thermal decomposition or alteration, and the foam of the present invention This makes it useful to industry.

即ち、第7図は広い密度範囲の発泡体として本
発明の発泡体を提供できる事実を示し、用途によ
つて異なる様々な発泡体の圧縮強度の要求に応じ
られる可能性を示している。又この優れた密度当
りの圧縮強度の特性は、本発明の発泡体が多胞質
の粒子の集合体であることによつて達成された特
性でもある。
That is, FIG. 7 shows the fact that the foam of the present invention can be provided as a foam with a wide range of densities, and shows the possibility of meeting the compressive strength requirements of various foams depending on the application. This excellent compressive strength per density property is also achieved because the foam of the present invention is an aggregate of porous particles.

第8図は、本発明の発泡体を断熱用板体として
用いたときの有益性を示す1例で、比較のために
断熱性能が優れているとされるポリスチレン押出
発泡板のそれを併せて載せてあるが、本発明の断
熱板は優れた断熱特性が長期に亘つて保持できる
ものであることを示している。この断熱性能は、
発泡体の密度、発泡体を構成する気泡の径、或は
発泡体内に保持されているガス体の種類等によつ
て、その絶対値的水準を変えることが出来るが、
本発明者等の実験によると、24℃に於ける熱伝導
率で0.018〔Kcal/mhr℃〕のものまで得られるこ
とが確認されている。
Figure 8 shows an example of the benefits of using the foam of the present invention as a heat insulating board. This shows that the heat insulating board of the present invention can maintain excellent heat insulating properties over a long period of time. This insulation performance is
The absolute level can be changed depending on the density of the foam, the diameter of the bubbles that make up the foam, the type of gas retained within the foam, etc.
According to experiments conducted by the present inventors, it has been confirmed that a thermal conductivity of up to 0.018 [Kcal/mhr°C] at 24°C can be obtained.

第9図は、本発明の発泡体の作成にあえて難燃
剤等を用いなくても、難燃性を有した発泡体を提
供できるという利点を示唆している。これは正に
基材樹脂そのものの持つ特性が有効に利用できる
1つの利点である。
FIG. 9 suggests the advantage that a flame-retardant foam can be provided without intentionally using a flame retardant or the like in producing the foam of the present invention. This is one advantage in that the properties of the base resin itself can be effectively utilized.

更に、本発明の発泡体の製法上から来る今ひと
つの利点の1つは、厚みや寸法、断面の面積、及
び発泡体の形状を自由に設定出来る利点で、本発
明者等の実験によると、金型が有効に作成できる
範囲、例えば寸法で約3mm以上、断面積で9mm2
上の発泡体を、自由に製造することができ、実験
の範囲に於ても肉厚100mm、巾900mm長さ1800mmの
ブロツクが容易に成形されており、型の設計に応
じて自由な寸法及び形状のものが作れる可能性を
示している。
Furthermore, one of the advantages of the foam production method of the present invention is that the thickness, dimensions, cross-sectional area, and shape of the foam can be freely set. According to experiments conducted by the present inventors, Foams can be freely manufactured within the range that can be effectively created by molds, for example, foams with dimensions of approximately 3 mm or more and cross-sectional areas of 9 mm or more , and within the scope of the experiment, the wall thickness is 100 mm, the width is 900 mm, and the length is 900 mm. A block of 1800 mm was easily molded, demonstrating the possibility of creating products of any size and shape depending on the mold design.

本発明でいう塩化ビニリデン系樹脂とは、塩化
ビニリデンとこれと共重合可能なコモノマー成分
の1種又は2種以上との共重合体樹脂の総称で、
上記共重合可能なコモノマー成分には、例えば、
塩化ビニル、臭化ビニル、酢酸ビニル、アクリロ
ニトリル、メタアクリロニトリル、スチレン、ク
ロロスチレン、アクリル酸メチル、アクリル酸エ
チル、メタアクリル酸メチル、メタアクリル酸エ
チル、アクリル酸ブチル、アクリル酸、メタクリ
ル酸等を挙げることが出来、これ等は公知であ
る。又一般に塩化ビニリデン系と云う呼称は、塩
化ビニリデン成分が50重量%以上存在するものを
指すのが常識的で、その根拠は主体をなす塩化ビ
ニリデン成分の特質が、共重合体樹脂そのものの
特質に対し支配的であるからだとされている。か
かる意味に於て、本発明の発泡体に用いうる塩化
ビニリデン系樹脂も、塩化ビニリデン成分が50%
以上の多成分量側にあるときは、発泡体が断熱性
能・難燃性等の特質効果を有効に発揮する側の領
域にあり、望ましい樹脂であることには変りはな
い。しかしながら本発明の発泡体の場合、塩化ビ
ニリデン成分が存在するか否かの相違、具体的に
は塩化ビニリデン成分が10重量%(望ましくは30
重量%以上)程度存在するだけで、これを含まな
い樹脂に比較して難燃性、断熱性能が著るしく付
与されて改善される事実から、本発明でいう塩化
ビニリデン系樹脂の総称は一般常識を上回る範囲
にまで及んで定められる。
The vinylidene chloride resin in the present invention is a general term for copolymer resins of vinylidene chloride and one or more comonomer components copolymerizable with vinylidene chloride.
The above copolymerizable comonomer components include, for example,
Vinyl chloride, vinyl bromide, vinyl acetate, acrylonitrile, methacrylonitrile, styrene, chlorostyrene, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, butyl acrylate, acrylic acid, methacrylic acid, etc. This can be done and these are known. In addition, it is common knowledge that the term vinylidene chloride-based refers to products containing 50% by weight or more of vinylidene chloride, and the reason for this is that the characteristics of the main vinylidene chloride component are similar to the characteristics of the copolymer resin itself. It is said that this is because it is dominant. In this sense, the vinylidene chloride resin that can be used in the foam of the present invention also has a vinylidene chloride component of 50%.
When the multi-component content is on the above-mentioned side, the foam is in the region where it effectively exhibits special effects such as heat insulation performance and flame retardancy, and it is still a desirable resin. However, in the case of the foam of the present invention, the difference is whether or not the vinylidene chloride component is present, specifically, the vinylidene chloride component is 10% by weight (preferably 30% by weight).
The general term for vinylidene chloride resins in the present invention is based on the fact that even the presence of only a certain amount (weight% or more) significantly improves flame retardancy and heat insulation performance compared to resins that do not contain vinylidene chloride resins. It is defined to extend beyond common sense.

