JP3714905B2 - Thermal insulation material for building made of polystyrene resin foam particle molding - Google Patents
Thermal insulation material for building made of polystyrene resin foam particle molding Download PDFInfo
- Publication number
- JP3714905B2 JP3714905B2 JP2001399918A JP2001399918A JP3714905B2 JP 3714905 B2 JP3714905 B2 JP 3714905B2 JP 2001399918 A JP2001399918 A JP 2001399918A JP 2001399918 A JP2001399918 A JP 2001399918A JP 3714905 B2 JP3714905 B2 JP 3714905B2
- Authority
- JP
- Japan
- Prior art keywords
- particles
- foamed
- foam
- molded body
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Building Environments (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Molding Of Porous Articles (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、建築用断熱材に係り、より詳しく述べると、建築物の断熱材として好適な熱伝導率が良好で低密度なポリスチレン系樹脂発泡粒子成型体からなる合成樹脂発泡体に関する。
【0002】
【従来の技術】
熱可塑性樹脂発泡体は大きく分けて次の押出発泡法と型内発泡法の2方法により製造されている。
【0003】
押出発泡法:押出板状熱可塑性樹脂発泡体は熱可塑性樹脂を高温・高圧下の押出機中で溶融し、続いて発泡ガスを注入し、樹脂中に分散溶解して流動性のゲルを形成し、これを押出機のダイスから低圧域に押出して急速に発泡させ、冷却し板状の製品とする方法である。
【0004】
従来、発泡剤は熱伝導率の低い塩素フッ素化炭化水素又はフッ素化炭化水素(以下総称してフロンという)を用い、発泡体中に封じこめることにより良好な熱伝導率の製品が得られていた。
【0005】
また、表層に水酸基を有する鉱物質微粉末を添加し、水を押出機に圧入することにより大小の気泡が気泡膜を介して海島状に分散されている合成樹脂押出発泡体が得られることが提案されている。しかし、この方法では、水を使用するため押出機系内の腐食、特に水を難燃剤等のハロゲン系添加剤と併用した場合の腐食が問題となり、耐食性の設備とするために高額な設備費が必要となる問題がある。更に水の樹脂中への分散が良くないため大小気泡径の割合を一定にコントロールすることは非常に困難であり、品質の安定しない製品となるという問題もある。即ち、装置が高い、品質安定性に乏しいという問題がある。
【0006】
型内発泡法:熱可塑性合成樹脂発泡粒子成型体は、熱可塑性合成樹脂を懸濁重合法又は含浸法によって発泡ガスを注入したビーズ状又はペレット状原料を予備発泡機にて所定の密度の予備発泡粒子に蒸気発泡させて、熟成養生後、それを金型キャビティー内に充填し、続いて水蒸気を吹き込み予備発泡粒子を軟化状態にさせ、二次発泡膨張圧で予備発泡粒子同士を融着成型させ、その後、冷却し製品とする方法である。
【0007】
【発明が解決しようとする課題】
近年、押出発泡法により得られる発泡体も、オゾン層破壊、地球温暖化の観点からフロンの使用が問題視されている。しかし、フロンを使用しない発泡体は良好な熱伝導率を得ることが困難であるという問題がある。また、フロンを使用せずに熱伝導率の良好な発泡体を得るために、輻射による熱伝導率を改善するため、カーボンブラック等の熱線吸収剤の添加、グラファイト等の熱線反射剤を添加する方法が提案されているが、屋外に当該発泡板を仮置きした場合や、屋上等に施工し放置した場合に、発泡板の表面温度が上昇し、反りが発生する問題が生じるという問題がある。
【0008】
建築用断熱材として利用される熱伝導率が良好な成型体を作製するためには、気泡径を小さくし、輻射を低減する必要があるが、気泡径を小さくすると密度が高くなり、押出法の場合には所定の大きな断面サイズが得られないという問題がある。
【0009】
そこで、本発明は、フロンガス等の環境に影響を及ぼす発泡ガスを使用せずに、低密度、低コストで優れた断熱性と寸法安定性を有する成型性の良好な成型体を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者は、フロンを使用せずに熱伝導率が良好で寸法安定性が良く施工上問題のない低コストなポリスチレン系樹脂発泡板を得るためには、型内発泡法により気泡径の小さい粒子と気泡径の大きな粒子とを混合し、更には輻射を低減する添加剤を用いて製造するポリスチレン系樹脂発泡粒子成型体が最も良いことを見出した。
【0011】
こうして本発明は下記を提供する。
【0012】
(1)平均気泡径の異なる2種類以上の発泡粒子からなるポリスチレン系樹脂発泡粒子成型体であり、平均気泡径が0.15 mm 以下である気泡粒子の占める体積割合が10%以上であることを特徴とする建築用断熱材。
【0013】
(2)前記発泡粒子が輻射低減剤を含有していることを特徴とする(1)記載の建築用断熱材。
【0014】
(3)前記輻射低減剤がカーボンブラックまたはグラファイトであることを特徴とする(2)記載の建築用断熱材。
【0015】
(4)前記ポリスチレン系樹脂発泡粒子成型体が輻射低減剤を含有し、かつ該成型体の厚み方向の少なくとも上下面が輻射低減剤が含有されてない発泡粒子層で構成されている(2)(3)記載の建築用断熱材。
【0016】
(5)前記輻射低減剤が含有されてない発泡粒子層が熱可塑性樹脂発泡粒子成型体の全体体積に対して50%以下であることを特徴とする(2)〜(4)記載の建築用断熱材。
【0017】
(6)前記成型体の密度が35Kg/m3以下であり且つ熱伝導率が0.028W/m・K 以下であることを特徴とする(1)〜(5)に記載の建築用断熱材。
【0018】
【発明の実施の形態】
本発明の建築用断熱材はポリスチレン系樹脂発泡粒子成型体からなる。ポリスチレン系樹脂発泡粒子成型体は、軽量で優れた成形性、安定した品質等の特性を有するので、建築用断熱材として多用されている材料である。
