JPS6333541A - Manufacture of sintered alloy steel - Google Patents

Manufacture of sintered alloy steel

Info

Publication number
JPS6333541A
JPS6333541A JP17575586A JP17575586A JPS6333541A JP S6333541 A JPS6333541 A JP S6333541A JP 17575586 A JP17575586 A JP 17575586A JP 17575586 A JP17575586 A JP 17575586A JP S6333541 A JPS6333541 A JP S6333541A
Authority
JP
Japan
Prior art keywords
alloy steel
sintering
powder
strength
compressibility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17575586A
Other languages
Japanese (ja)
Other versions
JPH07103442B2 (en
Inventor
Yukio Makiishi
槇石 幸雄
Kuniaki Ogura
邦明 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP61175755A priority Critical patent/JPH07103442B2/en
Publication of JPS6333541A publication Critical patent/JPS6333541A/en
Publication of JPH07103442B2 publication Critical patent/JPH07103442B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a high-strength sintered alloy steel with high dimensional accuracy, by subjecting a green compact of powder of alloy steel in which respective contents of C, Si, P, S, N and O are reduced and to which specific amounts of Ni, Cr, and Mo are added to sintering and cooling under specific conditions. CONSTITUTION:The powder of alloy steel containing, by weight, <=0.05% C, <=0.10% Si, <=0.020% P, <=0.020% S, <=0.0015% N, <=0.20% O, 0.5-4% Ni, 1.8-4.5% Cr, and 0.15-1.0% Mo is compacted to >=6.8g/cm<3> density. The resulting green compact is heated at 1,100-1,350 deg.C for >=1min to undergo sintering and, after sintering, the sintered compact is cooled at >=0.15 deg.C/sec cooling rate. In this way, the high-strength sintered alloy steel for machine parts having >=about 110kgf/mm<2> tensile strength can be manufactured while obviating the necessity of adding a particular additive powder of B, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、引張強さ110kgf/mrn’以」−の機
械部品用の高強度焼結合金鋼の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing high-strength sintered alloy steel for mechanical parts having a tensile strength of 110 kgf/mrn' or more.

〔従来の技術〕[Conventional technology]

高強度の焼結合金鋼を得るには特公昭58−10962
などに記載されているM n −Cr −Mo系あるい
はNi−Cu−Mo系などの低合金鋼粉を用い、黒鉛粉
および潤滑剤を混合した後、金型成形し、還元雰囲気中
で1100℃〜1200℃程度で焼結後、焼入焼戻し処
理を行い、必要な特性を得ている。
To obtain high-strength sintered alloy steel
After mixing graphite powder and a lubricant using low alloy steel powder such as M n -Cr -Mo type or Ni-Cu-Mo type described in After sintering at ~1200°C, quenching and tempering treatment is performed to obtain the necessary properties.

また、特開昭60−114555に記載の如く、低合金
鋼粉にCu、B、Pなどを含む低融点金属粉を添加混合
し、液相焼結を行い、強化する方法がある。
Furthermore, as described in JP-A No. 60-114555, there is a method of adding and mixing low-melting point metal powder containing Cu, B, P, etc. to low-alloy steel powder and performing liquid phase sintering to strengthen the steel.

これらの方法によって得られる焼結合金鋼は、引張強さ
80 k g f / mゴ以上をI、νち、高強度を
必要とする機械部品に好適である。しかし特公昭58−
10962などに記載の方法による場合、焼結のままで
は100kgf/mm’以4二の高強度は得られない、
従ってこの程度の強度を得るには、焼入れ焼戻し処理が
必要である。このため焼入れ焼戻し処理による焼結体製
造コストの」二昇、寸/j:精度の低下は避けられない
The sintered alloy steel obtained by these methods has a tensile strength of 80 kg f/m or more, and is suitable for mechanical parts requiring high strength. However, the special public service in 1988-
10962, it is not possible to obtain a high strength of 42 or more than 100 kgf/mm' with sintering as is.
Therefore, in order to obtain this level of strength, quenching and tempering treatment is necessary. For this reason, a decrease in the precision of the sintered body manufacturing cost due to the quenching and tempering treatment is unavoidable.

また特開昭60−114555に記載の方法はBなどの
液相発生元素が均一に分散しにくく、組織が不均一にな
りやすく寸法精度が低Fしやすく、さらに0.1%程度
のBを添加しないと100kgf/mrn’以りの引張
強さは得られず、焼結体の製造コストのに”ylが避け
られない。
Furthermore, in the method described in JP-A-60-114555, it is difficult for liquid phase generating elements such as B to be dispersed uniformly, the structure tends to be non-uniform, and the dimensional accuracy tends to be low. If it is not added, a tensile strength of more than 100 kgf/mrn' cannot be obtained, and "yl" is unavoidable in terms of manufacturing cost of the sintered body.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、従来焼結のままでは得られなかった高強度の
機械部品用焼結合金鋼を、寸法精度良く比較的安価に焼
結のままで得られる、焼結合金鋼の製造方法を提供する
ことを本発明の目的とする。
The present invention provides a method for manufacturing sintered alloy steel, which can obtain high-strength sintered alloy steel for mechanical parts with good dimensional accuracy and at a relatively low cost, which previously could not be obtained by sintering. It is an object of the present invention to do so.

〔問題点を解決するためのL段〕[L stage for solving problems]

1−足口的を達成するための技術手段は次の通りである
1-Technical means to achieve the goal are as follows.

まず成分として、 C:0.05小、 Xl:%以下 Si:0.10屯埴%以下 P:0.020重t%以下 S:0.020屯州%以下 N:0.0015重に%以下 0:0.20重量%以下 Ni:0.5〜4重量% Cr : 1.8〜4.5’l1% M o : 0.15〜1.0重量% を含む合金鋼粉を用いる。First, as an ingredient, C: 0.05 small, Xl: % or less Si: 0.10 tonne% or less P: 0.020 weight t% or less S: 0.020 tunzhou% or less N: 0.0015% or less 0: 0.20% by weight or less Ni: 0.5-4% by weight Cr: 1.8~4.5'l1% Mo: 0.15-1.0% by weight Uses alloy steel powder containing

この圧粉成形体の密度が6.8g/cm”以J二になる
ように成形する。
The powder compact is molded so that its density is 6.8 g/cm" or more.

次に、1100−1350℃、1分間以[二の加熱によ
り焼結する。
Next, sintering is performed by heating at 1100-1350°C for 1 minute or more.

焼結後の冷却速度を0.15℃/ s e c以上とす
る 〔作用〕 本発明は1合金鋼粉の圧縮性と焼入れ性の両特性の優れ
た銅粉を用い、焼結条件を限定することにより、従来得
られなかった焼結体強度と寸法精度を得られるという知
見に基づき、完成されたものである。
The cooling rate after sintering is set to 0.15°C/sec or more [Function] The present invention uses copper powder with excellent compressibility and hardenability properties of 1-alloy steel powder, and limits the sintering conditions. This was completed based on the knowledge that by doing so, it was possible to obtain sintered body strength and dimensional accuracy that were previously unobtainable.

高強度の焼結合金鋼を得るには、圧縮性、焼入性、焼結
性の優れた粉末が必要である。
To obtain high-strength sintered alloy steel, powder with excellent compressibility, hardenability, and sinterability is required.

高い圧縮性を得るには、不純物の低減が最も効果的であ
る。また焼入性の向上には合金元素の添加の宿賃が必要
である。さらに焼結性の向上には粒径1合金元素の調整
が必要である。これらの要求特性の全てを得ることは、
各々の特性向上の手段が他の特性の低下をもたらしやす
く、従来困難であった。
The most effective way to obtain high compressibility is to reduce impurities. In addition, addition of alloying elements is required to improve hardenability. Furthermore, to improve sinterability, it is necessary to adjust the grain size 1 alloying elements. Obtaining all of these required characteristics is
Conventionally, it has been difficult to improve each characteristic because it tends to cause a decrease in other characteristics.

発明者らは不純物元素の低減と合金元素の選択およびそ
の隈について検討を行い、さらに焼結条件についても検
討した結果、従来不可能であった高い焼結体強度を有す
る焼結合金鋼を得た。
The inventors investigated the reduction of impurity elements, the selection of alloying elements, and their range, as well as the sintering conditions, and as a result, they were able to obtain a sintered alloy steel with a high sintered body strength that was previously impossible. Ta.

すなわち、従来のCr系の低合金鋼粉は焼入性が優れる
が、Oその他の不純物が多いために圧縮性が劣り、高強
度が得られなかった。しかし発明者らの検討により、十
分0?の低い圧縮性の高い銅粉を得ることがo(能とな
り、さらにNi、M。
That is, conventional Cr-based low alloy steel powder has excellent hardenability, but due to the large amount of O and other impurities, compressibility is poor and high strength cannot be obtained. However, after examination by the inventors, 0? It is possible to obtain a copper powder with low compressibility and high compressibility.

を加えることにより、従来得られなかった圧縮性、焼入
性の両特性の優れる粉末を得ることができた。さらに同
粉末を成形後の焼結条件を限定することにより、従来得
られなかった焼結体強度が得られた。
By adding , we were able to obtain a powder that has excellent compressibility and hardenability, which were previously unobtainable. Furthermore, by limiting the sintering conditions after molding the powder, a strength of the sintered body that could not be obtained in the past was obtained.

本発明で用いる鋼粉はC,Si、P、S、N、0の含有
量を低減し、圧縮性を高くしたものである0次に各成分
の限定理由を述べる。
The steel powder used in the present invention has reduced contents of C, Si, P, S, N, and 0, and has increased compressibility.The reason for limiting each component will be described next.

C: Cは浸入型の合金元素であり、Cの残留は著しく圧縮性
を低下させるため、極力低くすることが望ましい、特に
本発明の焼結鋼を得るために用いる鋼粉の圧縮性(潤滑
剤1%を加え、成形圧カフ t / c rrr’で金
型成形し得た圧粉成形体の密度が6、9 g / c 
m’以1)は、鋼粉に0.05重量%を越えるCが残留
した場合、困難である。そこで本発明の銅粉のC量は0
.05.1(琶%以下とする。
C: C is an interstitial alloying element, and residual C significantly reduces compressibility, so it is desirable to reduce it as much as possible. In particular, it reduces the compressibility (lubrication) of the steel powder used to obtain the sintered steel of the present invention. The density of the powder compact obtained by adding 1% of the agent and molding with a molding pressure cuff t/c rrr' was 6.9 g/c.
1) below m' is difficult if more than 0.05% by weight of C remains in the steel powder. Therefore, the amount of C in the copper powder of the present invention is 0.
.. 05.1 (be below 2%).

Si: 溶融鋼の脱O元素として添加する必要があるが、Siの
増加は増加はSi酸化物となりやすく銅粉中に残留した
圧縮性の低下、焼結体特性の低ドを招き易<、Si添加
による焼入性向上を考慮しても、Siの添加は最低限に
すべきである。
Si: It is necessary to add it as an O-removal element for molten steel, but an increase in Si tends to result in Si oxide remaining in the copper powder, resulting in a decrease in compressibility and poor sintered body properties. Even considering the improvement in hardenability due to the addition of Si, the addition of Si should be kept to a minimum.

従って本発明で用いる銅粉のNi賃は圧縮性の低下の少
ない0−10改i%以下とする。
Therefore, the Ni content of the copper powder used in the present invention is set to 0-10% i% or less, which causes less deterioration in compressibility.

P、S: 鉄中に一般的に含まれる不純物元素であるが、これらの
元素はC同様圧縮性を著しく劣化させる元素であり、可
能な限り低いことが望ましい9本発明に用いる合金鋼粉
中のP、Sの量は、それぞれ工業的に低減可能であり、
かつ圧縮性低下の少ないo、o2o東1%以下とする。
P, S: Impurity elements commonly contained in iron, but like C, these elements significantly deteriorate compressibility, and it is desirable that their content be as low as possible.9 In the alloy steel powder used in the present invention The amounts of P and S can be reduced industrially, respectively,
And o, o2o east 1% or less with little deterioration in compressibility.

これはP、Sが0、020重量%を超えた場合他の合金
元素の影響も加わり、本発明の目的を達成するに必要な
条件である高圧縮性を得ることができないことによる。
This is because when P and S exceed 0.020% by weight, the effects of other alloying elements are added, making it impossible to obtain high compressibility, which is a necessary condition for achieving the object of the present invention.

0: また0量の増加は、圧縮性の低下ばかりでなく介在物の
増加、焼入性の低下1合金元素の添加効果の減少か起こ
り、最も好ましくない。
0: An increase in the amount of 0 is the most undesirable because it not only causes a decrease in compressibility but also an increase in inclusions, a decrease in hardenability, and a decrease in the effect of adding alloying elements.