尚本発明でいう塩化ビニリデン系樹脂は実質非
晶性のものである。この非晶質という用語は通常
の結晶質に対する反語で、例えばその樹脂の結晶
融解温度を計るDSC(Differential Scanning
Calorimetry,動走査熱量分析)法で測定した場
合、結晶融解又は結晶形成が示す温度のピーク値
を示さない樹脂と定義することが出来る。
The vinylidene chloride resin referred to in the present invention is substantially amorphous. The term "amorphous" is the opposite of the usual crystalline state. For example, DSC (Differential Scanning) measures the crystal melting temperature of the resin.
It can be defined as a resin that does not exhibit a temperature peak value that indicates crystal melting or crystal formation when measured using a dynamic scanning calorimetry method.

しかしながら本発明でいう非晶性樹脂に、例え
ば発泡粒子間融着をコントロールするため等の他
の目的のために少量の結晶性成分を含有させると
か、或は添加剤を配合させたものは、本発明の
“非晶性樹脂の特質を発泡体完成に利用する“旨
の技術思想を変更するものでなければ本発明の実
質非晶性樹脂に包含されるものである。
However, when the amorphous resin referred to in the present invention contains a small amount of crystalline component for other purposes, such as controlling fusion between foamed particles, or contains additives, Unless it changes the technical idea of ``utilizing the characteristics of an amorphous resin to complete a foam'' of the present invention, it is included in the substantially amorphous resin of the present invention.

上記非晶性塩化ビニリデン系樹脂の製法は、公
知の塊状重合法、乳化重合法、懸濁重合法により
製造することができるが、熱分解の回避、発泡粒
子に好適な粒子サイズの得やすさという観点から
は、懸濁法の採用が望ましいことは前述した通り
である。又、非結晶性の塩化ビニリデン樹脂を得
るには、共重合モノマーの成分比を増加していく
と結晶性から非結晶性に転移するのであるが、コ
モノマー成分が何%のとき転移するかについては
コモノマーの種類によつて異なるので、通常はコ
モノマー成分を5〜10重量%以上、高い場合で30
重量%以上とすればよい。
The above-mentioned amorphous vinylidene chloride resin can be produced by the known bulk polymerization method, emulsion polymerization method, or suspension polymerization method, but it is difficult to avoid thermal decomposition and to easily obtain a particle size suitable for foamed particles. From this point of view, as mentioned above, it is desirable to employ the suspension method. In addition, in order to obtain amorphous vinylidene chloride resin, increasing the component ratio of the comonomer causes a transition from crystalline to amorphous, but it is difficult to determine at what percentage of the comonomer component the transition occurs. Since the amount differs depending on the type of comonomer, the amount of the comonomer component is usually 5 to 10% by weight or more, and 30% by weight in high cases.
It may be at least % by weight.

そして又、得ようとする発泡体の目標を高発泡
側にして、それでいて剛性や耐熱性に富むものに
おくときは、塩化ビニリデンと共重合可能なコモ
ノマーにメタアクリル酸メチルを選び、その成分
量を30〜90重量%になるように共重合した樹脂を
用いることが望ましい。
Furthermore, if the goal of the foam to be obtained is to achieve a high foaming level while also having high rigidity and heat resistance, methyl methacrylate should be selected as a comonomer that can be copolymerized with vinylidene chloride, and its component amount It is desirable to use a resin copolymerized with 30 to 90% by weight.

更に、架橋成分として、例えばジビニルベンゼ
ンやポリエチレングリコールの両末端がアクリル
酸でエステル化されたものやグリシジルメタアク
リレート及びメタアクリル酸をモノマーの一部と
して含ませることによつて得られる架橋された非
晶性塩化ビニリデン樹脂粒子を用いる場合は、型
内成形性がよく、得られる発泡体は独立気泡に富
み、圧縮強度と熱伝導率が改良されたものとな
る。
Further, as a crosslinking component, for example, divinylbenzene or polyethylene glycol esterified at both ends with acrylic acid, or a crosslinked non-containing material obtained by including glycidyl methacrylate and methacrylic acid as part of the monomer. When crystalline vinylidene chloride resin particles are used, moldability in the mold is good, the resulting foam is rich in closed cells, and has improved compressive strength and thermal conductivity.

樹脂粒子の大きさは、発泡剤の含浸速度、発泡
性樹脂粒子の発泡能の持続性、採用する型内寸法
形状、型内加熱効率等の関係から選ぶことが必要
で、普通平均径(数平均)で0.01mm以上〜5mm以
下のものが採用できるが、上記関係の全体のバラ
ンスを図る上では、平均径で0.1〜1.0mmの値の範
囲の、できるだけ径の揃つた粒子を選ぶことが望
ましい。
The size of the resin particles must be selected based on the relationship between the impregnation rate of the blowing agent, the sustainability of the foaming ability of the expandable resin particles, the internal dimensions and shape of the mold, and the heating efficiency in the mold. Particles with an average diameter of 0.01 mm or more and 5 mm or less can be used, but in order to balance the above relationship as a whole, it is recommended to select particles with an average diameter of 0.1 to 1.0 mm and as uniform in diameter as possible. desirable.

更に、得られた実質非晶性樹脂から型内スチー
ム発泡成形に適した樹脂を選択したいという観点
からは、その樹脂の持つビカツト軟化点を一つの
指標とすることがすすめられる。このものは一般
に約120℃以下の値を示すものであるが、中でも
60〜100℃の値の範囲のものを選ぶときは、成形
体内部の粒子の融着が密で、表面平滑性に優れた
成形体が得られるので望ましい。
Furthermore, from the viewpoint of selecting a resin suitable for in-mold steam foaming from the obtained substantially amorphous resins, it is recommended to use the Vikato softening point of the resin as an index. This generally shows a value of about 120℃ or less, but among them
When selecting a temperature in the range of 60 to 100°C, it is preferable because the particles inside the molded body are tightly fused and a molded body with excellent surface smoothness can be obtained.