【0019】
本発明で使用されるポリスチレン系樹脂は、例えば、スチレン、α−メチルスチレン、クロルスチレン、ジクロルスチレン、ジメチルスチレン、t−ブチルスチレン、ビニルトルエンなどのスチレン誘導体、またはこれらの2種以上の組み合わせからなる共重合体、あるいはそれらとアクリル酸、アクリル酸エステル、メタクリル酸、無水マレイン酸、またはブタジエンのような他と容易に重合し得る化合物との共重合体をいう。
【0020】
本発明のポリスチレン系樹発泡粒子成型体の発泡剤は、フロン即ち塩素化あるいはフッ素化炭化水素などの環境に影響のあるとされ使用が控えられる化合物以外の化合物である。
【0021】
これらの環境上好ましくない発泡剤でない発泡剤としては、限定するわけではないが、例えば、物理発泡剤がある。物理発泡剤としては、プロパン、ブタン、ペンタン、ヘキサンなどの脂肪族炭化水素などを挙げることができる。
【0022】
本発明のポリスチレン系樹脂発泡粒子成型体において発泡剤の量は一般的にポリスチレン系樹脂100重量部当たり約3〜30重量部の範囲内が好適である。
【0023】
本発明の建築用断熱材は平均気泡径の異なる発泡粒子を含むポリスチレン系樹脂型内発泡粒子成型体からなることを特徴とする。
【0024】
図1に本発明の平均気泡径の異なる発泡粒子を含むポリスチレン系樹脂型内発泡粒子成型体の断面構造の一部を拡大して模式的に示すが、成型体は大気泡粒子1と小気泡粒子2が混合されて存在し、それぞれの発泡粒子1,2は型内二次発泡成型の際に相互に融着している。3は融着層である。大気泡粒子1と小気泡粒子2は、それぞれ、型内発泡法のゆえにそれぞれ比較的に均一な径の気泡からなりまた平均気泡径も比較的に均一である。
【0025】
発泡体の気泡径を小さくすれば、伝熱方向の気泡膜の数が多くなり輻射を低減でき熱伝導率の低下をもたらす。一方、発泡体の気泡径を大きくすれば、気泡膜厚みが大きくなり、発泡時の膜の張力が減少し、気泡膜を破る事無く低密度化できる。また気泡径が大きいと気泡膜厚が厚くなり良好な寸法安定性と機械的強度をもたらす。しかし、本発明に従い、平均気泡径が異なる発泡粒子を混合して含む型内発泡粒子成型体として構成することにより、低密度で熱伝導率の良好な発泡体の製造が可能である。しかも本発明によれば、単に一次発泡粒子の種類を変えて混合するだけでよいので、成型体全体に所望の気泡径の発泡粒子を所望に分布させた発泡板が簡単に得られ、しかも各発泡粒子の気泡径及びそれらの体積割合も所望に仕立てることが可能である利点を有する。
【0026】
本発明の建築用断熱材のポリスチレン系樹脂発泡粒子成型体において平均気泡径の異なる2種以上の発泡粒子は、最小の平均気泡径を有する発泡粒子を、最大の平均気泡径を有する発泡粒子の平均気泡径の0.9倍以下、好ましくは0.8倍以下、さらに好適には0.7倍以下の平均気泡径を有することが好ましい。この大小平均気泡径の発泡粒子の気泡径の差が小さいと、本発明の目的である低密度、低熱伝導率、寸法安定性などの所望の特性を両立させることができない。発泡粒子の平均気泡径の差の上限は実用的な観点から決定すればよいが、最小の平均気泡径が最大の平均気泡径の0.2倍以上であることが好ましい。0.2倍未満では最小の平均気泡径を有する発泡粒子と最大の平均気泡径を有する発泡粒子との物性が異なりすぎて成型がしづらく、更に最小の平均気泡径が小さすぎても密度が高くなり、最大の平均気泡径が大きすぎても熱伝導率が劣る傾向にある。
【0027】
しかし、特に良好な熱伝導率(低熱伝導率)を達成するために、平均気泡径が0.2mm以下である発泡粒子が10体積%以上を占めることが必要である。この要件を満たさないと、本発明の目的を達成する上で気泡径大小2種類以上の発泡粒子を混合する意味がない。平均気泡径が0.15 mm 以下である発泡粒子を10体積%以上含まないと、フロンを含有しない発泡体の輻射熱を所望に低減する効果が十分に得られない。また、平均気泡径が0.15mm以下である発泡粒子を20体積%以上、さらには30体積%以上、特に40体積%以上含むことが好ましい。しかし、平均気泡径が0.15mm以下である発泡粒子が多すぎても、密度が高くなるので、平均気泡径が0.15mm以下である発泡粒子が占める体積は、一般的には90体積%以下、好ましくは80体積%以下、さらには70体積%以下、特に60体積%以下にされる。
【0028】
本発明の建築用断熱材において大きい方の平均気泡径の発泡粒子の平均気泡径は、平均気泡径が小さい発泡粒子に対して平均気泡径に実質的な差があればよく特に限定されないが、一般的には0.15〜0.5mm、より好ましくは0.2〜0.4mmの範囲内から選択される。
【0029】
本発明の建築用断熱材の異なる平均気泡径の発泡粒子は、2種類あるいは3種類以上でもよい。
【0030】
本発明の建築用断熱材の発泡粒子成型体の厚みは、用途に依存し、特に限定されないが、一般的には、20〜150mmの範囲内から選択される。
【0031】
本発明の発泡体を製造する方法は、基本的に慣用の型内発泡法において二次発泡後に平均気泡径が異なる一次発泡粒子を混合使用すればよく、特に限定されるものではないが、以下に例として説明する。
【0032】
懸濁重合法若しくは含浸法、または押出機内でポリスチレンの溶融した状態下で発泡剤、溶剤を混合し、実質的に発泡しない温度で発泡ガスを注入したビーズ状又はペレット状原料を予備発泡機にて所定の密度の予備発泡粒子に蒸気発泡させる。熟成養生後、気泡径の小さな粒子と気泡径の大きな粒子を金型内に充填し、スチーム等の熱媒体によって加熱して気泡径の小さな粒子と大きな粒子の混じった成型体とすることにより、熱伝導率が良好で低密度な発泡成型体の製造が可能であることを見出した。詳しくは、例えば、
1)同一の原料樹脂で揮発性発泡ガスの種類が異なる原料を使用し、別々に予備発泡した予備発泡粒子を混合し金型内に充填し成型する。
【0033】
2)同一の原料樹脂で気泡調整剤の添加量が異なる原料を使用し、別々に予備発泡した予備発泡粒子を混合し金型内に充填し成型する。
【0034】
3)同一の原料樹脂で作製された発泡性粒子の熟成(アニーリング)時間が異なる原料を使用し、別々に予備発泡した予備発泡粒子を混合し金型内に充填し成型する。
【0035】
ここで、上記は同時に予備発泡した予備発泡粒子を金型内に充填し成型しても良い。また、予備発泡粒子の大きさは異なっていても良い。
【0036】
また、本発明においては、ポリスチレン系樹脂発泡粒子成型体内に輻射を低減する添加剤を含有させることが好ましい。低密度のポリスチレン系樹脂発泡粒子成型体において熱伝導率を低下させるために特に問題になる輻射熱の伝播を低減して発泡体の全体としての熱伝導率を所望に低減させるためである。
【0037】
本発明では、輻射低減添加剤としては、カーボンブラック、グラファイトを好適に用いることができる。しかしながら、白色系の酸化チタン等の屈折率の大きな物質を添加することによっても熱線を散乱減衰させるため輻射を低減させる効果がある。
【0038】
本発明のポリスチレン系樹脂発泡粒子成型体に輻射低減添加剤を含有させる場合、日射により断熱材の温度が上昇しすぎて変形が発生する恐れがあるので、成型体の厚み方向の上下表面だけあるいは周囲だけは輻射低減添加剤を含有しない発泡粒子層で構成することが好ましい。このように上下表面だけあるいは周囲は輻射低減添加剤を含有しない発泡粒子層で構成する方法としては、例えば、成型体の厚み方向の上下表面だけを輻射低減剤を含有しない発泡粒子層で構成するためには、先ず輻射低減剤を含有しない一次発泡粒子を金型底部に充填し、続いて輻射低減剤を含有する一次発泡粒子を金型に充填し、最後にまた輻射低減剤を含有しない一次発泡粒子を金型に充填し、蒸気加熱することにより発泡粒子成型体が得られる方法を採用すればよい。その場合、輻射低減効果を十分に達成するためには輻射低減添加剤を含有しない発泡粒子層の体積が成型体全体の50体積%以下であることが好ましい。
【0039】
輻射低減添加剤を添加し、さらには輻射低減添加剤を含む発泡粒子成型体層の少なくとも上下面に当該添加剤を含まない発泡粒子層を形成することにより、断熱材の熱伝導率を顕著に低減する効果を得ると共に、輻射低減添加剤に起因する日射吸収による温度上昇を防ぎ、仮置き時、施工時、施工後に日射により反り等の寸法変化が生じないようにすることができる。
【0040】
また、本発明のポリスチレン系樹脂発泡粒子成型体には、必要に応じて気泡の大きさを調整するためタルク、珪酸カルシウムなどの気泡調整剤、難燃性を付与するためヘキサブロモドデカン、モノクロロペンタブロモシクロヘキサンの如き難燃剤などを添加することができる。
【0041】
本発明によれば、フロンガスなどの環境に影響を及ぼす発泡剤を用いることなしで、発泡粒子成型体の密度38Kg/m3以下且つ製造後1週間経過後にJIS−A−9511に規定された熱伝導率の測定方法による熱伝導率0.028W/m・K 以下の実用的なポリスチレン系樹脂発泡粒子成型体からなる建築用断熱材が低コストで製造できる。発泡成型体の密度としてはさらに35Kg/m3以下、特に32Kg/m3以下あるいは30Kg/m3以下でも、熱伝導率0.028W/m・K 以下を達成することができる。熱伝導率も0.027W/m・K 以下、さらには0.026W/m・K 以下を達成することも可能である。
【0042】
【実施例】
実施例1
水2000部、懸濁剤として95部のN−ビニルピロリドンと5部のアクリル酸メチルエステル、ならびに2部のピロりん酸ナトリウムからなるコポリマー32部、スチレンモノマー1000部及び触媒としてベンゾイルパーオキサイドを45部を耐圧容器に入れ、かき混ぜながら70℃で20時間、続いて85℃で15時間加熱し、更に70℃で11時間重合させた後、2時間の間にペンタン7重量部を反応容器に入れ、重合を完了した。発泡性ポリスチレン樹脂粒子を耐圧容器から取りだし養生後に蒸気で加熱することにより一次発泡させ一次発泡粒子Aを得た。
【0043】
平均径約1mmのポリスチレン樹脂100重量部に発泡剤としてブタン8重量部、トルエン2重量部の組成で水分散系オートクレーブ内で含浸して、発泡性ポリスチレン樹脂を得た。この得られた発泡性ポリスチレン樹脂をフリーザー中で5日間放置した後、蒸気で加熱することにより、一次発泡させ一次発泡粒子Bを得た。
【0044】
一次発泡粒子A及びBを1日養生後、A:B=50:50の割合で混合し金型の中に充填し、蒸気加熱することにより成型品を得た。該成型品を60℃オーブン中で1週間保存し、水分等を除去した後、密度、気泡径、熱伝導率、赤外線照射による表面温度及び反りの発生について評価し、第1表に示した。
【0045】
得られた成型品の物性を下記の方法で測定した。
【0046】
(密度)
発泡体密度=発泡体重量/発泡体体積
(気泡径)
ASTM D 3567に準じて測定
(熱伝導率)
JIS A 9511に準じて測定
(片面加熱試験)
表面温度:赤外線ランプで成型品表面を約1時間照射し、定常状態で表面温度を測定
反り:そのときの反りの発生をノギスで測定
実施例2
実施例1の一次発泡粒子Aと一次発泡粒子Bとを10:90の割合で混合し金型中に充填した以外は実施例1と同様に実施した。
実施例3
実施例1の一次発泡粒子Aと一次発泡粒子Bとを90:10の割合で混合し金型中に充填した以外は実施例1と同様に実施した。
実施例4〜5
一次発泡の蒸気加熱時間を変えた以外は同様な方法により得られた実施例1の一次発泡粒子Aと発泡性ポリスチレン樹脂をフリーザー中で3日間放置した以外は実施例1と同様な方法により得られた一次発泡粒子Bとを50:50の割合で混合し金型中に充填した以外は実施例1と同様に実施した。
実施例6
実施例1の一次発泡粒子Aと発泡性ポリスチレン樹脂をフリーザー中で8日間放置した以外は実施例1と同様な方法により得られた一次発泡粒子Bとを50:50の割合で混合し金型中に充填した以外は実施例1と同様に実施した。
実施例7
一次発泡の蒸気加熱時間を長くした以外は同様な方法により得られた実施例1の一次発泡粒子Aと実施例1の一次発泡粒子Bとを50:50の割合で混合し金型中に充填した以外は実施例1と同様に実施した。
実施例8
実施例1の一次発泡粒子Aと同じ懸濁法により得られた発泡性粒子の蒸気加熱時間を長くした以外は同様にして一次発泡粒子Cを得た。一次発泡粒子A:B:Cを25:50:25の割合で混合し金型中に充填した以外は実施例1と同様に実施した。
実施例9
ポリスチレン樹脂100重量部に対してカーボンブラック7重量部を含む含浸法による未発泡粒子を実施例1の一次発泡粒子Bと同様な方法により得てB9とした。A粒子、B9粒子、A粒子の順で25:50:25の割合で金型中に充填し、蒸気加熱することにより上下面がA粒子層で構成された成型品を得た。
実施例10
実施例9のA粒子、B9粒子、A粒子の順で10:80:10の割合で金型中に充填した以外は、実施例9と同様に実施した。
実施例11
実施例9のカーボンブラックに代えてグラファイトを用いた以外は実施例9と同様に実施した。
実施例12
実施例9のカーボンブラックに代えて酸化チタンを用いた以外は実施例9と同様に実施した。
比較例1
ポリスチレン樹脂100重量部に対してタルク0.1重量部、ステアリン酸バリウム0.05重量部を混合した混合物を単軸押出機ホッパーより投入し、ブタン3重量部、ペンタン1重量部、二酸化炭素2.5重量部を圧入し十分に混練した後均一に冷却し、ダイより押出発泡した。密度、気泡径、熱伝導率、赤外線照射による表面温度及び反りの発生について評価し、第1表に示した。
比較例2
ポリスチレン樹脂100重量部に対してカーボンブラックを7重量部を追加して添加した以外は比較例1と同様に実施した。
比較例3
実施例1で得られた一次発泡粒子Aのみを金型中に充填した以外は実施例1と同様に実施した。
比較例4
実施例4で得られた一次発泡粒子Bのみを金型中に充填した以外は実施例1と同様に実施した。
比較例5
一次発泡の蒸気加熱時間を変えた以外は実施例1と同様な方法により得られた一次発泡粒子Aと発泡性ポリスチレン樹脂をフリーザー中で3日間放置した以外は実施例1と同様な方法により得られた一次発泡粒子Bとを50:50の割合で混合し金型中に充填した以外は実施例1と同様に実施した。
比較例6
実施例1で得られた一次発泡粒子Aと一次発泡粒子Bとを5:95の割合で混合し金型中に充填した以外は実施例1と同様に実施した。
参考例
実施例9のB9粒子、A粒子、B9粒子の順で25:50:25の割合で金型中に充填した以外は、実施例9と同様に実施した。
【0047】
表1から明らかなように、本発明による低密度で熱伝導率、寸法安定性の良好な成型体が得られた。
【0048】
【表1】
【0049】
【発明の効果】
本発明によれば、フロンガス等の環境に影響を及ぼす発泡ガスを使用せずに、低密度、低コストで優れた断熱性と寸法安定性を有する成型性の良好な成型体が得られる。また、気泡径の大きい発泡粒子を混合しているため、その気泡膜の厚みが厚いため比較的圧縮強度等の機械的強度の高いものが得られる。
【図面の簡単な説明】
【図1】本発明のポリスチレン系樹脂粒発泡粒子成型体の模式断面図である。
1…大気泡粒子
2…小気泡粒子
3…融着層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat insulating material for buildings, and more specifically, relates to a synthetic resin foam made of a polystyrene resin foamed particle molded body having a good thermal conductivity and a low density suitable as a heat insulating material for buildings.
[0002]
[Prior art]
Thermoplastic resin foams are roughly classified into the following two methods: extrusion foaming and in-mold foaming.
[0003]
Extrusion foaming method: Extruded plate-like thermoplastic resin foam is made by melting thermoplastic resin in an extruder under high temperature and high pressure, then injecting foaming gas, and dispersing and dissolving in the resin to form a fluid gel. Then, this is extruded from a die of an extruder into a low pressure region and rapidly foamed and cooled to obtain a plate-like product.
[0004]
Conventionally, as a foaming agent, chlorine fluorinated hydrocarbons or fluorinated hydrocarbons (hereinafter collectively referred to as chlorofluorocarbons) having low thermal conductivity are used, and products with good thermal conductivity have been obtained by encapsulating them in foams. It was.
[0005]
Further, by adding a mineral fine powder having a hydroxyl group to the surface layer and press-fitting water into the extruder, a synthetic resin extruded foam in which large and small bubbles are dispersed in a sea-island shape through a cell membrane may be obtained. Proposed. However, since this method uses water, corrosion in the extruder system, particularly when water is used in combination with a halogen-based additive such as a flame retardant, becomes a problem. There is a problem that requires. Furthermore, since the dispersion of water in the resin is not good, it is very difficult to control the ratio of the large and small bubble diameters at a constant level, and there is a problem that the product becomes unstable in quality. That is, there is a problem that the apparatus is high and quality stability is poor.
[0006]
In-mold foaming method: Thermoplastic synthetic resin foamed molded body is prepared by pre-foaming a bead-like or pellet-like raw material in which foaming gas is injected by suspension polymerization method or impregnation method. After foaming and foaming the foamed particles, filling them into the mold cavity, and subsequently blowing water vapor to soften the pre-expanded particles and fusing the pre-expanded particles with secondary expansion pressure This is a method of forming and then cooling to obtain a product.
[0007]
[Problems to be solved by the invention]
In recent years, the use of chlorofluorocarbons has been regarded as a problem for foams obtained by the extrusion foaming method from the viewpoint of ozone layer destruction and global warming. However, foams that do not use Freon have a problem that it is difficult to obtain good thermal conductivity. In addition, in order to obtain a foam with good thermal conductivity without using chlorofluorocarbon, in order to improve thermal conductivity by radiation, a heat ray absorbent such as carbon black is added, and a heat ray reflector such as graphite is added. Although a method has been proposed, there is a problem that the surface temperature of the foam plate rises and warpage occurs when the foam plate is temporarily placed outdoors or when it is left on the rooftop. .
[0008]
In order to produce a molded article with good thermal conductivity used as a heat insulating material for buildings, it is necessary to reduce the bubble diameter and reduce radiation. However, if the bubble diameter is reduced, the density increases and the extrusion method In this case, there is a problem that a predetermined large cross-sectional size cannot be obtained.
[0009]
Therefore, the present invention provides a molded article having good moldability having excellent heat insulation and dimensional stability at low density and low cost without using a foaming gas that affects the environment such as chlorofluorocarbon gas. Objective.
[0010]
[Means for Solving the Problems]
In order to obtain a low-cost polystyrene-based resin foam plate having good thermal conductivity, good dimensional stability and no problem in construction without using chlorofluorocarbon, the present inventors have a small bubble diameter by the in-mold foaming method. It has been found that a polystyrene-based resin foam particle molded body produced by mixing particles and particles having a large bubble diameter and further using an additive for reducing radiation is the best.
[0011]
Thus, the present invention provides the following.
[0012]
(1) A polystyrene-based resin foam particle molded body composed of two or more kinds of foam particles having different average cell diameters, and the volume ratio of the cell particles having an average cell diameter of 0.15 mm or less is 10% or more. Thermal insulation for buildings characterized by
[0013]
(2) The building heat insulating material according to (1), wherein the foamed particles contain a radiation reducing agent.
[0014]
(3) The architectural heat insulating material according to (2), wherein the radiation reducing agent is carbon black or graphite.
[0015]
(4) The polystyrene-based resin foamed particle molded body contains a radiation reducing agent, and at least upper and lower surfaces in the thickness direction of the molded body are composed of a foamed particle layer not containing the radiation reducing agent (2). (3) The heat insulating material for construction as described.
[0016]
(5) The foamed particle layer not containing the radiation reducing agent is 50% or less with respect to the total volume of the thermoplastic resin foamed particle molded body, and is for construction as described in (2) to (4) Insulation.
[0017]
(6) The building heat insulating material according to any one of (1) to (5), wherein the density of the molded body is 35 kg / m 3 or less and the thermal conductivity is 0.028 W / m · K or less. .
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The heat insulating material for building of the present invention comprises a polystyrene-based resin foam particle molded body. Polystyrene-based resin foamed particles are lightweight and have excellent moldability, stable quality, and other characteristics, and are therefore frequently used as heat insulating materials for buildings.
[0019]
Examples of the polystyrene resin used in the present invention include styrene derivatives such as styrene, α-methylstyrene, chlorostyrene, dichlorostyrene, dimethylstyrene, t-butylstyrene, vinyltoluene, or combinations of two or more thereof. Or a copolymer of these with a compound that can be easily polymerized with others such as acrylic acid, acrylic ester, methacrylic acid, maleic anhydride, or butadiene.
[0020]
The foaming agent of the molded polystyrene-based foamed particle of the present invention is a compound other than chlorofluorocarbon, that is, a compound that has an influence on the environment such as chlorinated or fluorinated hydrocarbon and is refrained from use.
[0021]
Examples of these foaming agents that are not preferable in terms of environment include, but are not limited to, physical foaming agents. Examples of the physical foaming agent include aliphatic hydrocarbons such as propane, butane, pentane, and hexane.
[0022]
In the molded polystyrene resin particle molded body of the present invention, the amount of the foaming agent is generally preferably in the range of about 3 to 30 parts by weight per 100 parts by weight of the polystyrene resin.
[0023]
The heat insulating material for building of the present invention is characterized in that it is composed of a polystyrene-based resin-molded expanded particle molded body containing expanded particles having different average cell diameters.
[0024]
FIG. 1 schematically shows an enlarged part of the cross-sectional structure of a foamed polystyrene resin-molded molded body containing foamed particles having different average cell diameters according to the present invention. The particles 2 are present in a mixed state, and the respective expanded particles 1 and 2 are fused to each other during the in-mold secondary foam molding.
[0025]
If the bubble diameter of the foam is reduced, the number of bubble films in the heat transfer direction increases, and radiation can be reduced, resulting in a decrease in thermal conductivity. On the other hand, if the bubble diameter of the foam is increased, the thickness of the bubble film increases, the tension of the film during foaming decreases, and the density can be reduced without breaking the bubble film. On the other hand, if the bubble diameter is large, the bubble film thickness is increased, which provides good dimensional stability and mechanical strength. However, according to the present invention, it is possible to produce a foam having a low density and a good thermal conductivity by constituting as an in-mold foam particle molded body containing a mixture of foam particles having different average cell diameters. In addition, according to the present invention, it is only necessary to change the kind of primary foam particles and mix them, so that it is possible to easily obtain a foam plate in which foam particles having a desired cell diameter are distributed as desired throughout the molded body. The cell diameters of the expanded particles and their volume ratios have the advantage that they can be tailored as desired.
[0026]
Two or more types of foam particles having different average cell diameters in the molded polystyrene resin foam particle molded body of the building heat insulating material of the present invention are foam particles having the smallest average cell diameter and foam particles having the largest average cell diameter. It is preferable that the average cell diameter is 0.9 times or less, preferably 0.8 times or less, more preferably 0.7 times or less of the average cell diameter. If the difference in cell diameter between the large and small average cell diameters is small, desired characteristics such as low density, low thermal conductivity, and dimensional stability, which are the objects of the present invention, cannot be achieved. The upper limit of the difference in the average cell diameter of the expanded particles may be determined from a practical viewpoint, but it is preferable that the minimum average cell diameter is 0.2 times or more the maximum average cell diameter. If it is less than 0.2 times, the physical properties of the expanded particles having the smallest average cell diameter and the expanded particles having the largest average cell size are too different to be molded, and even if the minimum average cell size is too small, the density is too small. The thermal conductivity tends to be inferior even when the maximum average bubble diameter is too large.
[0027]
However, in order to achieve particularly good thermal conductivity (low thermal conductivity), it is necessary that the foamed particles having an average cell diameter of 0.2 mm or less occupy 10% by volume or more. If this requirement is not satisfied, there is no point in mixing two or more types of foam particles having a large and small cell diameter in achieving the object of the present invention. If the foamed particles having an average cell diameter of 0.15 mm or less are not contained in an amount of 10% by volume or more, the effect of reducing the radiant heat of the foam containing no chlorofluorocarbon as desired cannot be obtained sufficiently. Further, it is preferable that the foamed particles having an average cell diameter of 0.15 mm or less are contained in an amount of 20% by volume or more, further 30% by volume or more, and particularly 40% by volume or more. However, even if there are too many foamed particles having an average cell diameter of 0.15 mm or less, the density is increased, so that the volume occupied by the foamed particles having an average cell diameter of 0.15 mm or less is generally 90%. The volume is set to not more than volume%, preferably not more than 80 volume%, further not more than 70 volume%, particularly not more than 60 volume%.
[0028]
The average cell diameter of the foam particles having the larger average cell diameter in the building insulation material of the present invention is not particularly limited as long as there is a substantial difference in the average cell diameter with respect to the expanded particles having a small average cell diameter, Generally, it is selected from the range of 0.15 to 0.5 mm, more preferably 0.2 to 0.4 mm.
[0029]
Two or more types of foamed particles having different average cell diameters of the heat insulating material for building of the present invention may be used.
[0030]
The thickness of the foamed particle molded body of the building heat insulating material of the present invention depends on the application and is not particularly limited, but is generally selected from the range of 20 to 150 mm.
[0031]
The method for producing the foam of the present invention is basically not particularly limited as long as primary foam particles having different average cell diameters after secondary foaming are mixed and used in a conventional in-mold foaming method. Will be described as an example.
[0032]
In the pre-foaming machine, bead-like or pellet-like raw materials in which a foaming agent and a solvent are mixed in a suspension polymerization method or impregnation method or in a state where polystyrene is melted in an extruder and a foaming gas is injected at a temperature that does not substantially foam. And vapor-foamed into pre-expanded particles of a predetermined density. After aging and curing, filling the mold with small bubbles and particles with large bubbles and heating with a heat medium such as steam to form a mixture of small bubbles and large particles, It has been found that it is possible to produce a foam molded article having a good thermal conductivity and a low density. Specifically, for example,
1) Using raw materials having the same raw material resin and different types of volatile foaming gases, separately pre-foamed pre-foamed particles are mixed, filled in a mold and molded.
[0033]
2) Using raw materials with the same raw material resin and different addition amount of the air conditioning agent, separately pre-expanded pre-expanded particles are mixed, filled in a mold and molded.
[0034]
3) Using raw materials having different aging (annealing) times of expandable particles made of the same raw material resin, separately pre-expanded pre-expanded particles are mixed, filled in a mold, and molded.
[0035]
Here, the above-mentioned pre-expanded particles may be filled in a mold and molded at the same time. Moreover, the size of the pre-expanded particles may be different.
[0036]
Moreover, in this invention, it is preferable to contain the additive which reduces radiation in the polystyrene-type resin expanded particle molding. This is because the propagation of radiant heat, which is a particular problem in reducing the thermal conductivity of the low-density polystyrene resin foam particle molded body, is reduced, and the overall thermal conductivity of the foam is reduced as desired.
[0037]
In the present invention, carbon black and graphite can be suitably used as the radiation reducing additive. However, adding a substance having a large refractive index such as white titanium oxide also has the effect of reducing radiation because it scatters and attenuates heat rays.
[0038]
When the radiation-reducing additive is contained in the polystyrene resin foamed particle molded body of the present invention, since the temperature of the heat insulating material may rise too much due to solar radiation, only the upper and lower surfaces in the thickness direction of the molded body or It is preferable that only the periphery is composed of a foamed particle layer that does not contain a radiation reducing additive. As described above, as a method of forming only the upper and lower surfaces or the surroundings with the expanded particle layer not containing the radiation reducing additive, for example, only the upper and lower surfaces in the thickness direction of the molded body are configured with the expanded particle layer not containing the radiation reducing agent. For this purpose, firstly, the primary foam particles containing no radiation reducing agent are filled in the bottom of the mold, then the primary foam particles containing the radiation reducing agent are filled in the mold, and finally, the primary foam containing no radiation reducing agent is also contained. What is necessary is just to employ | adopt the method of filling a foaming particle into a metal mold | die and obtaining a foamed particle molded object by carrying out steam heating. In that case, in order to sufficiently achieve the radiation reduction effect, the volume of the expanded particle layer not containing the radiation reduction additive is preferably 50% by volume or less of the entire molded body.
[0039]
By adding a radiation-reducing additive, and further forming a foamed particle layer that does not contain the additive on at least the upper and lower surfaces of the foamed particle molded body layer containing the radiation-reducing additive, the thermal conductivity of the heat insulating material is remarkably increased. While obtaining the effect to reduce, the temperature rise by the solar radiation absorption resulting from a radiation reduction additive can be prevented, and dimensional changes, such as curvature, can be prevented by solar radiation at the time of temporary placement, construction, and construction.
[0040]
In addition, the polystyrene resin foamed particle molded body of the present invention includes a bubble regulator such as talc and calcium silicate for adjusting the size of bubbles as needed, hexabromododecane and monochloropenta for imparting flame retardancy. Flame retardants such as bromocyclohexane can be added.
[0041]
According to the present invention, without using a foaming agent that affects the environment such as Freon gas, the density of the foamed particle molded body is 38 kg / m 3 or less and the heat specified in JIS-A-9511 after one week has elapsed after production. The heat insulating material for construction which consists of a practical polystyrene-type resin foaming particle molding whose thermal conductivity is 0.028 W / m * K or less by the measuring method of conductivity can be manufactured at low cost. Foam further 35 Kg / m 3 or less as the density of the molded body, in particular 32 kg / m 3 at less or 30 Kg / m 3 or less, to achieve the following thermal conductivity of 0.028W / m · K. It is also possible to achieve a thermal conductivity of 0.027 W / m · K or less, and further 0.026 W / m · K or less.
[0042]
【Example】
Example 1
2000 parts of water, 95 parts of N-vinylpyrrolidone and 5 parts of acrylic acid methyl ester as a suspending agent, 32 parts of a copolymer consisting of 2 parts of sodium pyrophosphate, 1000 parts of styrene monomer and 45 parts of benzoyl peroxide as a catalyst The mixture was placed in a pressure vessel, heated at 70 ° C. for 20 hours with stirring, then heated at 85 ° C. for 15 hours, further polymerized at 70 ° C. for 11 hours, and then 7 parts by weight of pentane in 2 hours. The polymerization was complete. The expandable polystyrene resin particles were taken out from the pressure vessel, and after curing, heated with steam to perform primary foaming to obtain primary foamed particles A.
[0043]
100 parts by weight of polystyrene resin having an average diameter of about 1 mm was impregnated in an aqueous dispersion autoclave with a composition of 8 parts by weight of butane and 2 parts by weight of toluene as a foaming agent to obtain an expandable polystyrene resin. The obtained expandable polystyrene resin was left in a freezer for 5 days and then heated with steam to perform primary foaming to obtain primary foamed particles B.
[0044]
After the primary foamed particles A and B were cured for 1 day, they were mixed at a ratio of A: B = 50: 50, filled in a mold, and heated by steam to obtain a molded product. The molded product was stored in an oven at 60 ° C. for 1 week, and after removing moisture and the like, the density, bubble diameter, thermal conductivity, surface temperature due to infrared irradiation and generation of warp were evaluated, and are shown in Table 1.
[0045]
The physical properties of the obtained molded product were measured by the following methods.
[0046]
(density)
Foam density = foam weight / foam volume (bubble diameter)
Measured according to ASTM D 3567 (thermal conductivity)
Measured according to JIS A 9511 (single side heating test)
Surface temperature: The surface of the molded product is irradiated with an infrared lamp for about 1 hour, and the surface temperature is measured in a steady state. Warpage: The occurrence of warpage is measured with calipers.
The same procedure as in Example 1 was performed except that the primary foamed particles A and the primary foamed particles B of Example 1 were mixed at a ratio of 10:90 and filled in a mold.
Example 3
The same procedure as in Example 1 was performed except that the primary foamed particles A and the primary foamed particles B of Example 1 were mixed at a ratio of 90:10 and filled in a mold.
Examples 4-5
Example 1 obtained by the same method as in Example 1 except that the primary foamed particles A and the expandable polystyrene resin obtained in the same manner as in Example 1 were left in a freezer for 3 days except that the steam heating time for primary foaming was changed. The same procedure as in Example 1 was conducted except that the obtained primary expanded particles B were mixed at a ratio of 50:50 and filled in a mold.
Example 6
The primary foamed particles A of Example 1 and the foamable polystyrene resin were mixed in a ratio of 50:50 with the primary foamed particles B obtained by the same method as in Example 1 except that the foamed polystyrene resin was left in a freezer for 8 days. The same operation as in Example 1 was carried out except that the inside was filled.
Example 7
The primary foamed particles A of Example 1 and the primary foamed particles B of Example 1 obtained by the same method except that the steam heating time for primary foaming was lengthened were mixed in a ratio of 50:50 and filled in the mold. The same operation as in Example 1 was performed except that.
Example 8
Primary expanded particles C were obtained in the same manner except that the steam heating time of the expandable particles obtained by the same suspension method as that of the primary expanded particles A of Example 1 was increased. The process was performed in the same manner as in Example 1 except that the primary expanded particles A: B: C were mixed at a ratio of 25:50:25 and filled in the mold.
Example 9
Unfoamed particles obtained by the impregnation method containing 7 parts by weight of carbon black with respect to 100 parts by weight of polystyrene resin were obtained in the same manner as the primary expanded particles B of Example 1, and designated as B9. The mold was filled in the mold in the order of A particles, B9 particles, and A particles in a ratio of 25:50:25, and heated to obtain a molded product having upper and lower surfaces composed of A particle layers.
Example 10
The same procedure as in Example 9 was performed, except that the mold was filled in a ratio of 10:80:10 in the order of A particles, B9 particles, and A particles in Example 9.
Example 11
The same operation as in Example 9 was performed except that graphite was used in place of the carbon black of Example 9.
Example 12
The same operation as in Example 9 was performed except that titanium oxide was used in place of the carbon black of Example 9.
Comparative Example 1
A mixture obtained by mixing 0.1 part by weight of talc and 0.05 part by weight of barium stearate with respect to 100 parts by weight of polystyrene resin is charged from a single screw extruder hopper, 3 parts by weight of butane, 1 part by weight of pentane, 2 carbon dioxide .5 parts by weight was press-fitted and kneaded sufficiently, then cooled uniformly, and extruded and foamed from a die. The density, bubble diameter, thermal conductivity, surface temperature due to infrared irradiation and generation of warp were evaluated and are shown in Table 1.
Comparative Example 2
The same operation as in Comparative Example 1 was conducted except that 7 parts by weight of carbon black was added to 100 parts by weight of polystyrene resin.
Comparative Example 3
The same operation as in Example 1 was carried out except that only the primary expanded particles A obtained in Example 1 were filled in the mold.
Comparative Example 4
The same operation as in Example 1 was performed except that only the primary expanded particles B obtained in Example 4 were filled in the mold.
Comparative Example 5
Obtained by the same method as in Example 1 except that the primary foamed particles A obtained by the same method as in Example 1 and the expandable polystyrene resin were left in a freezer for 3 days except that the steam heating time for primary foaming was changed. The same procedure as in Example 1 was conducted except that the obtained primary expanded particles B were mixed at a ratio of 50:50 and filled in a mold.
Comparative Example 6
The same procedure as in Example 1 was performed except that the primary foamed particles A and the primary foamed particles B obtained in Example 1 were mixed at a ratio of 5:95 and filled in the mold.
Reference Example The same procedure as in Example 9 was performed except that the mold was filled in the order of B9 particles, A particles, and B9 particles in Example 9 at a ratio of 25:50:25.
[0047]
As is apparent from Table 1, a molded article having a low density, good thermal conductivity and good dimensional stability according to the present invention was obtained.
[0048]
[Table 1]
[0049]
【The invention's effect】
According to the present invention, it is possible to obtain a molded article with good moldability having excellent heat insulation and dimensional stability at low density and low cost without using a foaming gas such as chlorofluorocarbon gas. In addition, since foamed particles having a large bubble diameter are mixed, the thickness of the bubble film is thick, so that a relatively high mechanical strength such as compressive strength can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a molded polystyrene resin particle foam particle body of the present invention.
DESCRIPTION OF SYMBOLS 1 ... Large bubble particle 2 ...
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001399918A JP3714905B2 (en) | 2001-12-28 | 2001-12-28 | Thermal insulation material for building made of polystyrene resin foam particle molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001399918A JP3714905B2 (en) | 2001-12-28 | 2001-12-28 | Thermal insulation material for building made of polystyrene resin foam particle molding |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003192821A JP2003192821A (en) | 2003-07-09 |
JP3714905B2 true JP3714905B2 (en) | 2005-11-09 |
Family
ID=27604755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001399918A Expired - Lifetime JP3714905B2 (en) | 2001-12-28 | 2001-12-28 | Thermal insulation material for building made of polystyrene resin foam particle molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3714905B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100313507A1 (en) * | 2008-01-23 | 2010-12-16 | Carlos Castro | Building structures containing external vapor permeable foam insulation |
JP5470924B2 (en) * | 2009-03-10 | 2014-04-16 | 株式会社カネカ | Extruded foam laminate with excellent heat insulation performance |
IT1394749B1 (en) * | 2009-07-16 | 2012-07-13 | Polimeri Europa Spa | THERMO-INSULATING EXPANDED ARTICLES AND COMPOSITIONS FOR THEIR PREPARATION |
JP5425654B2 (en) * | 2010-02-09 | 2014-02-26 | 積水化成品工業株式会社 | Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article |
DE112017006174T5 (en) | 2016-12-07 | 2019-08-14 | Mitsubishi Electric Corporation | METHOD FOR PRODUCING A LAYERED HEAT INSULATING MATERIAL AND FLUSHED HEAT INSULATING MATERIAL |
JP6960291B2 (en) * | 2017-09-22 | 2021-11-05 | 株式会社ジェイエスピー | Insulation |
-
2001
- 2001-12-28 JP JP2001399918A patent/JP3714905B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003192821A (en) | 2003-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1446444A2 (en) | Asphalt-filled polymer foams | |
AU2002348044A1 (en) | Asphalt-filled polymer foams | |
JPH10324766A (en) | Aliphatic polyester-based resin foamed particles having biodegradability and cross-linked structure, formed product and production of the same particles | |
JP3916460B2 (en) | Architectural insulation made of polystyrene resin extruded foam | |
KR20070053953A (en) | Method for manufacturing expandable polystyrene particles with excellent thermal insulation capability | |
JP3714905B2 (en) | Thermal insulation material for building made of polystyrene resin foam particle molding | |
KR100599847B1 (en) | Method for manufacturing expandable polystyrene particles with excellent thermal insulation capability | |
JP4066337B2 (en) | Expandable styrene resin particles for building materials and foamed molded articles thereof | |
KR101584133B1 (en) | Expanded articles using different types of expanded particles and process for producing the same | |
KR100902786B1 (en) | Expandable Polystyrene Using Recycled Styrene Resin and Method of Preparing the Same | |
US7456227B2 (en) | Polymer particles and related articles | |
KR101419457B1 (en) | method for manufacturing expandable styrene polymer containing aluminium particles, and expandable styrene polymer produced thereby | |
JPH06100724A (en) | Production of synthetic resin expansion molded body good in dimensional stability | |
JPS5858372B2 (en) | Method for producing foamable self-extinguishing thermoplastic resin particles | |
JP4582674B2 (en) | Polyester resin expanded particles and molded articles thereof | |
JPH05310986A (en) | Production of synthetic resin expansion molded body good in dimensional stability | |
JPH09278924A (en) | Expanded material based copolymer of styrene and 1,1-diphenylethene | |
KR102242090B1 (en) | Method for preparing expandable aromatic vinyl resin bead | |
KR100876211B1 (en) | Expandable polystyrene bead including plate-shaped talc coated by resin and production method thereof | |
KR102196615B1 (en) | Expandable resin composition, method for preparing the same, and foamed molded article | |
JP2001106821A (en) | Production of molding of expandable aliphatic polyester resin particle | |
JPH06155605A (en) | Manufacture of thermoplastic form board having internal void | |
JPH10330526A (en) | Heat-resistant expanded resin particle | |
JPH1192585A (en) | Expandable styrene resin particle and expandable styrene resin molded product | |
JP2806512B2 (en) | Flame-retardant styrene-modified polyethylene foam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040812 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050301 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050404 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050726 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050823 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3714905 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110902 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140902 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |