JPS6334492A - Leakage detection for condensate heat exchanger - Google Patents

Leakage detection for condensate heat exchanger

Info

Publication number
JPS6334492A
JPS6334492A JP17677286A JP17677286A JPS6334492A JP S6334492 A JPS6334492 A JP S6334492A JP 17677286 A JP17677286 A JP 17677286A JP 17677286 A JP17677286 A JP 17677286A JP S6334492 A JPS6334492 A JP S6334492A
Authority
JP
Japan
Prior art keywords
pipe
heat exchanger
heat exchange
leak hole
seawater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17677286A
Other languages
Japanese (ja)
Inventor
Kazuo Murakami
一男 村上
Yoshiyuki Yuasa
湯浅 嘉之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Atomic Industry Group Co Ltd
Original Assignee
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Atomic Industry Group Co Ltd filed Critical Nippon Atomic Industry Group Co Ltd
Priority to JP17677286A priority Critical patent/JPS6334492A/en
Publication of JPS6334492A publication Critical patent/JPS6334492A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the efficiency of detection of a leak hole, by a method wherein seawater in a pipe is discharged and the inside of the pipe is pressurized or evacuated while air noise which is generated at the leak hole is detected by an acoustic wave sensor scanning the upper and side parts of a main body. CONSTITUTION:When seawater in a heat exchanging pipe 7 is discharged and high-pressure air is supplied into the pipe 7, the air leaks through the leak hole of the pipe and ultrasonic waves are generated. An ultrasonic wave sensor 24 is provided on a condensate heat exchanger 2 to scan reciprocally arrow sign directions in a diagram and detect the lengthwise and widthwise distances of the condensate heat exchanger 2 in which the leak hole is positioned. The side part of the condensate heat exchanger 2 is scanned with another ultrasonic wave sensor 29 in the same manner to detect the lengthwise distance and the distance in height of the condensate heat exchanger 2 in which the leak hole is positioned. According to these method, the heat exchanging pipe having the leak hole may be detected efficiently in a short period of time.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、原子力発電所のタービンからの蒸気を復水す
るのに使用される多数の熱交換用パイプが配設された復
水器に係わり、とくに復水器のパイプの中のリークして
いるものを速やかに検出する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a condenser equipped with a large number of heat exchange pipes used for condensing steam from a turbine of a nuclear power plant. In particular, the present invention relates to a method for quickly detecting a leak in a condenser pipe.

「従来の技術j 原子力発電所で使用される大型の復水熱交換器は、ター
ビンから出た蒸気の熱交換を、海水を利用して行ってい
るので、熱交換用パイプの中の一部のものに孔または亀
裂等の破損部が生じた場合には、熱交換器破損部から海
水が漏れ、復水の電導度および塩素濃度の上昇が生じる
``Conventional technologyj'' Large condensing heat exchangers used in nuclear power plants use seawater to exchange heat from the steam coming out of the turbine, so some parts of the heat exchange pipes If a damaged part such as a hole or crack occurs in the heat exchanger, seawater will leak from the damaged part of the heat exchanger, causing an increase in the conductivity and chlorine concentration of the condensate.

これにより、種々の配管の腐食および海水中に含まれる
”Mn、”Co等の放射化生成物の増加等、原子炉運転
に支障を来すような問題を招く事になるので、リークを
早急に止める必要がある。
This will lead to problems such as corrosion of various pipes and an increase in activated products such as Mn and Co contained in seawater, which will hinder reactor operation. It is necessary to stop.

復水熱交換器における従来のリーク検出方法は、原子炉
の定期点検時に、復水熱交換器の熱交換用パイプ内の海
水を徐々に排水し、電導針等により復水熱交換器の高さ
方向における破損パイプの位置を概略的に定める。そし
てこの近傍の熱交換用パイプを、エデイカレント法また
は水マノメータ法等の検出法により1本ずつ検出してい
た。
The conventional method for detecting leaks in condensing heat exchangers is to gradually drain the seawater in the heat exchange pipes of the condensing heat exchanger during periodic inspections of the reactor, and to check the high temperature of the condensing heat exchanger using a conductive needle, etc. Roughly locate the broken pipe in the horizontal direction. The heat exchange pipes in the vicinity were detected one by one using a detection method such as the eddy current method or the water manometer method.

「発明が解決しようとする問題点」 上述した従来のリーク検出方法においては、熱交換用パ
イプの破損部、すなわちリーク孔がある程度の大きさを
持っていないと、海水排水時の高さ方向の検出ができな
いという問題がある。さらに、復水熱交換器内の熱交換
用パイプの数が約7千本もの多数を有していて、その多
くの熱交換用パイプに対してリーク検出を行う必要があ
って、偉業量および作業時間の多大化および被爆量の増
大等の問題がある。
``Problems to be Solved by the Invention'' In the conventional leak detection method described above, if the damaged part of the heat exchange pipe, that is, the leak hole, does not have a certain size, the height direction during seawater drainage will increase. The problem is that it cannot be detected. Furthermore, the number of heat exchange pipes in the condensate heat exchanger is approximately 7,000, and it is necessary to perform leak detection on many of the heat exchange pipes, which requires a large amount of work and labor. There are problems such as increased time and radiation exposure.

「問題点を解決するための手段」 本発明では、原子炉の定期点検時に、復水熱交換器の熱
交換用パイプ内の海水を排水し、上記熱交換用パイプ内
を加圧または減圧して熱交換用パイプのリーク孔におけ
るエアーの漏洩または吸引により生じる超音波を、復水
熱交換器の上部および一側部を熱交換用パイプと直交す
る向きに走査される超音波センサにより検出することに
より、熱交換用パイプのリーク孔を検出している。
"Means for Solving Problems" In the present invention, during periodic inspection of a nuclear reactor, the seawater in the heat exchange pipe of the condensing heat exchanger is drained, and the inside of the heat exchange pipe is pressurized or depressurized. Ultrasonic waves generated by air leakage or suction at the leak hole of the heat exchange pipe are detected by an ultrasonic sensor that scans the top and one side of the condensate heat exchanger in a direction perpendicular to the heat exchange pipe. This allows leak holes in heat exchange pipes to be detected.

「実施例」 以下本発明の一実施例を、図面に基づいて説明する。"Example" An embodiment of the present invention will be described below based on the drawings.

第1図および第2図において、1系統の低圧タービン1
に対して2系統の復水熱交換器2を有していて、各復水
熱交換器2に連続しているホットウェル3内の各水系(
図示路)内には、電導度肝4.5がそれぞれ設けられて
いる。原子炉に3個の復水熱交換器2があるときには上
記電導度肝4.5をそれぞれ備えた合計6個の復水熱交
換器2が配設されている。
In FIGS. 1 and 2, one system of low pressure turbine 1
It has two systems of condensate heat exchangers 2 for each water system (
A conductivity level of 4.5 is provided in each of the paths (as shown in the figure). When there are three condensate heat exchangers 2 in a nuclear reactor, a total of six condensate heat exchangers 2 each having the above-mentioned conductivity of 4.5 are arranged.

原子炉運転中に海水のリークが生じた場合には、各水系
の電導度肝4.5により、どの復水熱交換器2にリーク
が生じているかを容易に判別することができる。これに
より、判別された復水熱交換器2のリークの検査が後述
するようにして行われる。
If seawater leaks during reactor operation, it is possible to easily determine which condensate heat exchanger 2 is leaking from the electrical conductivity of each water system, which is 4.5. As a result, the determined leakage of the condensate heat exchanger 2 is inspected as described below.

復水熱交換器2の本体6内には複数の熱交換用パイプ7
が横設されていて、その各端部は、本体6の前後に形成
された中空の接続′B8.9にそれぞれ導通して接続さ
れている。
A plurality of heat exchange pipes 7 are provided in the main body 6 of the condensate heat exchanger 2.
are installed horizontally, and each end thereof is electrically connected to a hollow connection 'B8.9 formed at the front and rear of the main body 6, respectively.

接続部8にはバルブ11を介して海水用の供給管12が
、そして接続部9にはバルブ13を介して排出管14が
それぞれ接続されている。上記供給管12には、バルブ
15を介してエアー用の管16が接続されている。
A seawater supply pipe 12 is connected to the connection part 8 through a valve 11, and a discharge pipe 14 is connected to the connection part 9 through a valve 13. An air pipe 16 is connected to the supply pipe 12 via a valve 15 .

第3図および第4図に示す支持機構17において、1対
のブラケット18.19の腕部18a、19bには、ガ
イド軸21の両端がそれぞれ固着されている。さらに上
記腕部18a、19bには、送りねじ22の両端部がそ
れぞれ枢着されている。
In the support mechanism 17 shown in FIGS. 3 and 4, both ends of a guide shaft 21 are fixed to arm portions 18a and 19b of a pair of brackets 18 and 19, respectively. Further, both ends of a feed screw 22 are pivotally attached to the arm portions 18a and 19b, respectively.

上記送りねじ22の一端部に固着されている歯車と、ブ
ラケット18の腕部18aに固着されたモータ23の出
力軸に固着された歯車とは噛合していて、上記送りねじ
22により正逆転されるようになっている。
The gear fixed to one end of the feed screw 22 and the gear fixed to the output shaft of the motor 23 fixed to the arm 18a of the bracket 18 are in mesh with each other, and are rotated forward and backward by the feed screw 22. It has become so.

下部に超音波センサ24を固着されている可動部材25
は、ガイド軸21に遊嵌しているとともに、送りねじ2
2に螺合していて、送りねじ22の正逆転により両ブラ
ケット18.19間を往復動する。
A movable member 25 to which an ultrasonic sensor 24 is fixed at the bottom
is loosely fitted to the guide shaft 21, and the feed screw 2
2, and reciprocates between both brackets 18 and 19 by forward and reverse rotation of the feed screw 22.

両ブラケット18.19の対向する側面には、対をなす
ガイドローラ26.27がそれぞれ軸支され、さらにブ
ラケット18.19の下部にも同様のガイドローラ対2
8がそれぞれ軸支されている。上記ガイドローラ26.
28およびガイドローラ27.28を、復水熱交換器2
の本体6の上部の両角隅部にそれぞれ当接させた状態で
支持機構17を前後方向(第1図において左右方向)に
押圧することにより、超音波センサ24は本体6の上部
から一定の距離で前後方向に移動される。
A pair of guide rollers 26, 27 are each pivotally supported on opposing sides of both brackets 18, 19, and a similar pair of guide rollers 26, 27 is also provided at the bottom of the bracket 18, 19.
8 are each pivotally supported. Said guide roller 26.
28 and guide rollers 27, 28 to the condensing heat exchanger 2.
The ultrasonic sensor 24 is moved a certain distance from the top of the main body 6 by pressing the support mechanism 17 in the front-back direction (left-right direction in FIG. 1) while in contact with both corners of the top of the main body 6. is moved forward and backward.

復水熱交換器2は、供給管12および排出管14により
熱交換用パイプ7内に供給される海水によって、タービ
ン1からの蒸気を復水している。
The condensing heat exchanger 2 condenses steam from the turbine 1 using seawater supplied into the heat exchange pipe 7 through the supply pipe 12 and the discharge pipe 14 .

このとき、両バルブ11.12は解放した状態で、かつ
バルブ15は閉塞した状態にある。電導度肝4.5等に
よりある復水熱交換器2のリークが判定されると、供給
管12、排出管14および熱交喚用パイプ7内の海水が
排水され、さらに両バルブ11.12が閉塞される。こ
の状態でバルブ15を解放して熱交換用パイプ7内に高
圧のエアーが供給される。このエアーの供給により、熱
交換用パイプ7のリーク孔からはエアーが勢いよく漏洩
するとともに、これによる超音波を発生する。
At this time, both valves 11, 12 are in an open state and valve 15 is in a closed state. When a leak in a certain condensing heat exchanger 2 is determined based on the electrical conductivity of 4.5, the seawater in the supply pipe 12, discharge pipe 14, and heat exchange pipe 7 is drained, and both valves 11 and 12 are closed. Obstructed. In this state, the valve 15 is opened and high pressure air is supplied into the heat exchange pipe 7. Due to this air supply, the air leaks forcefully from the leak hole of the heat exchange pipe 7, and generates ultrasonic waves.

次に前記の支持機構17を、復水熱交換器2の上部の一
端に載置して超音波センサ24を往復動させる。さらに
超音波センサ24を第1図に示すように矢印方向に適宜
の間隔をもって移動させる毎に超音波センサ24を往復
動させて支持機構17の上部を走査する。超音波センサ
24のこの走査により、リーク孔が位置している復水熱
交換器2の長手方向の距離と幅方向の距離が検出される
Next, the support mechanism 17 is placed on one end of the upper part of the condensate heat exchanger 2, and the ultrasonic sensor 24 is caused to reciprocate. Further, each time the ultrasonic sensor 24 is moved in the direction of the arrow at an appropriate interval as shown in FIG. 1, the ultrasonic sensor 24 is reciprocated to scan the upper part of the support mechanism 17. This scanning of the ultrasonic sensor 24 detects the distance in the longitudinal direction and the distance in the width direction of the condensing heat exchanger 2 where the leak hole is located.

復水熱交換器2の側部に対し、上記支持機構17と同様
の支持機構(図示略)を適用して、その超音波センサ2
9を第2図に示すように復水熱交換器2の前後方向に適
宜の間隔毎に移動するとともに上下方向に往復動させる
。この超音波センサ29の走査により、リーク孔が位置
している復水熱交換器2の長手方向の位置とともに、高
さ方向の位置が検出される。
A support mechanism (not shown) similar to the support mechanism 17 described above is applied to the side of the condensate heat exchanger 2, and the ultrasonic sensor 2
9 is moved at appropriate intervals in the front-rear direction of the condensing heat exchanger 2 and reciprocated in the up-down direction, as shown in FIG. By scanning this ultrasonic sensor 29, the position in the longitudinal direction and the height direction of the condensing heat exchanger 2 where the leak hole is located are detected.

このようにしてリーク孔の概略の位置が検出された後は
、その近傍少数の熱交換用パイプ7を検査することで、
復水熱交換器2のリーク孔を有する熱交換用パイプ7の
検出を短時間に行うことができる。
After the approximate position of the leak hole is detected in this way, by inspecting a small number of heat exchange pipes 7 in the vicinity,
The heat exchange pipe 7 having a leak hole in the condensate heat exchanger 2 can be detected in a short time.

なお、上記の実施例においては、熱交換用パイプ7内を
加圧する場合について述べたが、熱交換用パイプ7内を
減圧してリーク孔内から吸引されるエアーの生じる超音
波の位置を検出しても、上記と同様にリーク孔を熱交換
用パイプ7を検出することが可能である。
In the above embodiment, the case where the inside of the heat exchange pipe 7 is pressurized is described, but the position of the ultrasonic wave generated by the air sucked from the leak hole by reducing the pressure inside the heat exchange pipe 7 is detected. Even if the heat exchange pipe 7 is used, it is possible to detect the leak hole in the heat exchange pipe 7 in the same manner as described above.

「発明の効果」 以上説明したように本発明によれば、復水熱交換器の熱
交換用パイプ内の海水を排水し、上記熱交換用パイプ内
を加圧または減圧して熱交換用パイプのリーク孔におけ
るエアーの漏洩または吸引により生じる超音波を、復水
熱交換器の上部および一側部において熱交換用パイプと
直交する向きに走査される超音波センサにより検出する
ことにより、リーク孔を有する熱交換用パイプを短時間
内に効率よく検出することができる。
"Effects of the Invention" As explained above, according to the present invention, seawater in the heat exchange pipe of a condensing heat exchanger is drained, and the heat exchange pipe is pressurized or depressurized. The ultrasonic waves generated by air leakage or suction at the leak holes are detected by ultrasonic sensors that are scanned in a direction perpendicular to the heat exchange pipes at the top and one side of the condensate heat exchanger. It is possible to efficiently detect a heat exchange pipe having a heat exchange pipe within a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の復水熱交換器のリーク検出方法が適用
された復水熱交換器およびその関連部の側面図、第2図
は復水熱交換器の縦断面図、第3図は超音波センサの支
持機構の平面図、第4図は上記支持機構の正面図である
。 1・・・タービン、2・・・・・復水熱交換器、4.5
・・・・・・電導度肝、6・・・・・・本体、7・・・
・・・熱交換用パイプ、12・・・・・・供給管、14
・・・・・・排出管、16・・・・・・エアー用の管、
17・・・・・・支持機構、 24.29・・・・・・超音波センサ。
Fig. 1 is a side view of a condensing heat exchanger to which the leak detection method for a condensing heat exchanger of the present invention is applied and its related parts, Fig. 2 is a longitudinal sectional view of the condensing heat exchanger, and Fig. 3 4 is a plan view of the support mechanism of the ultrasonic sensor, and FIG. 4 is a front view of the support mechanism. 1... Turbine, 2... Condensate heat exchanger, 4.5
...Conductivity level, 6...Main body, 7...
... Heat exchange pipe, 12 ... Supply pipe, 14
...Exhaust pipe, 16...Air pipe,
17... Support mechanism, 24.29... Ultrasonic sensor.

Claims (1)

【特許請求の範囲】[Claims] タービンから排出される蒸気が供給される本体と、本体
内に平行に横設された複数の熱交換用パイプと、上記各
熱交換用パイプに冷却用の海水を供給する供給管と、熱
交換用パイプからの冷却後の海水を排出する排出管とを
有する復水熱交換において、上記供給管、排出管および
熱交換用パイプの海水を除去するとともに、供給管およ
び排出管の適所を閉塞した状態で、熱交換用パイプを減
圧または加圧し、かつ超音波センサを、上記本体の上部
および一側部において、適宜の間隔毎に熱交換用パイプ
と直交する方向に走査させて、パイプの破損部において
漏洩または吸引されるエアーの発する超音波を測定する
ことにより、リーク状態にある熱交換用パイプを検出す
ることを特徴とする復水熱交換器のリーク検出方法。
A main body to which steam discharged from the turbine is supplied, a plurality of heat exchange pipes installed horizontally in parallel within the main body, a supply pipe that supplies seawater for cooling to each of the heat exchange pipes, and a heat exchanger. In a condensate heat exchange system having a discharge pipe for discharging seawater after cooling from a service pipe, the seawater in the supply pipe, discharge pipe, and heat exchange pipe is removed, and appropriate places in the supply pipe and discharge pipe are blocked. In this state, the heat exchange pipe is depressurized or pressurized, and an ultrasonic sensor is scanned at appropriate intervals in a direction perpendicular to the heat exchange pipe on the top and one side of the main body to detect damage to the pipe. A leak detection method for a condensing heat exchanger, characterized in that a heat exchange pipe in a leak state is detected by measuring ultrasonic waves emitted by air leaking or being sucked in a condensing heat exchanger.
JP17677286A 1986-07-29 1986-07-29 Leakage detection for condensate heat exchanger Pending JPS6334492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17677286A JPS6334492A (en) 1986-07-29 1986-07-29 Leakage detection for condensate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17677286A JPS6334492A (en) 1986-07-29 1986-07-29 Leakage detection for condensate heat exchanger

Publications (1)

Publication Number Publication Date
JPS6334492A true JPS6334492A (en) 1988-02-15

Family

ID=16019558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17677286A Pending JPS6334492A (en) 1986-07-29 1986-07-29 Leakage detection for condensate heat exchanger

Country Status (1)

Country Link
JP (1) JPS6334492A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6044692A (en) * 1993-12-14 2000-04-04 Somerset Technical Laboratories Limited Ultrasonic method of testing a plate heat exchanger for leakage
US6502208B1 (en) 1997-03-31 2002-12-31 International Business Machines Corporation Method and system for check stop error handling
JP2019015510A (en) * 2017-07-03 2019-01-31 株式会社神戸製鋼所 Condenser leak detection system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6044692A (en) * 1993-12-14 2000-04-04 Somerset Technical Laboratories Limited Ultrasonic method of testing a plate heat exchanger for leakage
US6062068A (en) * 1993-12-14 2000-05-16 Somerset Technical Laboratories Ltd. Leakage testing method for a plate heat exchanger
US6502208B1 (en) 1997-03-31 2002-12-31 International Business Machines Corporation Method and system for check stop error handling
JP2019015510A (en) * 2017-07-03 2019-01-31 株式会社神戸製鋼所 Condenser leak detection system

Similar Documents

Publication Publication Date Title
CN108431593A (en) Crackle measuring device and method
CN103673747A (en) Fast washing equipment for large-size heat exchangers and washing method
KR102294189B1 (en) Inspection device to detect welding status of missing or folding tab of battery electrode
JPS6333636A (en) Leak detection for condensate heat exchanger
JPS6334492A (en) Leakage detection for condensate heat exchanger
JP5730183B2 (en) Ultrasonic flaw detector
CN214052943U (en) Boiler tube inner wall oxide skin cleaning tool
KR20140037564A (en) Gas boiler and drive control method with air pressure senser thereof
CN216869925U (en) Special leakage detection device for coaxial double-pipe heat exchanger
JP6758257B2 (en) Leak detection system for condenser
CN211601716U (en) Truss arm condenser online cleaning device
CN107063578B (en) Leak detection device of automobile dryer
KR100336131B1 (en) Leakage examination system &the method for heat exchanger
CN109876476B (en) Polypeptide concentrate steam type dryer
JP2001336705A (en) Exhaust heat recovery boiler
JPS62245153A (en) Ultrasonic flaw detector
CN217634574U (en) Pipeline water quality testing robot
KR100309280B1 (en) Leakage Detection Device and Method of Heat Exchanger
CN219656716U (en) Rubber ball recovery device
CN217403726U (en) Pressure vessel leakproofness detection device
CN214471567U (en) Water pipe tool of leaking hunting
KR102608456B1 (en) Conveying device of tubular water and foreign matter removal device in the heat exchanger tube for ECT inspection
JPH08304219A (en) Device and method for inspecting heat exchanger tube of heat exchanger
KR200284334Y1 (en) Ultrasonic Testing Jig's Water Circulator
CN219714645U (en) Air tightness detection device for industrial production