本発明の発泡体作成に用いることの出来る発泡
剤は、使用樹脂の軟化温度よりも低い沸点を持つ
揮発性有機発泡剤で、具体的には例えば、プロパ
ン、ブタン、ペンタン、ヘキサン等の脂肪族炭化
水素類、塩化メチル、塩化メチレン、塩化エチル
等の塩素化炭化水素、トリクロロモノフルオルメ
タン、ジクロロジフルオルメタン、モノクロロジ
フルオルメタン、トリクロロトリフルオルエタ
ン、ジクロロテトラフルオルエタン等のフロンガ
ス、ジメチルエーテル、メチルエチルエーテル等
のエーテル類等が挙げられ、これ等の内から選ば
れる。
The blowing agent that can be used to create the foam of the present invention is a volatile organic blowing agent that has a boiling point lower than the softening temperature of the resin used, and specifically includes aliphatic blowing agents such as propane, butane, pentane, and hexane. Hydrocarbons, chlorinated hydrocarbons such as methyl chloride, methylene chloride, ethyl chloride, chlorofluorocarbons such as trichloromonofluoromethane, dichlorodifluoromethane, monochlorodifluoromethane, trichlorotrifluoroethane, dichlorotetrafluoroethane, Ethers such as dimethyl ether and methyl ethyl ether are mentioned, and selected from these.

これ等発泡剤の選択は、樹脂への相容性、発泡
温度に於ける蒸気圧、発泡剤沸点等の関係から厳
選することが望ましく、1種類の発泡剤で上記目
標の条件が満されないときは、2種類以上の発泡
剤を混合して樹脂の発泡に適した発泡剤を作り出
すことが望ましい。
It is desirable to select these blowing agents carefully based on the relationship between compatibility with the resin, vapor pressure at foaming temperature, blowing agent boiling point, etc. When the above target conditions are not satisfied with one type of blowing agent, It is desirable to mix two or more types of blowing agents to create a blowing agent suitable for foaming resin.

2種以上の発泡剤を混合して発泡に適した発泡
剤を作り出すときの典型的な一例として第10図
を挙げることが出来る。
FIG. 10 is a typical example of mixing two or more types of foaming agents to create a foaming agent suitable for foaming.

第10図は、発泡剤にフロン11(トリクロロモ
ノフルオルメタン)とフロン12(ジクロロジフル
オロメタン)との混合発泡剤を一定量用いたとき
の例示で、横軸には両発泡剤の混合(重量)比、
縦軸にはその発泡剤を用いたときの、発泡性樹脂
粒子の最大発泡倍率が示されている。
Figure 10 shows an example when a certain amount of a mixed blowing agent of Freon 11 (trichloromonofluoromethane) and Freon 12 (dichlorodifluoromethane) is used as a blowing agent, and the horizontal axis shows the mixture of both blowing agents ( weight) ratio,
The vertical axis shows the maximum expansion ratio of the expandable resin particles when the foaming agent is used.

第10図によると発泡剤は(フロン11/フロン
12)の重量比で(20/80)〜(70/30)の範囲の
ものでなければ、良好な発泡体が得られないとい
う一例が示されている。即ち発泡剤の選択は、十
分に注意しないと、最適組成をついぞ見落してし
まう可能性を示している。かかる意味に於ては本
発明の発泡体の完成には、こうした発泡剤の選択
も重要な役割があつたことが考えられる。
According to Figure 10, the blowing agent is (Freon 11/Freon
An example is shown in which a good foam cannot be obtained unless the weight ratio of 12) is in the range of (20/80) to (70/30). That is, when selecting a blowing agent, there is a possibility that the optimum composition may be overlooked unless sufficient care is taken. In this sense, it is thought that the selection of the blowing agent also played an important role in the completion of the foam of the present invention.

又第10図に示す如きフロン系の混合発泡剤を
用いたときは、樹脂のもつガスバリヤ性とあいま
つて、発泡性樹脂粒子の発泡能の保持性が大き
く、更に発泡体になつた後の成形体が示す断熱性
能が優れていることが利点として挙げられる。こ
の現象は気泡内に保持されているフロンガスその
ものの断熱効果の影響と考えられる。
Furthermore, when a fluorocarbon-based mixed foaming agent as shown in Figure 10 is used, the foaming ability of the foamable resin particles is greatly retained due to the gas barrier properties of the resin, and furthermore, the foaming ability of the foamable resin particles is improved. One of its advantages is its body's excellent thermal insulation properties. This phenomenon is thought to be due to the heat insulating effect of the fluorocarbon gas itself held within the bubbles.

発泡剤を樹脂中に含有させる方法としては樹脂
粒子に例えばオートクレーブ中で必要なら加熱加
圧下で発泡剤を気体状で或は液体状で含浸さす気
相又は液相含浸法、樹脂粒子を水中に懸濁し発泡
剤を含浸する水中懸濁含浸法等がある。又重合を
発泡剤の存在下に行つて発泡性重合体粒子を直接
得ることも出来る。
Methods for incorporating the blowing agent into the resin include a gas phase or liquid phase impregnation method in which resin particles are impregnated with the blowing agent in gaseous or liquid form under heating and pressure if necessary in an autoclave, and resin particles are impregnated in water. There is a suspension impregnation method in water, which involves suspending and impregnating a foaming agent. It is also possible to carry out the polymerization in the presence of a blowing agent to directly obtain expandable polymer particles.

上記本発明に用いる発泡剤は、樹脂粒子100重
量部に対し、通常1〜40重量部の範囲で用いるこ
とが出来、目標とする発泡体の密度に応じてその
使用量を調節する。使用する発泡剤が同一のとき
発泡体が示す断熱性能は、密度が低い程、気泡径
が小さい程、独立気泡率が高い程、優れた断熱性
能を示すことが知られているが、例えば第10図
に示す如き適切な混合発泡剤を用いるときは、気
泡径で約0.005mm〜1mmの範囲の、良く揃つた気
泡径の独立気泡率に富んだ成形体を自由に得るこ
とが出来る。
The foaming agent used in the present invention can be generally used in an amount of 1 to 40 parts by weight per 100 parts by weight of the resin particles, and the amount used is adjusted depending on the target density of the foam. It is known that the lower the density, the smaller the cell diameter, and the higher the closed cell ratio, the better the insulation performance of the foam when the same blowing agent is used. When a suitable mixed blowing agent as shown in Figure 10 is used, it is possible to freely obtain a molded article with a high closed cell ratio and well-uniformed cell diameters in the range of about 0.005 mm to 1 mm.

本明細書で用いた評価方法は次の通りである。 The evaluation method used in this specification is as follows.

Γ 発泡体密度:JISK6767に基づく。Γ Foam density: Based on JISK6767.

Γ 発泡倍率:基材樹脂密度を発泡体密度で除し
たもの。
Γ Foaming ratio: Base resin density divided by foam density.

Γ 独立気泡率:ASTMD2856に基づく。Γ Closed cell ratio: Based on ASTM D2856.

Γ 熱伝導率:ASTMC518に基づく。Γ Thermal conductivity: Based on ASTMC518.

Γ 5%圧縮強度:ASTMD1621に基づき圧縮
歪量を5%とする。
Γ 5% compressive strength: Based on ASTM D1621, the amount of compressive strain is 5%.

Γ 燃焼試験:JISA9511に準じ、試験片は水平
に保持する。
Γ Combustion test: According to JISA9511, the test piece is held horizontally.

Γ ビカツト軟化点:ASTMD1525に基づく。Γ Vikatsu Softening Point: Based on ASTMD1525.

Γ 酸素指数:ASTMD2863に基づく。Γ Oxygen index: Based on ASTMD2863.

実施例 1 懸濁重合法で得られる平均粒子径が0.25mmの塩
化ビニリデンとメチルメタアクリレートの重量組
成比が60/40である共重合体樹脂粒子を実験に供
した。
Example 1 Copolymer resin particles obtained by a suspension polymerization method and having an average particle diameter of 0.25 mm and a weight composition ratio of vinylidene chloride and methyl methacrylate of 60/40 were subjected to an experiment.

この樹脂は比重約1.49でDSCでは全くピークを
示さない1%THF溶液の30℃における溶液粘度
1.4センチポイズの非結晶性樹脂である。又この
樹脂粒子の電子顕微鏡写真を第1図Aに示すが、
表面が平滑であることが観察される。
This resin has a specific gravity of approximately 1.49 and does not show any peaks in DSC.The solution viscosity of a 1% THF solution at 30℃ is
It is an amorphous resin with a density of 1.4 centipoise. An electron micrograph of this resin particle is shown in Figure 1A.
It is observed that the surface is smooth.

まず本樹脂粒子をオートクレーブに入れ、密閉
したのちオートクレーブ内を真空に引き脱気す
る。次いでフロン11とフロン12等重量からなる液
状混合発泡剤を試料粒子が液面下に位置する程度
まで導入する。そして70℃にて約4時間放置した
後20℃まで冷却し常圧に戻してから中の粒子を取
り出す。発泡剤を含浸する前と後の重量測定から
計算すると、粒子には発泡剤が22部(樹脂100部
に対して。以下同じ)含浸されていた。
First, the resin particles are placed in an autoclave, and after the autoclave is sealed, the inside of the autoclave is evacuated and degassed. Next, a liquid mixed blowing agent consisting of an equal weight of Freon 11 and Freon 12 is introduced to the extent that the sample particles are located below the liquid surface. After leaving it at 70°C for about 4 hours, it is cooled to 20°C and returned to normal pressure, after which the particles inside are taken out. Calculating from the weight measurements before and after impregnation with the blowing agent, the particles were impregnated with 22 parts (based on 100 parts of resin; the same applies hereinafter) of the blowing agent.

この発泡剤含浸粒子を室内に解放状態で放置
し、重量変化を追跡することにより発泡剤の保持
性を評価した結果を第3図に示す。比較のため同
一放置条件下でのブタンガスを11部含浸した直径
1mmの発泡性ポリスチレンビーズの結果も示す。
同図より明らかな通り、塩化ビニリデン系樹脂粒
子は極めて優れた発泡剤保持性(絶対値及び保持
率)を示していることが分る。
The foaming agent-impregnated particles were left open in a room and the retention of the foaming agent was evaluated by tracking the change in weight. The results are shown in FIG. For comparison, the results of expandable polystyrene beads with a diameter of 1 mm impregnated with 11 parts of butane gas under the same storage conditions are also shown.
As is clear from the figure, it can be seen that the vinylidene chloride resin particles exhibit extremely excellent blowing agent retention (absolute value and retention rate).

発泡剤含浸直後の上記粒子を粒子間相互の軽い
融着をほぐした後蒸気発泡機内に入れ加熱発泡し
た。この時0Kg/cm2(ゲージ圧。以下同じ)のス
チームを用い発泡膨張を逐次3段階に亘つて行
い、第1段階の一次発泡を20秒間、第2段階の二
次発泡を20秒間、そして三次発泡を、20秒間行つ
た時の粒子の累積発泡倍率を第4図に示す。同図
より明らかな通り、一度発泡した予備発泡粒子で
も更に次の力強い発泡能を維持していることが分
る。
Immediately after impregnation with the blowing agent, the particles were loosened from slight adhesion between particles, and then placed in a steam foaming machine and heated and foamed. At this time, using steam at 0 kg/cm 2 (gauge pressure; the same applies hereinafter), foaming expansion was performed in three successive stages, with primary foaming in the first stage for 20 seconds, secondary foaming in the second stage for 20 seconds, and Figure 4 shows the cumulative expansion ratio of the particles when tertiary foaming was performed for 20 seconds. As is clear from the figure, it can be seen that even the pre-expanded particles that have been foamed once maintain their strong foaming ability.

次に上記発泡剤性粒子を発泡剤含浸後2週間室
内に開放状態で放置した後0Kg/cm2のスチームで
34秒間加熱発泡し、発泡倍率30倍の予備発泡粒子
とし、ついでこれを室内に放置し径時を追つて同
一スチームで30秒間加熱再発泡した場合の二次膨
張能力を追跡した。二次発泡倍率を予備発泡倍率
で除した二次膨張率でもつて結果を第5図に示
す。比較のため前出の発泡性ポリスチレンビーズ
の結果についても同図に示す。同図より明らかな
通り、本発明に係る予備発泡粒子は、二次膨張性
が優れているとされているポリスチレン発泡粒子
に比較しても、高い二次膨張能力を有しているこ
とが分る。
Next, after impregnating the blowing agent particles with the blowing agent, the particles were left open in a room for two weeks, and then heated with 0 kg/cm 2 steam.
The particles were heated and foamed for 34 seconds to produce pre-expanded particles with an expansion ratio of 30 times, and then left in a room and heated and re-foamed with the same steam for 30 seconds over time to track the secondary expansion ability. FIG. 5 shows the results of the secondary expansion ratio obtained by dividing the secondary expansion ratio by the pre-expansion ratio. For comparison, the results for the aforementioned expandable polystyrene beads are also shown in the same figure. As is clear from the figure, it is clear that the pre-expanded particles according to the present invention have a higher secondary expansion ability than polystyrene foam particles, which are said to have excellent secondary expansion ability. Ru.

次にこの発泡倍率30倍の予備発泡粒子を1日室
内で熟成した後発泡性ポリスチレン用型内スチー
ム成型機にて成形し、厚さ25mm、300mm四方、密
度30Kg/m3の発泡平板成形体を得た。
Next, these pre-expanded particles with an expansion ratio of 30 times were aged indoors for one day and then molded using an in-mold steam molding machine for expandable polystyrene to form a foamed flat plate molded product with a thickness of 25 mm, 300 mm square, and a density of 30 kg/m 3. I got it.

本成形体は表面が平滑で金型を忠実に再現して
おり、金型表面につけた巾3mm深さ3mm長さ10mm
の矩形の窪みも見事に再現していた。
This molded body has a smooth surface and faithfully reproduces the mold, and is attached to the mold surface with a width of 3 mm, depth of 3 mm, and length of 10 mm.
The rectangular depression was also beautifully reproduced.

この発泡成形体を手で割り裂いたときの割れ断
面の拡大図を第6図に示す。同図より多胞質に発
泡した粒子の多数個が、相隣れる粒子相互を密に
接して融着し、発泡体の断面を形成していること
が観察される。
FIG. 6 shows an enlarged view of the cracked cross section when this foamed molded product is broken by hand. From the same figure, it is observed that a large number of porous foamed particles are in close contact with each other and fused together, forming a cross section of the foam.

次に第4図にある3段階の発泡粒子のうち第1
段階と第3段階の発泡粒子について同様にして成
型し密度がそれぞれ50Kg/m3(29倍)と18Kg/m3
(80倍)である前出の寸法の発泡平板成形体を得
た。これらの5%圧縮強度を測定した結果を第7
図に示す。同図より、発泡体の密度を例えば本法
のような方法で適宜調節することにより、所望の
圧縮強度を持つた発泡成形体を得られることが分
る。
Next, of the three stages of foamed particles shown in Figure 4, the first
The foamed particles of the stage and third stage were molded in the same way, and the densities were 50Kg/m 3 (29 times) and 18Kg/m 3 respectively.
A foamed flat plate molded body having the above-mentioned dimensions (80 times) was obtained. The results of measuring these 5% compressive strengths are
As shown in the figure. From the figure, it can be seen that by appropriately adjusting the density of the foam, for example, by a method such as the present method, a foamed molded product having a desired compressive strength can be obtained.

又上記密度50Kg/m3の平板の熱伝導率の経時変
化を追跡した結果を第8図に示す。比較のため熱
伝導率が優れているとされるポリスチレン押出発
泡板のそれも示す。同図より明らかな通り、本発
明の発泡体はポリスチレンのそれと比較して遥か
に低い熱伝導率を示し、然も発泡ガスの保持性が
よいので低い熱伝導率をそのまま維持しているこ
とが分る。
Figure 8 shows the results of tracing the change in thermal conductivity of the flat plate with a density of 50 kg/m 3 over time. For comparison, we also show that of an extruded polystyrene foam board, which is said to have excellent thermal conductivity. As is clear from the figure, the foam of the present invention exhibits a much lower thermal conductivity than that of polystyrene, and it maintains its low thermal conductivity because it retains foaming gas well. I understand.

又これら上記の発泡体について、燃焼試験を行
つたが、いずれも自消性を示した。
A combustion test was also conducted on these foams, and they all showed self-extinguishing properties.

次に本実施例に於いて、樹脂粒子の平均粒径が
約0.25mm、0.4mm、0.9mmのものについて前出の同
一条件下で発泡剤の含浸を行い、ついで0Kg/cm2
のスチームで加熱発泡し、この時の最高到達発泡
倍率を求め、これを粒子径に対しプロツトした結
果を第2図に示す。本図より明らかな通り、本発
明の発泡体に係る樹脂粒子は小粒径のものが発泡
剤の含浸が早く、且つその保持性も良いので高度
に発泡していることが示されている。
Next, in this example, resin particles having average particle diameters of approximately 0.25 mm, 0.4 mm, and 0.9 mm were impregnated with a foaming agent under the same conditions as described above, and then 0 kg/cm 2
Figure 2 shows the results obtained by heating and foaming with steam, determining the maximum expansion ratio at this time, and plotting this against the particle diameter. As is clear from this figure, resin particles related to the foam of the present invention are highly foamed because smaller particle diameters are more quickly impregnated with the foaming agent and have better retention properties.

又、本実施例に於いて、粒子に含浸する混合発
泡剤フロン11/フロン12の組成比を25/75,40/
60,50/50,60/40,70/30と変え前と同様にし
て平均粒径0.25mmの粒子に発泡剤の含浸を行いそ
れを0Kg/cm2のスチームで加熱発泡した。この時
の最高到達発泡倍率の結果と発泡剤組成の関係を
第10図に示す。本図より本発明の発泡体を得る
ための発泡剤組成の選択は注意して行わないとつ
いぞ好適な組成を見逃がしてしまうことにもなり
兼ねないことが分る。
In addition, in this example, the composition ratio of the mixed blowing agent Freon 11/Freon 12 impregnated into the particles was 25/75, 40/
60, 50/50, 60/40, and 70/30, and in the same manner as before, particles with an average particle size of 0.25 mm were impregnated with a foaming agent, and then heated and foamed with 0 kg/cm 2 of steam. The relationship between the maximum foaming ratio and the foaming agent composition is shown in FIG. 10. From this figure, it can be seen that if the selection of the blowing agent composition for obtaining the foam of the present invention is not done carefully, a suitable composition may be overlooked.

比較例 塩化ビニリデン80重量%、塩化ビニル20重量%
からなる平均粒子径0.15mmの塩化ビニリデン樹脂
を実験に供した。本樹脂はDSCで融解時160℃に
ピークを示す結晶性を呈した。又ビカツト軟化点
は131℃であつた。又、本樹脂粒子の電子顕微鏡
による拡大写真を第1図Bに示す。粒子表面及び
内部が多孔質状になつていることが分る。
Comparative example: Vinylidene chloride 80% by weight, vinyl chloride 20% by weight
Vinylidene chloride resin with an average particle diameter of 0.15 mm was used in the experiment. This resin exhibited crystallinity with a peak at 160°C when melted by DSC. In addition, the Vikatsu softening point was 131°C. Furthermore, an enlarged photograph of the resin particles taken by an electron microscope is shown in FIG. 1B. It can be seen that the particle surface and interior are porous.

本粒子に対し、実施例―1と全く同様にして、
フロン11/フロン12の混合発泡剤を組成比を種々
変えて含浸した。含浸前と後の重量測定から粒子
には最高約8部の発泡剤が含浸されていた。
This particle was treated in exactly the same manner as in Example-1,
A mixed blowing agent of Freon 11/Freon 12 was impregnated with various composition ratios. Weight measurements before and after impregnation indicated that the particles were impregnated with up to about 8 parts blowing agent.

この発泡剤含有粒子をスチーム圧を0から1.5
Kg/cm2まで変えて色々発泡を試みたが全く発泡し
なかつた。更にシリコン油を用い、温度を120℃
から170℃まで変えて加熱シリコン油中にこの樹
脂粒子を入れたが、泡が発生するのみで樹脂粒は
全く発泡しなかつた。
The blowing agent-containing particles are heated at a steam pressure of 0 to 1.5.
I tried foaming variously by changing the amount up to Kg/cm 2 , but it did not foam at all. Furthermore, use silicone oil and raise the temperature to 120℃.
When the resin particles were placed in heated silicone oil at temperatures ranging from 170°C to 170°C, only bubbles were generated and the resin particles did not foam at all.

実施例 2 塩化ビニリデン30重量%、メチルメタアクリレ
ート70重量%からなる平均粒径約0.25mmの共重合
体粒子を実施例―1と同様にして、フロン11/フ
ロン12 1/1の混合発泡剤で発泡を試みた。
Example 2 Copolymer particles having an average particle diameter of approximately 0.25 mm consisting of 30% by weight of vinylidene chloride and 70% by weight of methyl methacrylate were prepared in the same manner as in Example-1, and a mixed foaming agent of 1/1 of Freon 11/Freon 12 was prepared. I tried foaming.

基材樹脂はDSCでは全くピークを示さない非
晶性でビカツト軟化点は89℃であつた。含浸発泡
剤量は27部で、これを室内に2週間放置後0Kg/
cm2のスチームで60秒間加熱することにより46倍の
予備発泡粒子を得た。これを1日間熟成後、実施
例―1と同様にして、型内スチーム発泡成形によ
り発泡倍率73倍の平板発泡成形体を得た。この成
形体の断面は、多胞質粒子の多数個が相隣れる粒
子相互を密に接して融着することによつて形成さ
れているものであつた。本発泡成形体は表面平滑
で、そのまま例えば、断熱材用板体或は緩衝材と
して使用出来るものであつた。
The base resin was amorphous, showing no peaks in DSC, and had a Vikato softening point of 89°C. The amount of impregnated foaming agent is 27 parts, and after leaving it indoors for 2 weeks, it becomes 0 kg/
46 times pre-expanded particles were obtained by heating with cm2 steam for 60 seconds. After aging this for one day, a flat plate foam molded product with an expansion ratio of 73 times was obtained by in-mold steam foam molding in the same manner as in Example-1. The cross section of this molded body was formed by a large number of adjacent multicellular particles being closely contacted and fused together. The foam molded article had a smooth surface and could be used as it is, for example, as a heat insulating plate or a cushioning material.

実施例 3 塩化ビニリデン60重量%、メチルアクリレート
40重量%からなる平均粒子径0.15mmの塩化ビニリ
デン樹脂粒子に実施例―1と同様な方法でフロン
11/フロン12 1/1の混合発泡剤を含浸した。
基材樹脂粒子はDSCでは全くピークを示さない
非結晶性でビカツト軟化点は52℃であつた。
Example 3 60% by weight vinylidene chloride, methyl acrylate
Freon was added to vinylidene chloride resin particles containing 40% by weight and having an average particle diameter of 0.15mm in the same manner as in Example-1.
It was impregnated with a foaming agent mixture of 11/12 Freon and 1/1.
The base resin particles were amorphous, showing no peaks in DSC, and had a Vicat softening point of 52°C.

含浸発泡剤量は24部で、この発泡性粒子を室内
に開放で2週間放置した後、平坦部が水平に保持
された金型にみかけの容積で10%となるよう水平
に均一に充填し、65℃に温調されたスチームと空
気の混合気体で加熱、発泡、成形したところ、密
度96Kg/m3の多胞質粒子の多数個が相隣れる粒子
相互を密に接して融着することによつて断面を形
成している平板発泡成形体を得た。
The amount of impregnated foaming agent was 24 parts, and after leaving the foamable particles open in a room for two weeks, they were evenly filled horizontally into a mold with the flat part held horizontally so that the apparent volume was 10%. When heated, foamed, and molded using a mixture of steam and air at a temperature of 65℃, a large number of porous particles with a density of 96Kg/ m3 come into close contact with each other and fuse together. A flat foam molded body was obtained which formed a cross section.

実施例 4 塩化ビニリデン60部、メチルメタアクリレート
40部、それに架橋構造を与えるためにグリシジル
メタアクリレート3部とメタアクリル酸0.3部の
割合からなる平均粒子径0.25mmの塩化ビニリデン
樹脂粒子を実験に供した。実施例―1と同様にし
てフロン11とフロン12からなる混合発泡剤の組成
比を変え最適組成比を求めたところフロン11/フ
ロン12が7/3で最高発泡倍率を示した。この時
の発泡剤の含浸量は23部であつた。含浸後粒子を
室内に開放状態で2週間放置した後0.3Kg/cm2
スチームで30秒加熱発泡したところ密度62Kg/m3
の予備発泡粒子を得た。1日間室内解放状態で熟
成した後、実施例―1と同様にスチーム型内成型
したところ密度40Kg/m3の表面平滑な成形発泡体
を得た。このものの5%圧縮強度を測定したとこ
ろ2.8Kg/cm2あつた。第7図より密度40Kg/m3
架橋要素を持たない場合の5%圧縮強度は1.7
Kg/cm2と推定されるから、架橋を付与することに
より圧縮強度が大巾に向上していることが分る。
Example 4 60 parts of vinylidene chloride, methyl methacrylate
Polyvinylidene chloride resin particles with an average particle diameter of 0.25 mm were used in the experiment, and were composed of 40 parts of glycidyl methacrylate and 0.3 parts of methacrylic acid to give it a crosslinked structure. In the same manner as in Example-1, the composition ratio of the mixed foaming agent consisting of Freon 11 and Freon 12 was varied to find the optimum composition ratio, and Freon 11/Freon 12 showed the highest foaming ratio of 7/3. The amount of blowing agent impregnated at this time was 23 parts. After impregnation, the particles were left open in a room for two weeks and then heated and foamed with 0.3Kg/ cm2 steam for 30 seconds, resulting in a density of 62Kg/ m3.
Pre-expanded particles were obtained. After aging in an open room for one day, the product was molded in a steam mold in the same manner as in Example 1 to obtain a molded foam with a density of 40 kg/m 3 and a smooth surface. When the 5% compressive strength of this product was measured, it was 2.8 kg/cm 2 . From Figure 7, the 5% compressive strength without a crosslinking element with a density of 40Kg/ m3 is 1.7
Since it is estimated to be Kg/cm 2 , it can be seen that the compressive strength is greatly improved by providing crosslinking.

以上詳述して明らかにした通り、本発明は先述
の構成を持つことにより、塩化ビニリデン系樹脂
の持つ特質(即ち例えば、難燃性、ガスバリヤ
性、機械強度等)を活かした発泡体を、そのまま
で、例えば断熱材用板体、緩衝用容器、浮き材等
として使用できる形状寸法で提供するものであ
る。この型内発泡成形体は金型の設計に応じて、
複雑な表面形状のものから各種寸法の平板まで、
自由な形状寸法のものとして、寸法精度良く、且
つ平滑な表面状態の成形体として供給でき、反撥
性、圧縮強度等の機械的特性にも優れたものであ
るから、産業界に果す役割の大きい発泡体であ
る。ことにこれを断熱材として用いるときは、断
熱性能に優れ、且つその性能の持続性にも優れ、
難燃性を有する点で特に有益で、産業界に新しい
発泡体素材を提供するという画期的な発明であ
る。
As explained above in detail and clarified, the present invention has the above-mentioned configuration, so that a foam that takes advantage of the characteristics of vinylidene chloride resin (i.e., flame retardancy, gas barrier properties, mechanical strength, etc.) can be produced. It is provided as it is in a shape and size that can be used as a heat insulating plate, a buffer container, a floating material, etc. Depending on the design of the mold, this in-mold foam molded product
From those with complex surface shapes to flat plates of various dimensions,
It plays a major role in industry because it can be supplied as a molded product of any shape and size with good dimensional accuracy and a smooth surface, and has excellent mechanical properties such as repulsion and compressive strength. It is a foam. In particular, when using this as a heat insulating material, it has excellent heat insulating performance and long-lasting performance.
This is a breakthrough invention that provides industry with a new foam material that is particularly beneficial in terms of its flame retardant properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図Aは本発明に係る非結晶性塩化ビニリデ
ン系樹脂粒子の電子顕微鏡写真を示す。第1図B
は結晶性塩化ビニリデン系樹脂粒子の電子顕微鏡
写真を示す。第2図は本発明に係る非晶性塩化ビ
ニリデン系樹脂粒子径と最高発泡倍率の関係を示
す図である。第3図は本発明に係る発泡性非晶性
塩化ビニリデン系樹脂粒子及び比較のため発泡性
ポリスチレン粒子の発泡剤の保持性を示す図であ
る。第4図は本発明に係る発泡性非晶性塩化ビニ
リデン系樹脂粒子を3段階に亘つて発泡したとき
の累積発泡倍率を示す図である。第5図は本発明
に係る非晶性塩化ビニリデン系樹脂予備発泡粒子
及び比較のためポリスチレン予備発泡粒子の二次
膨張率の経時変化を示す図である。第6図は本発
明の発泡体の発泡粒子構造破断面の電子顕微鏡写
真を示す。第7図は本発明の発泡体の発泡体密度
と5%圧縮強度の関係を示す図である。第8図は
本発明の塩化ビニリデン樹脂発泡成形板と比較の
ためポリスチレン押出発泡板の熱伝導率の経時変
化を示す図である。第9図は塩化ビニリデンとメ
チルメタアクリレートの共重合樹脂に於ける樹脂
中の塩化ビニリデン含有量と酸素指数の関係を示
す図である。第10図はフロン11とフロン12の発
泡剤組成比と最大発泡倍率を示す図である。
FIG. 1A shows an electron micrograph of amorphous vinylidene chloride resin particles according to the present invention. Figure 1B
shows an electron micrograph of crystalline vinylidene chloride resin particles. FIG. 2 is a diagram showing the relationship between the particle diameter of the amorphous vinylidene chloride resin and the maximum expansion ratio according to the present invention. FIG. 3 is a diagram showing the foaming agent retention properties of expandable amorphous vinylidene chloride resin particles according to the present invention and expandable polystyrene particles for comparison. FIG. 4 is a diagram showing the cumulative expansion ratio when the expandable amorphous vinylidene chloride resin particles according to the present invention are expanded in three stages. FIG. 5 is a diagram showing changes over time in the secondary expansion coefficient of amorphous vinylidene chloride resin pre-expanded particles according to the present invention and polystyrene pre-expanded particles for comparison. FIG. 6 shows an electron micrograph of a fractured surface of the foam particle structure of the foam of the present invention. FIG. 7 is a diagram showing the relationship between foam density and 5% compressive strength of the foam of the present invention. FIG. 8 is a diagram showing changes over time in thermal conductivity of a polystyrene extruded foam board for comparison with the vinylidene chloride resin foam molded board of the present invention. FIG. 9 is a diagram showing the relationship between the vinylidene chloride content in the resin and the oxygen index in a copolymer resin of vinylidene chloride and methyl methacrylate. FIG. 10 is a diagram showing the foaming agent composition ratio and maximum expansion ratio of Freon 11 and Freon 12.

Claims (1)

【特許請求の範囲】[Claims] 1 実質非晶性である塩化ビニリデン系樹脂でで
きた多胞質発泡粒子の多数個が、相隣れる粒子相
互を密に接して融着し、発泡体を形成しているこ
とを特徴とする塩化ビニリデン系樹脂型内発泡成
形体。
1. A foam is formed by a large number of polyvesicular foamed particles made of substantially amorphous vinylidene chloride resin, which are fused together with adjacent particles in close contact with each other. Polyvinylidene chloride resin in-mold foam molding.
JP58233602A 1983-12-13 1983-12-13 Vinylidene chloride group resin type internal foaming body Granted JPS60125649A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP58233602A JPS60125649A (en) 1983-12-13 1983-12-13 Vinylidene chloride group resin type internal foaming body
US06/678,416 US4550003A (en) 1983-12-13 1984-12-05 Vinylidene chloride type resin expandable particles, foam particles, in-mold foam molding by use thereof and process for producing them
GB08431163A GB2151231B (en) 1983-12-13 1984-12-11 Vinylidene chloride copolymer expandable particles & in-mold foam molding by use thereof
DE3445323A DE3445323C1 (en) 1983-12-13 1984-12-12 Foamable vinylidene chloride polymer particles, foamed particles obtained therefrom and foamed moldings in the mold, and process for their preparation
FR8418995A FR2556354B1 (en) 1983-12-13 1984-12-12 EXPANDABLE VINYLIDENE CHLORIDE RESIN EXPANDABLE PARTICLES, FOAMED PARTICLES, FOAM MOLDED PRODUCT AND PROCESSES FOR THEIR PREPARATION
US06/747,036 US4613626A (en) 1983-12-13 1985-06-20 Vinylidene chloride type resin expandable particles, foam particles, in-mold foam molding by use thereof and process for producing them
US06/860,479 US4785024A (en) 1983-12-13 1986-05-07 Vinylidene chloride type resin expandable particles, foam particles, in-mold foam molding by use thereof and process for producing them
US07/224,004 US4868055A (en) 1983-12-13 1988-07-25 Vinylidene chloride type resin expandable particles, foam particles, in-mold foam molding by use thereof and process for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58233602A JPS60125649A (en) 1983-12-13 1983-12-13 Vinylidene chloride group resin type internal foaming body

Publications (2)

Publication Number Publication Date
JPS60125649A JPS60125649A (en) 1985-07-04
JPS6333782B2 true JPS6333782B2 (en) 1988-07-06

Family

ID=16957622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58233602A Granted JPS60125649A (en) 1983-12-13 1983-12-13 Vinylidene chloride group resin type internal foaming body

Country Status (1)

Country Link
JP (1) JPS60125649A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6002258B2 (en) * 2015-02-04 2016-10-05 株式会社金星 Regulatory movable fence

Also Published As

Publication number Publication date
JPS60125649A (en) 1985-07-04

Similar Documents

Publication Publication Date Title
US4613626A (en) Vinylidene chloride type resin expandable particles, foam particles, in-mold foam molding by use thereof and process for producing them
JP5014653B2 (en) Expandable styrene resin particles and method for producing styrene resin foam molded article
JP2024015417A (en) Foamable chlorinated vinyl chloride-based resin particle, foamed particle thereof, and chlorinated vinyl chloride-based resin foam molded body using the same
JP3732418B2 (en) Expandable styrene resin particles
JP4933913B2 (en) Expandable styrene resin particles and production method thereof, styrene resin foam particles and styrene resin foam molded article
JP2013075941A (en) Foamable polystyrenic resin particle, production method thereof, foamed particle and foamed molding
JP3653393B2 (en) Expandable rubber-modified styrenic resin composition
JPH0790105A (en) Expandable styrene resin particle and molded styrene resin foam produced therefrom
JP4535667B2 (en) Polystyrene resin extruded foam plate and method for producing the same
US5898039A (en) Foaming method
JP4346363B2 (en) Polystyrene resin extruded foam and method for producing the same
JP2003335891A (en) Expandable polystyrene resin particle, polystyrene expansion molded product and its preparation process
JP2002194130A (en) Expandable polystyrene resin particle and method of manufacturing the same
JPS6333782B2 (en)
JP4217229B2 (en) Polystyrene resin extruded foam
JP3714905B2 (en) Thermal insulation material for building made of polystyrene resin foam particle molding
JP4653321B2 (en) Expandable rubber-modified acrylonitrile / styrene-based resin particles, process for producing the same, and foam molded article
JP2018119109A (en) Foamable polystyrene resin particle
JPS6333781B2 (en)
JP3462775B2 (en) Foam molding
JP3580317B2 (en) Method for producing flame-retardant expanded styrene resin molded article having voids
JP4101684B2 (en) Styrenic resin foam plate and manufacturing method thereof
JP4636784B2 (en) Polystyrene resin extruded foam and method for producing the same
JP2020164706A (en) Foamable chlorinated vinyl chloride-based resin particle, foamed particle thereof, and chlorinated vinyl chloride-based resin foam molded body using the same
JPH05310986A (en) Production of synthetic resin expansion molded body good in dimensional stability