JPS6333636A - Leak detection for condensate heat exchanger - Google Patents

Leak detection for condensate heat exchanger

Info

Publication number
JPS6333636A
JPS6333636A JP61176771A JP17677186A JPS6333636A JP S6333636 A JPS6333636 A JP S6333636A JP 61176771 A JP61176771 A JP 61176771A JP 17677186 A JP17677186 A JP 17677186A JP S6333636 A JPS6333636 A JP S6333636A
Authority
JP
Japan
Prior art keywords
pipe
heat exchange
heat exchanger
leak
leak hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61176771A
Other languages
Japanese (ja)
Inventor
Jiro Sakurai
次郎 櫻井
Kazuo Murakami
一男 村上
Yoshiyuki Yuasa
湯浅 嘉之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Atomic Industry Group Co Ltd
Original Assignee
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Atomic Industry Group Co Ltd filed Critical Nippon Atomic Industry Group Co Ltd
Priority to JP61176771A priority Critical patent/JPS6333636A/en
Publication of JPS6333636A publication Critical patent/JPS6333636A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To detect a heat exchange pipe having a leak hole efficiency in a short time, by checking a temperature difference with an infrared temperature sensor as generated by leakage or suction of air at the leak hole of a heat exchange pipe. CONSTITUTION:When a leak is judged to be existent with conductivity meters 4 and 5 or the like at a condensate heat exchanger 2, sea water is drained from a feed pipe 12, a drain tube 14 and a pipe 7 and furthermore, both valves 11 and 13 are closed. Under such a condition, a valve 15 is released to feed a high pressure air into a pipe 7. This causes a temperature difference in the leak hole from the perimeter thereof. The temperature difference is detected including those at the length-wise position and the height-wise position of the leak hole with the scanning by a infrared temperature sensor 29.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、原子力発電所のタービンからの蒸気を復水す
るのに使用される多数の熱交換用パイプが配設された復
水器に係わり、とくに復水器のパイプの中のリークして
いるものを速やかに検出する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a condenser equipped with a large number of heat exchange pipes used for condensing steam from a turbine of a nuclear power plant. In particular, the present invention relates to a method for quickly detecting a leak in a condenser pipe.

「従来の技術」 原子力発電所で使用される大型の復水熱交換器は、ター
ビンから出た蒸気の熱交換を、海水を利用して行ってい
るので、熱交換用パイプの中の一部のものに孔または亀
裂等の破損部が生じた場合には、熱交換器破損部から海
水が漏れ復水の電導度および塩素濃度の上昇が生じる。
``Conventional technology'' Large condensing heat exchangers used in nuclear power plants use seawater to exchange heat from the steam coming out of the turbine. If a damaged part such as a hole or crack occurs in the heat exchanger, seawater leaks from the damaged part, causing an increase in the conductivity and chlorine concentration of the condensate.

これにより、種々の配管の腐食および海水中に含まれる
”Mn、50Co等の放射化生成物の増加等、原子炉運
転に支障を来すような問題を招(事になるので、リーク
を早急に止める必要がある。
This will lead to problems that will hinder reactor operation, such as corrosion of various pipes and an increase in activated products such as Mn and 50Co contained in seawater. It is necessary to stop.

腹水熱交換器における従来のリーク検出方法は、原子炉
の定期点検時に、復水熱交換器の熱交換用パイプ内の海
水を徐々に排水し、復水熱交換器の高さ方向における破
損パイプの位置を概略的に定める。そしてこの近傍の熱
交換用パイプを、エデイカレント法または水マノメータ
法等の検出法により1本ずつ検出していた。
The conventional method for detecting leaks in ascites heat exchangers is to gradually drain the seawater in the heat exchange pipes of the condensing heat exchanger during periodic inspections of the reactor, and detecting broken pipes in the height direction of the condensing heat exchanger. Roughly determine the location of the The heat exchange pipes in the vicinity were detected one by one using a detection method such as the eddy current method or the water manometer method.

「発明が解決しようとする問題点」 上述した従来のリーク検出方法においては、熱交換用パ
イプの破損部、すなわちリーク孔がある程度の大きさを
持っていないと、海水排水時の高さ方向の検出ができな
いという問題がある。さらに、復水熱交換器内の熱交換
用パイプの数が約7千本もの多数を有していて、その多
くの熱交換用パイプに対してリーク検出を行う必要があ
って、作業看および作業時間の多大化および被爆量の増
大等の問題がある。
``Problems to be Solved by the Invention'' In the conventional leak detection method described above, if the damaged part of the heat exchange pipe, that is, the leak hole, does not have a certain size, the height direction during seawater drainage will increase. The problem is that it cannot be detected. Furthermore, the number of heat exchange pipes in the condensate heat exchanger is approximately 7,000, and it is necessary to perform leak detection on many of the heat exchange pipes. There are problems such as increased time and radiation exposure.

「問題点を解決するための手段」 本発明では、原子炉の定期点検時に、腹水熱交換器の熱
交換用パイプ内の海水を排水し、上記熱交換用パイプ内
を加圧または減圧して熱交換用パイプのリーク孔におけ
るエアーの漏洩または吸引により生じる温度差を、復水
熱交換器の上部および一側部を熱交換用パイプと直交す
る向きに走査される赤外線温度センサにより検出するこ
とにより、熱交換用パイプのリーク孔を検出している。
"Means for Solving Problems" In the present invention, during periodic inspection of a nuclear reactor, the seawater in the heat exchange pipe of the ascites heat exchanger is drained, and the inside of the heat exchange pipe is pressurized or depressurized. Detecting the temperature difference caused by air leakage or suction at the leak hole of the heat exchange pipe using an infrared temperature sensor that scans the top and one side of the condensate heat exchanger in a direction perpendicular to the heat exchange pipe. Detects leak holes in heat exchange pipes.

「実施例」 以下本発明の一実施例を、図面に基づいて説明する。"Example" An embodiment of the present invention will be described below based on the drawings.

第1図および第2図において、1系統の低圧タービン1
に対して2系統の復水熱交換器2を有していて、各復水
熱交換器2に連続しているホットウェル3内の各水系(
図示路)内には、電導度肝4.5がそれぞれ設けられて
いる。原子炉に3個の腹水熱交換器2があるときには上
記電導度肝4.5をそれぞれ備えた合計6個の復水熱交
換器2が配設されている。
In FIGS. 1 and 2, one system of low pressure turbine 1
It has two systems of condensate heat exchangers 2 for each water system (
A conductivity level of 4.5 is provided in each of the paths (as shown in the figure). When there are three ascites heat exchangers 2 in a nuclear reactor, a total of six condensate heat exchangers 2 each having the above-mentioned conductivity of 4.5 are arranged.

原子炉運転中に海水のリークが生じた場合には、各水系
の電導度肝4.5により、どの復水熱交換器2にリーク
が生じているかを容易に判別することができる。これに
より、判別された腹水熱交換器2のリークの検査が後述
するようにして行われる。
If seawater leaks during reactor operation, it is possible to easily determine which condensate heat exchanger 2 is leaking from the electrical conductivity of each water system, which is 4.5. Thereby, the determined leakage of the ascites heat exchanger 2 is inspected as described below.

復水熱交換器2の本体6内には複数の熱交換用パイプ7
が横設されていて、その各端部は、本体6の前後に形成
された中空の接続部8.9にそれぞれ導通して接続され
ている。
A plurality of heat exchange pipes 7 are provided in the main body 6 of the condensate heat exchanger 2.
are installed horizontally, and each end thereof is electrically connected to a hollow connecting portion 8.9 formed at the front and rear of the main body 6, respectively.

接続部8にはバルブ11を介して海水用の供給管12が
、そして接続部9にはバルブ13を介して排出管14が
それぞれ接続されている。上記供給管12には、バルブ
15を介してエアー用の管16が接続されている。
A seawater supply pipe 12 is connected to the connection part 8 through a valve 11, and a discharge pipe 14 is connected to the connection part 9 through a valve 13. An air pipe 16 is connected to the supply pipe 12 via a valve 15 .

第3図および第4図に示す支持機構17において、1対
のブラケット18.19の腕部18a119bには、ガ
イド軸21の両端がそれぞれ固着されている。さらに上
記腕部18a、19bには、送りねじ22の両端部がそ
れぞれ枢着されている。
In the support mechanism 17 shown in FIGS. 3 and 4, both ends of a guide shaft 21 are fixed to arm portions 18a119b of a pair of brackets 18, 19, respectively. Further, both ends of a feed screw 22 are pivotally attached to the arm portions 18a and 19b, respectively.

上記送りねじ22の一端部に固着されている歯車と、ブ
ラケット18の腕部18aに固着されたモータ23の出
力軸に固着された歯車とは噛合していて、上記送りねじ
22により正逆転されるようになっている。
The gear fixed to one end of the feed screw 22 and the gear fixed to the output shaft of the motor 23 fixed to the arm 18a of the bracket 18 are in mesh with each other, and are rotated forward and backward by the feed screw 22. It has become so.

下部に赤外線温度センサ24を固着されている可動部材
25は、ガイド軸21に遊嵌しているとともに、送りね
じ22に螺合していて、送りねじ22の正逆転により両
ブラケット18.19間を往復動する。
The movable member 25, which has an infrared temperature sensor 24 fixed to its lower part, is loosely fitted onto the guide shaft 21 and is threaded onto the feed screw 22, so that when the feed screw 22 is rotated forward or backward, the movable member 25 moves between the brackets 18 and 19. reciprocate.

両ブラケット18.19の対向する側面には、対をなす
ガイドローラ26.27がそれぞれ軸支され、さらにブ
ラケット18.19の下部にも同様のガイドローラ対2
8がそれぞれ軸支されている。上記ガイドローラ26.
28およびガイドローラ27.28を、復水熱交換器2
の本体6の上部の両角隅部にそれぞれ当接させた状態で
支持機構17を前後方向(第1図において左右方向)に
押圧することにより、赤外線温度センサ24は本体6の
上部から一定の距離で前後方向に移動される。
A pair of guide rollers 26, 27 are each pivotally supported on opposing sides of both brackets 18, 19, and a similar pair of guide rollers 26, 27 is also provided at the bottom of the bracket 18, 19.
8 are each pivotally supported. Said guide roller 26.
28 and guide rollers 27, 28 to the condensing heat exchanger 2.
By pressing the support mechanism 17 in the front-rear direction (left-right direction in FIG. 1) while in contact with both corners of the upper part of the main body 6, the infrared temperature sensor 24 is moved a certain distance from the upper part of the main body 6. is moved forward and backward.

復水熱交換器2は、供給管12および排出管14により
熱交換用パイプ7内に供給される海水によって、タービ
ン1からの蒸気を復水している。
The condensing heat exchanger 2 condenses steam from the turbine 1 using seawater supplied into the heat exchange pipe 7 through the supply pipe 12 and the discharge pipe 14 .

このとき、両バルブ11.12は解放した状態で、かつ
バルブ15は閉塞した状態にある。電導度計4.5等に
よりある復水熱交換器2のリークが判定されると、供給
管12、排出管14および熱交換用パイプ7内の海水が
排水され、さらに両バルブ11.12が閉塞される。こ
の状態でバルブ15を解放して熱交換用パイプ7内に高
圧のエアーが供給される。このエアーの供給により、熱
交換用パイプ7のリーク孔からはエアーが勢いよく漏洩
するとともに、これによる周囲との温度差を生じる。
At this time, both valves 11, 12 are in an open state and valve 15 is in a closed state. When a leak in a certain condensing heat exchanger 2 is determined by a conductivity meter 4.5 or the like, the seawater in the supply pipe 12, discharge pipe 14, and heat exchange pipe 7 is drained, and both valves 11.12 are closed. Obstructed. In this state, the valve 15 is opened and high pressure air is supplied into the heat exchange pipe 7. Due to this air supply, the air leaks forcefully from the leak hole of the heat exchange pipe 7, and this causes a temperature difference with the surroundings.

次に前記の支持機構17を、復水熱交換器2の上部の一
端に載置して赤外線温度センサ24を往復動させる。さ
らに赤外線温度センサ24を第1図に示すように矢印方
向に適宜の間隔をもって移動させる毎に赤外線温度セン
サ24を往復動させて支持機構17の上部を走査する。
Next, the support mechanism 17 is placed on one end of the upper part of the condensate heat exchanger 2, and the infrared temperature sensor 24 is moved back and forth. Further, as shown in FIG. 1, each time the infrared temperature sensor 24 is moved at an appropriate interval in the direction of the arrow, the infrared temperature sensor 24 is reciprocated to scan the upper part of the support mechanism 17.

赤外線温度センサ24のこの走査により、リーク孔が位
置している腹水熱交換器2の長手方向の距離と幅方向の
距離が検出される。
By this scanning of the infrared temperature sensor 24, the distance in the longitudinal direction and the distance in the width direction of the ascites heat exchanger 2 where the leak hole is located is detected.

復水熱交換器2の側部に対し、上記支持機構17と同様
の支持機構(図示略)を適用して、その赤外線温度セン
サ29を第2図に示すように復水熱交換器2の前後方向
に適宜の間隔毎に移動するとともに上下方向に往復動さ
せる。この赤外線温度センサ29の走査により、リーク
孔が位置している長手方向の位置とともに、高さ方向の
位置が検出される。
A support mechanism (not shown) similar to the support mechanism 17 described above is applied to the side of the condensate heat exchanger 2, and the infrared temperature sensor 29 is attached to the side of the condensate heat exchanger 2 as shown in FIG. It moves at appropriate intervals in the front-back direction and reciprocates in the up-down direction. By scanning the infrared temperature sensor 29, the position in the longitudinal direction and the position in the height direction of the leak hole are detected.

このようにしてリーク孔の概略の位置が検出された後は
、その近傍少数の熱交換用パイプ7を検査することで、
腹水熱交換器2のリーク孔を有する熱交換用パイプ7の
検出を短時間に行うことができる。
After the approximate position of the leak hole is detected in this way, by inspecting a small number of heat exchange pipes 7 in the vicinity,
The heat exchange pipe 7 having the leak hole of the ascites heat exchanger 2 can be detected in a short time.

なお、上記の実施例においては、熱交換用パイプ7内を
加圧する場合について述べたが、熱交換用パイプ7内を
減圧してリーク孔内から吸引されるエアーの生じる超音
波の位置を検出しても、上記と同様にリーク孔を熱交換
用パイプ7を検出することが可能である。
In the above embodiment, the case where the inside of the heat exchange pipe 7 is pressurized is described, but the position of the ultrasonic wave generated by the air sucked from the leak hole by reducing the pressure inside the heat exchange pipe 7 is detected. Even if the heat exchange pipe 7 is used, it is possible to detect the leak hole in the heat exchange pipe 7 in the same manner as described above.

「発明の効果」 以上説明した↓うに本発明によれば、復水熱交換器の熱
交換用パイプ内の海水を排水し、上記熱交換用パイプ内
を加圧または減圧して熱交換用パイプのリーク孔におけ
るエアーの漏洩または吸引により生じる周囲との温度差
を、復水熱交換器の上部および一側部において熱交換用
パイプと直交する向きに走査される赤外線温度センサに
より検出することにより、リーク孔を有する熱交換用パ
イプを短時間内に効率よく検出することができる。
"Effects of the Invention" According to the above-described ↓ sea urchin, seawater in the heat exchange pipe of a condensing heat exchanger is drained, and the heat exchange pipe is pressurized or depressurized. By detecting the temperature difference with the surrounding area caused by air leakage or suction at the leak hole of the condensing heat exchanger using an infrared temperature sensor that scans in a direction perpendicular to the heat exchange pipe at the top and one side of the condensate heat exchanger. , a heat exchange pipe having a leak hole can be efficiently detected within a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の復水熱交換器のリーク検出方法が適用
された復水熱交換器およびその関連部の側面図、第2図
は復水熱交換器の縦断面図、第3図は赤外線温度センサ
の支持機構の平面図、第4図は上記支持機構の正面図で
ある。 1・・・・・・タービン、 2・・・・・・復水熱交換器、 4.5・・・・・・電導度肝、 6・・・・・・本体、 7・・・・・・熱交換用パイプ、 12・・・・・・供給管、 14・・・・・・排出管、 16・・・・・・エアー用の管、 17・・・・・・支持機構、 24.29・・・・・・赤外線温度センサ。 出  願  人 日本原子力事業株式会社 代  理  人
Fig. 1 is a side view of a condensing heat exchanger to which the leak detection method for a condensing heat exchanger of the present invention is applied and its related parts, Fig. 2 is a longitudinal sectional view of the condensing heat exchanger, and Fig. 3 4 is a plan view of the support mechanism of the infrared temperature sensor, and FIG. 4 is a front view of the support mechanism. 1... Turbine, 2... Condensing heat exchanger, 4.5... Conductivity scale, 6... Main body, 7... Heat exchange pipe, 12... Supply pipe, 14... Discharge pipe, 16... Air pipe, 17... Support mechanism, 24.29 ...Infrared temperature sensor. Applicant: Japan Atomic Energy Corporation, Agent

Claims (1)

【特許請求の範囲】[Claims] タービンから排出される蒸気が供給される本体と、本体
内に平行に横設された複数の熱交換用パイプと、上記各
熱交換用パイプに冷却用の海水を供給する供給管と、熱
交換用パイプからの冷却後の海水を排出する排出管とを
有する復水熱交換において、上記供給管、排出管および
熱交換用パイプの海水を除去するとともに、供給管およ
び排出管の適所を閉塞した状態で、熱交換用パイプを減
圧または加圧し、かつ赤外線温度センサを、上記本体の
上部および一側部において、適宜の間隔毎に熱交換用パ
イプと直交する方向に走査させて、パイプの破損部にお
いて漏洩または吸引されるエアーにより生じる温度差を
測定することにより、リーク状態にある熱交換用パイプ
を検出することを特徴とする復水熱交換器のリーク検出
方法。
A main body to which steam discharged from the turbine is supplied, a plurality of heat exchange pipes installed horizontally in parallel within the main body, a supply pipe that supplies seawater for cooling to each of the heat exchange pipes, and a heat exchanger. In a condensate heat exchange system having a discharge pipe for discharging seawater after cooling from a service pipe, the seawater in the supply pipe, discharge pipe, and heat exchange pipe is removed, and appropriate places in the supply pipe and discharge pipe are blocked. In this state, the heat exchange pipe is depressurized or pressurized, and an infrared temperature sensor is scanned at appropriate intervals in a direction perpendicular to the heat exchange pipe at the top and one side of the main body to detect damage to the pipe. 1. A method for detecting a leak in a condensing heat exchanger, the method comprising detecting a heat exchange pipe in a leak state by measuring a temperature difference caused by air leaking or being sucked in a condensing heat exchanger.
JP61176771A 1986-07-29 1986-07-29 Leak detection for condensate heat exchanger Pending JPS6333636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61176771A JPS6333636A (en) 1986-07-29 1986-07-29 Leak detection for condensate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61176771A JPS6333636A (en) 1986-07-29 1986-07-29 Leak detection for condensate heat exchanger

Publications (1)

Publication Number Publication Date
JPS6333636A true JPS6333636A (en) 1988-02-13

Family

ID=16019539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61176771A Pending JPS6333636A (en) 1986-07-29 1986-07-29 Leak detection for condensate heat exchanger

Country Status (1)

Country Link
JP (1) JPS6333636A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63106500A (en) * 1986-10-24 1988-05-11 Mitsubishi Heavy Ind Ltd Method for leakage test
JP2003042886A (en) * 2001-07-30 2003-02-13 Japan Atom Energy Res Inst Leak detecting method and leak measuring apparatus
CN101799399A (en) * 2010-03-30 2010-08-11 中国船舶重工集团公司第七〇二研究所 Temperature and salinity test chamber
CN102818681A (en) * 2012-08-30 2012-12-12 山东华能冷却技术股份有限公司 Sorting and pressure testing device for pipe bundle of air cooler
JP2020071196A (en) * 2018-11-02 2020-05-07 東京電力ホールディングス株式会社 Method for determining leakage in tubular heat exchanger
CN115683457A (en) * 2023-01-05 2023-02-03 中国核动力研究设计院 Method and system for detecting leakage of micro-channel heat exchanger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63106500A (en) * 1986-10-24 1988-05-11 Mitsubishi Heavy Ind Ltd Method for leakage test
JP2003042886A (en) * 2001-07-30 2003-02-13 Japan Atom Energy Res Inst Leak detecting method and leak measuring apparatus
JP4502550B2 (en) * 2001-07-30 2010-07-14 独立行政法人 日本原子力研究開発機構 Leak detection method and leak measurement device
CN101799399A (en) * 2010-03-30 2010-08-11 中国船舶重工集团公司第七〇二研究所 Temperature and salinity test chamber
CN102818681A (en) * 2012-08-30 2012-12-12 山东华能冷却技术股份有限公司 Sorting and pressure testing device for pipe bundle of air cooler
JP2020071196A (en) * 2018-11-02 2020-05-07 東京電力ホールディングス株式会社 Method for determining leakage in tubular heat exchanger
CN115683457A (en) * 2023-01-05 2023-02-03 中国核动力研究设计院 Method and system for detecting leakage of micro-channel heat exchanger

Similar Documents

Publication Publication Date Title
KR100966535B1 (en) Inspection probe for an internal wall of a duct
KR101736641B1 (en) An apparatus and a method for detecting a crack
JPS6333636A (en) Leak detection for condensate heat exchanger
CN103673747A (en) Fast washing equipment for large-size heat exchangers and washing method
KR20150042063A (en) Robot for inspecting underwater crack
WO2012063833A1 (en) Hole inspecting apparatus
JPS6334492A (en) Leakage detection for condensate heat exchanger
KR20140037564A (en) Gas boiler and drive control method with air pressure senser thereof
US3910104A (en) Apparatus and method for ultrasonic testing
KR101812264B1 (en) indirect heating type electric water heater
JP5463727B2 (en) Condenser cooling pipe leak inspection device
CN212328377U (en) Sewage detection that leakproofness is good holds box
KR100336131B1 (en) Leakage examination system &the method for heat exchanger
CN109876476B (en) Polypeptide concentrate steam type dryer
JP2014206312A (en) Device and method for cooling steam condenser
JPS62245153A (en) Ultrasonic flaw detector
CN113084526A (en) Automatic welding maintenance device and method for underwater shroud plate of large-scale water pool bottom plate
JP2015210219A (en) Leak detector and leak detecting method of heat exchanger
KR102608456B1 (en) Conveying device of tubular water and foreign matter removal device in the heat exchanger tube for ECT inspection
CN214471567U (en) Water pipe tool of leaking hunting
CN220649906U (en) Boiler gas leakage detection device
CN217634574U (en) Pipeline water quality testing robot
JP2654730B2 (en) Remote thickness monitoring device
CN211601716U (en) Truss arm condenser online cleaning device
JP3722972B2 (en) Reactor inspection and repair equipment