従って本発明で用いる鋼粉中の□ jaは量産可能な合
金鋼粉製造設備で得られ、かつ■二足0による悪影響の
少ない0.20 東φ%以丁とする。なお0量は鋼粉の
合金組成の影響を強く受けるため合金元素の選択及びそ
の驕はO敬の増加を考慮した−1−で決定する必要があ
る。
Therefore, the □ ja in the steel powder used in the present invention is set to 0.20 φ%, which can be obtained using alloy steel powder manufacturing equipment that can be mass-produced, and which has less negative effects due to □ 0. Note that since the amount of zero is strongly influenced by the alloy composition of the steel powder, the selection of alloying elements and their values must be determined on the basis of -1-, taking into account the increase in O.

N: さらにNはCなどと同様鋼粉を著しく硬化させ、銅粉の
圧縮性を損う、そこで本発明で用いる銅粉のNHは、圧
縮性の低下が極〈少なく、かつ工業的に製造可能な0.
0015重φ%以下とする。
N: Furthermore, like C, N significantly hardens steel powder and impairs the compressibility of copper powder.Therefore, NH in the copper powder used in the present invention has very little decrease in compressibility and is manufactured industrially. Possible 0.
0015 weight φ% or less.

次に本発明の重要な点の一つである焼入性向上に必須の
合金元zNi、Cr、Mo壕の限定理由を説明する。
Next, the reason for limiting the alloying sources zNi, Cr, and Mo, which are essential for improving hardenability, which is one of the important points of the present invention, will be explained.

Cr: Crは、本発明の焼結鋼の最も重要な合金元素である。Cr: Cr is the most important alloying element of the sintered steel of the present invention.

Crの焼入性向JZの効果は太きく、また他の合金元素
に比べ、安価である。Crは本発明の焼結鋼の密度、焼
入性を決定づけるため重要である。Cr量の下限はNi
、Noを添加した状態において、−膜内な焼結炉の冷却
速度においてマルテンサイト変態しうる駿としなければ
本発明の目的とする強度は得られない9本発明のCr量
の下限を1.8重要%とするが、これは1.8重縫%未
満のCr量では(NiあるいはMOを比較的多量に添加
した場合においても)本発明の目的とする焼結体強度が
得られないからである。Cr驕の上限はCrの添加によ
る圧縮性の低下すなわち焼結密度の低下により本発明の
目的とする焼結体強度が得られなくなる量すなわち4.
5重量%を上限とする。
Cr has a large effect on the hardenability JZ, and is cheaper than other alloying elements. Cr is important because it determines the density and hardenability of the sintered steel of the present invention. The lower limit of the amount of Cr is Ni
In the state where No is added, the strength targeted by the present invention cannot be obtained unless the material is transformed to martensite at the cooling rate of the sintering furnace within the film.9 The lower limit of the amount of Cr in the present invention is 1. The reason for this is that the strength of the sintered body, which is the objective of the present invention, cannot be obtained with a Cr content of less than 1.8% (even when a relatively large amount of Ni or MO is added). It is. The upper limit of Cr density is the amount at which the strength of the sintered body, which is the objective of the present invention, cannot be obtained due to a decrease in compressibility, that is, a decrease in sintered density due to the addition of Cr, that is, 4.
The upper limit is 5% by weight.

Ni: Niは焼入性の向上および焼結体内の空孔の球状化など
焼結を促進する元素である。しかし過剰な添加は合金コ
ストの上昇圧縮性の低下をもたらし好ましくなく、他の
合金元素とのバランスも考慮し、Ni量を決定する必要
がある0本発明の焼結合金鋼のNi量は0.5〜4重量
%とする。これはo、 5 % :H”H%未満のNi
tμにおいては焼入性および焼結性向にの効果が小さく
、[1標とする焼結体強度を得ることができない。
Ni: Ni is an element that promotes sintering by improving hardenability and making pores in the sintered body spheroidal. However, excessive addition is undesirable as it increases alloy cost and decreases compressibility, so it is necessary to determine the Ni amount by considering the balance with other alloying elements.The Ni content of the sintered alloy steel of the present invention is 0. .5 to 4% by weight. This is o, 5%:H”Ni less than H%
At tμ, the effect on hardenability and sintering tendency is small, and it is not possible to obtain a standard sintered body strength.

またNiが4 屯rlX%を超えた場合、その焼入性向
りの効果に比べ、圧縮性の低ド、合金コストの−h ’
yl−の負効果が大きく、本発明の目的とする焼結合金
鋼が得られない。そこで、Ni礒の」二限は4重量%と
する。
In addition, when Ni exceeds 4 ton rl
The negative effect of yl- is large, and the sintered alloy steel targeted by the present invention cannot be obtained. Therefore, the second limit for Ni is set at 4% by weight.

MO: MOはNiおよびCrと並ぶ未発明の重要な添加元素の
一つである。Moの添加により焼入性が向トし、焼結後
の機械的特性の向」二が著しい、しかしMoもNi、C
rと同様鋼粉を硬化し圧縮性を低下させやすい。
MO: MO is one of the important uninvented additive elements along with Ni and Cr. The addition of Mo improves the hardenability and significantly improves the mechanical properties after sintering.
Like r, it hardens steel powder and tends to reduce compressibility.

従って本発明のMo量は添加効果が明らかでかつ圧縮性
低下の少ない0.15〜1.0重要%とする。
Therefore, the amount of Mo in the present invention is set to 0.15 to 1.0 important %, so that the effect of addition is clear and the compressibility is less reduced.

本発明の焼結合金鋼は1−記Ni、Cr、Moを含有す
ることにより基本的な焼入性が得られる。
The sintered alloy steel of the present invention can obtain basic hardenability by containing Ni, Cr, and Mo.

さらに他の合金元素としてMn、V、Co、Cuを加え
ることにより機械部品側々に要求される特性に合致させ
ることが1丁能である。
Furthermore, by adding Mn, V, Co, and Cu as other alloying elements, it is possible to match the characteristics required for each mechanical component.

、(発明の焼結合金鋼の製造方法は、焼結条件を1io
o℃〜1350℃15分間の焼結と焼結後の冷却速度を
1.5℃/ s e c以上とする。
, (The method for manufacturing sintered alloy steel of the invention sets the sintering conditions to 1io
Sintering from 0°C to 1350°C for 15 minutes and cooling rate after sintering is 1.5°C/sec or more.

焼結温度を1100−1350℃とする限定理由は11
00℃未満では焼結が十分に進行しないので、本発明の
目的とする焼結体の強度が得られず、また1350℃を
越える高温では焼結コストが1.シ1し好ましくない。
The reason for limiting the sintering temperature to 1100-1350℃ is 11.
At temperatures below 1,350°C, sintering does not proceed sufficiently, so the strength of the sintered body that is the objective of the present invention cannot be obtained, and at temperatures above 1,350°C, the sintering cost is 1. I don't like it.

焼結時間は15分以上とするがこれは、15分未満の場
合温度分布が均一となりにくく、焼結体の特性がばらつ
きやすいことによる。
The sintering time is set to 15 minutes or more, but this is because if it is less than 15 minutes, the temperature distribution is difficult to become uniform and the characteristics of the sintered body are likely to vary.

焼結後の冷却速度は1.5℃/ s e c以りとする
。これは1.5℃/ s e e未満の冷却速度では、
本発明で用いる焼入性の優れる鋼粉であっても冷却時に
マルテンサイト変態せず、本発明の目的とする強度が得
られないことによる。
The cooling rate after sintering is 1.5° C./sec or higher. This means that at a cooling rate of less than 1.5℃/s.e.
This is because even the steel powder used in the present invention, which has excellent hardenability, does not undergo martensitic transformation during cooling, and the strength targeted by the present invention cannot be obtained.

〔実施例〕〔Example〕

次に実施例を用いて本発明の詳細な説明する。 Next, the present invention will be explained in detail using examples.

電気炉を用いて鉄スクラツプを溶解後Si脱酸し、合金
元素添加後木圧160kgf/cm’にて水アトマイズ
を行い、?’)られた粉末を脱水、乾燥し、更に真空熱
処理炉を用い、脱酸、脱炭、脱窒および焼鈍を行い、第
1表の銅粉を得た。
After melting the iron scrap using an electric furnace, it is deoxidized with Si, and after adding alloying elements, it is water atomized with a wood pressure of 160 kgf/cm'. The resulting powder was dehydrated and dried, and further deoxidized, decarburized, denitrified and annealed using a vacuum heat treatment furnace to obtain the copper powder shown in Table 1.

第1表に本発明で用いた合金鋼粉実施例1〜6および比
較例1〜6を示す、但し、実施例6のCuは製品鋼粉に
電解Cu粉を混粉し供試した。
Table 1 shows alloy steel powder Examples 1 to 6 and Comparative Examples 1 to 6 used in the present invention. However, Cu in Example 6 was tested by mixing electrolytic Cu powder with product steel powder.

同粉末に1重量%の潤滑剤(ステアリン酸亜鉛)を加え
成形圧カフ t / crn’テJ S PM標準1−
64の圧縮性試験片を成形し、さらに0.7 i量%の
黒鉛粉を加え混合成形し、JSPM標準2−64引張試
験片を得た。圧縮性試験片により得た圧粉密度を第1表
に示す、また引張試験片は水素雰囲気中にて1250℃
60分間の焼結を行い、0.1および0.2℃/ s 
e cで冷却した。同試験片を用いて引張強さを測定し
、その結果を第1表に示す。
Add 1% by weight of lubricant (zinc stearate) to the same powder and form a molding pressure cuff.
A JSPM standard 2-64 tensile test piece was obtained by molding a 64 compressibility test piece, and then adding 0.7 i% graphite powder and mixing and molding. Table 1 shows the green density obtained from the compressibility test piece, and the tensile test piece was heated at 1250°C in a hydrogen atmosphere.
Perform sintering for 60 min, 0.1 and 0.2 °C/s
Cooled with ec. The tensile strength was measured using the same test piece, and the results are shown in Table 1.

、1:、薙倒1〜6はC1Si、P、S、O,Nの不純
物が少なく、さらにNi、Cr、Moの添加により圧縮
性、焼入性の両特性を備え、焼結冷却時にマルテンサイ
ト変態を伴う結果、高強度を得ることができた。しかし
比較例1〜6に示すように不純物が多い、あるいは合金
元素あるいは合金量が適当でない場合、圧縮性あるいは
焼入性が低下し、目標とする強度が得られなかった。
, 1:, Nagita 1 to 6 have low impurities of C1Si, P, S, O, and N, and have both compressibility and hardenability due to the addition of Ni, Cr, and Mo, and they are hardenable during sintering and cooling. As a result of site metamorphosis, high strength could be obtained. However, as shown in Comparative Examples 1 to 6, when there were many impurities or when the alloying elements or alloy amounts were inappropriate, compressibility or hardenability decreased, and the target strength could not be obtained.

また従来から用いられている例えば比較例6の鋼粉では
焼入性が低いため、高強度が得られない、また冷却速度
0.1℃/secでは本発明で用いる成分の鋼粉であっ
ても、冷却時にマルテンサイト変通せず、本発明の目的
とする焼結体強度が得られない。
In addition, the steel powder used in the past, for example, Comparative Example 6, has low hardenability, so high strength cannot be obtained. Also, martensite does not transform during cooling, and the strength of the sintered body targeted by the present invention cannot be obtained.

実施例中1〜3は本発明の基本となる合金鋼粉であり、
Ni、Cr、Moの必須の合金元素のみ添加した鋼粉で
ある。実施例に示した鋼粉のC1Si、P、S、O,N
iは、比較例1に代表される従来鋼粉のこれらの元素の
含有量に比べ低く6、90 g / c m’以上の高
圧圧縮性を得ている。比較例1は実施例1とほぼ同一の
Ni、Cr、M。
Examples 1 to 3 are alloy steel powders that are the basis of the present invention,
This is a steel powder to which only the essential alloying elements of Ni, Cr, and Mo are added. C1Si, P, S, O, N of the steel powder shown in the example
i is lower than the content of these elements in the conventional steel powder represented by Comparative Example 1, achieving high-pressure compressibility of 6.90 g/cm' or more. Comparative Example 1 uses almost the same Ni, Cr, and M as Example 1.

の合金量であるが、圧粉密度が低いため極めて低い強度
しか得られなかった。
However, due to the low green density, only extremely low strength could be obtained.

比較例の2.3.6は合金量が低く、高圧縮性を得てい
るが、比較例2はCr量が低く、比較例3はMo量が低
く、更に比較例6はMn敬が高いが、Cr1lおよびN
 i Qが低い。このため焼入性が不足し焼結の冷却時
程度の冷却速度ではマルテンサイト変態せず高強度が得
られない。
Comparative Example 2.3.6 has a low alloy content and has high compressibility, but Comparative Example 2 has a low Cr content, Comparative Example 3 has a low Mo content, and Comparative Example 6 has a high Mn ratio. But Cr1l and N
i Q is low. For this reason, hardenability is insufficient, and martensitic transformation does not occur at a cooling rate comparable to that during cooling during sintering, making it impossible to obtain high strength.

比較例4はCr量がやや高いため脱炭が抑えられその結
果圧縮性が劣り、高強度が得られなかった。
Comparative Example 4 had a slightly high Cr content, so decarburization was suppressed, resulting in poor compressibility and high strength could not be obtained.

比較例5はNi、Moが低く焼入性が劣り、高強度が得
られなかった。
Comparative Example 5 had low Ni and Mo content, poor hardenability, and could not obtain high strength.

実施例4〜6は実施例1〜3の基本組成に他の合金元素
を加えた場合であり、実施例1〜3に比べ圧縮性は低下
するが110kgf/mrn’以上の高強度が得られた
Examples 4 to 6 are cases in which other alloying elements are added to the basic composition of Examples 1 to 3, and although compressibility is lower than in Examples 1 to 3, high strength of 110 kgf/mrn' or more is obtained. Ta.

第1図(写真)に銅粉断面組織を示す、第1表中の実施
例5の銅粉を焼結後、0.2℃/ s e cで冷却し
た焼&(4体断面組織を第1図(写真)(a)に小す。
Figure 1 (photograph) shows the cross-sectional structure of the copper powder. After sintering the copper powder of Example 5 in Table 1, the 4-body cross-sectional structure was sintered and cooled at 0.2°C/sec. Figure 1 (photo) (a) is small.

針状の組織が観察でき焼結冷却時にマルテンサイト変y
息としていることが確認できた。
Acicular structure can be observed and martensite changes during sintering and cooling.
I was able to confirm that he was breathing.

しかし第1図(写真)(b)に示す第1表の比較例6の
鋼粉断面は第1図(a)のような針状組織はなく、焼入
性が低いためマルテンサイト変態しなかったとまえる。
However, the cross section of the steel powder of Comparative Example 6 in Table 1 shown in Figure 1 (Photo) (b) does not have an acicular structure as shown in Figure 1 (a), and it does not undergo martensitic transformation due to its low hardenability. I can understand.

〔発明の効果〕〔Effect of the invention〕

本発明の方法を用いることにより従来、焼入焼戻しある
いは硼素など特殊な添加粉を加えなければtl)られな
かった高強度を焼結のままで安価に得ることがii7ず
侶となった。
By using the method of the present invention, it has become possible to inexpensively obtain high strength from sintered materials, which conventionally could not be achieved without quenching and tempering or adding special additive powder such as boron.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は焼結体の断面の金属組織を示す倍率400倍の
写真である。
FIG. 1 is a photograph at a magnification of 400 times showing the metal structure of a cross section of the sintered body.

Claims (1)

【特許請求の範囲】 1 C:0.05重量%以下 Si:0.10重量%以下 P:0.020重量%以下 S:0.020重量%以下 N:0.0015重量%以下 O:0.20重量%以下 Ni:0.5〜4重量% Cr:1.8〜4.5重量% Mo:0.15〜1.0重量% を含む合金鋼粉を圧粉成形体の密度を6.8g/cm^
3以上に成形し、1100〜1350℃、1分間以上の
加熱により焼結し、焼結後の冷却速度を0.15℃/s
ec以上とすることを特徴とする高強度焼結合金鋼の製
造方 法。
[Claims] 1 C: 0.05% by weight or less Si: 0.10% by weight or less P: 0.020% by weight or less S: 0.020% by weight or less N: 0.0015% by weight or less O: 0 .20% by weight or less Ni: 0.5 to 4% by weight Cr: 1.8 to 4.5% by weight Mo: 0.15 to 1.0% by weight .8g/cm^
3 or higher, sintered by heating at 1100 to 1350°C for 1 minute or more, and cooling rate after sintering to 0.15°C/s.
A method for producing high-strength sintered alloy steel, characterized in that it has a sintered alloy steel of ec or higher.
JP61175755A 1986-07-28 1986-07-28 Manufacturing method of high strength sintered alloy steel Expired - Fee Related JPH07103442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61175755A JPH07103442B2 (en) 1986-07-28 1986-07-28 Manufacturing method of high strength sintered alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61175755A JPH07103442B2 (en) 1986-07-28 1986-07-28 Manufacturing method of high strength sintered alloy steel

Publications (2)

Publication Number Publication Date
JPS6333541A true JPS6333541A (en) 1988-02-13
JPH07103442B2 JPH07103442B2 (en) 1995-11-08

Family

ID=16001684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61175755A Expired - Fee Related JPH07103442B2 (en) 1986-07-28 1986-07-28 Manufacturing method of high strength sintered alloy steel

Country Status (1)

Country Link
JP (1) JPH07103442B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165002A (en) * 1990-10-25 1992-06-10 Kawasaki Steel Corp High compressibility cr base alloy steel powder and manufacture of high strength sintered material using it
US5666634A (en) * 1993-06-02 1997-09-09 Kawasaki Steel Corporation Alloy steel powders for sintered bodies having high strength, high fatigue strength and high toughness, sintered bodies, and method for manufacturing such sintered bodies
JP2016121367A (en) * 2014-12-24 2016-07-07 住友電工焼結合金株式会社 Sintering material and method for producing the same
KR102571865B1 (en) * 2023-02-02 2023-08-29 (주)알루텍 stepped portion forming devices and methods for battery can

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164901A (en) * 1981-02-24 1982-10-09 Sumitomo Metal Ind Ltd Low alloy steel powder of superior compressibility, moldability and hardenability

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164901A (en) * 1981-02-24 1982-10-09 Sumitomo Metal Ind Ltd Low alloy steel powder of superior compressibility, moldability and hardenability

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165002A (en) * 1990-10-25 1992-06-10 Kawasaki Steel Corp High compressibility cr base alloy steel powder and manufacture of high strength sintered material using it
US5666634A (en) * 1993-06-02 1997-09-09 Kawasaki Steel Corporation Alloy steel powders for sintered bodies having high strength, high fatigue strength and high toughness, sintered bodies, and method for manufacturing such sintered bodies
JP2016121367A (en) * 2014-12-24 2016-07-07 住友電工焼結合金株式会社 Sintering material and method for producing the same
KR102571865B1 (en) * 2023-02-02 2023-08-29 (주)알루텍 stepped portion forming devices and methods for battery can

Also Published As

Publication number Publication date
JPH07103442B2 (en) 1995-11-08

Similar Documents

Publication Publication Date Title
EP1049552B1 (en) Steel powder for the preparation of sintered products
JP3504786B2 (en) Method for producing iron-based sintered alloy exhibiting quenched structure
CA2143015C (en) Alloy steel powders, sintered bodies and method
JP3258765B2 (en) Manufacturing method of high-strength iron-based sintered body
US5876481A (en) Low alloy steel powders for sinterhardening
JPS6333541A (en) Manufacture of sintered alloy steel
JP3272886B2 (en) Alloy steel powder for high strength sintered body and method for producing high strength sintered body
JPS6318001A (en) Alloy steel powder for powder metallurgy
EP0024217B1 (en) Process for producing a compacted powder metal part
JPH04337001A (en) Low-alloy steel powder for powder metallurgy and its sintered molding and tempered molding
JP3396285B2 (en) Alloy steel powder for high-strength and high-toughness sintered materials and its sintered steel
JPH0459362B2 (en)
JPS5819722B2 (en) koumitsudoshiyouketsukou no seizouhouhou
JP2908018B2 (en) Method for producing high hardness sintered member and metal powder mixture
JPS5923840A (en) Production of high strength sintered material
WO2023157386A1 (en) Iron-based mixed powder for powder metallurgy, and iron-based sintered body
JPS63243250A (en) Manufacture of high-strength sintered steel
JPH0568522B2 (en)
JPH11302804A (en) Synchronizer ring made of iron-base sintered alloy
JPS5819406A (en) Manufacture of sintered fe-cr-co magnet alloy
JPH0598400A (en) Sintered and forged ferrous alloy member
JPS6191346A (en) Manufacture of iron-base sintered material
JPS6187850A (en) Iron sintered body
JPH0466652A (en) Alloy steel for injection molding powder metallurgy excellent in hardenability
JPH04154941A (en) Soft magnetic alloy sintered body and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees