JPH04154941A - Soft magnetic alloy sintered body and its manufacture - Google Patents

Soft magnetic alloy sintered body and its manufacture

Info

Publication number
JPH04154941A
JPH04154941A JP27707290A JP27707290A JPH04154941A JP H04154941 A JPH04154941 A JP H04154941A JP 27707290 A JP27707290 A JP 27707290A JP 27707290 A JP27707290 A JP 27707290A JP H04154941 A JPH04154941 A JP H04154941A
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
sintered body
content
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27707290A
Other languages
Japanese (ja)
Inventor
Masashi Muroshige
室重 昌史
Kouichi Gondai
権代 晃一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP27707290A priority Critical patent/JPH04154941A/en
Publication of JPH04154941A publication Critical patent/JPH04154941A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a soft magnetic alloy sintered body excellent in weldability and magnetic properties by adding a specified amt. of C and a binder to the water atomizing powder of a 'Permendur(R)' alloy small in the content of N2 or a 'Permalloy(R)', kneading this mixture, molding it and thereafter executing dewaxing and sintering. CONSTITUTION:The molten metal of an Fe-Co series 'Permendur(R)' alloy small in the content of N2 or an Fe-Ni series 'Permalloy(R)' is pulverized by a water atomizing method. Carbon by the amt. 0.15 to 0.40 times the content of O2 in the above powder is added to the above alloy powder, which is furthermore mixed with a binder, and kneading is sufficiently executed. This kneaded product is subjected to injection molding into a desired shape and is held under heating to 400 to 650 deg.C for 0.5 to 3hr in a reducing atmosphere or a neutral atmosphere, and the binder is dewaxed. Successively, sintering is executed at a high temp., e.g. of 1200 deg.C in a reducing atmosphere or in vacuum. The soft magnetic alloy sintered body contg. <0.05wt.% C and <0.05% (O2+N2) and excellent in weldability and magnetic properties is manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、優れた溶接性と磁気特性を有する軟質磁性合
金焼結体およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a soft magnetic alloy sintered body having excellent weldability and magnetic properties, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

本発明でいうパーメンダ合金とは、FeとGoを主成分
とし、必要に応じてMo、Ti+V、Cr、Mn。
Permenda alloy as used in the present invention is mainly composed of Fe and Go, and optionally Mo, Ti+V, Cr, and Mn.

Si、A1等の1種または2種以上を添加する電磁材料
をいう。また、パーマロイ合金とはFeとNiを主成分
とし、必要に応じてS 11 M n + M o +
 Cr + V +Cu、Sn、Ti、A1等をうち1
種または2種以上を添加する電磁気材料を総称するもの
である。
Refers to an electromagnetic material to which one or more of Si, A1, etc. is added. Permalloy alloy is mainly composed of Fe and Ni, and optionally contains S 11 M n + M o +
Cr + V + Cu, Sn, Ti, A1, etc., 1 of them
It is a general term for electromagnetic materials to which a species or two or more species are added.

従来、軟質磁性材料としては、純鉄、珪素鋼、センダス
ト、パーマロイ、パーメンダ等の材料が知られている。
Conventionally, materials such as pure iron, silicon steel, sendust, permalloy, and permenda are known as soft magnetic materials.

これらの金属あるいは合金を用いて部品等を製造する方
法の一つとして、金属粉末原料に1種類あるいは数種類
のバインダを配合、混練し、その混線物を射出成形やプ
レス成形等の各種成形方法により成形した後、バインダ
を除去し、焼結して部品を得るという方法が用いられて
いる。
One method of manufacturing parts using these metals or alloys is to mix and knead one or several types of binder with metal powder raw materials, and then mold the mixed material using various molding methods such as injection molding and press molding. After molding, a method is used in which the binder is removed and the parts are sintered.

軟質磁性合金粉末および軟質磁性合金粉末を焼結して製
品を得る製造方法は、特公昭58−54185号公報、
特開平2−138443号公報に開示されている。
A soft magnetic alloy powder and a manufacturing method for obtaining a product by sintering the soft magnetic alloy powder are disclosed in Japanese Patent Publication No. 58-54185,
It is disclosed in Japanese Patent Application Laid-Open No. 2-138443.

前者はFe−Ni系パーマロイ合金粉末に関するもので
あり、後者はFe−Go系焼結磁性材料およびその製造
方法に関するものである。
The former relates to Fe--Ni permalloy alloy powder, and the latter relates to Fe--Go sintered magnetic materials and their manufacturing methods.

本願発明は、ニアネットシェイプで部品を作ることが可
能であり、今後その応用範囲は急速に拡がると思われる
The present invention makes it possible to produce parts with a near-net shape, and the scope of its application is expected to expand rapidly in the future.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

射出成形に使用される金属粉末は、通常30μm以下、
平均粒径で10μm程度の微粉末が必要であるため、水
アトマイズ法によって得られた金属粉末を使用すること
が多い。この水アトマイズ法で製造された金属粉末は、
アトマイズ工程の途中で酸素と反応し、金属表面が酸化
され、酸素含有量が多くなる。
The metal powder used for injection molding is usually 30 μm or less,
Since fine powder with an average particle size of about 10 μm is required, metal powder obtained by water atomization is often used. The metal powder produced by this water atomization method is
During the atomization process, it reacts with oxygen, oxidizes the metal surface, and increases the oxygen content.

このような酸素含有量の多い金属粉末を使用して製造さ
れた部品は、焼結時の還元が十分でないと、多くの酸素
を含んだ部品となり、また原料粉末に多くの窒素が含ま
れていると、その原料粉末から製造された部品は窒素含
有量の多いものとなる。
Parts manufactured using metal powder with a high oxygen content will contain a lot of oxygen if the reduction during sintering is not sufficient, and if the raw material powder contains a lot of nitrogen. If so, parts manufactured from the raw material powder will have a high nitrogen content.

このような酸素や窒素含有量の多い部品を他の金属製品
に溶接した場合、溶接部にブローホールが生じやすく、
そのため溶接強度が低くなるという問題点があった。
When such parts with high oxygen or nitrogen content are welded to other metal products, blowholes are likely to occur in the weld.
Therefore, there was a problem that the welding strength became low.

上述のような問題点を解消するため、種々研究がなされ
、前述の特公昭58−54185号公報、特開平2−1
38443号公報が開示されている。
In order to solve the above-mentioned problems, various studies have been conducted, including the aforementioned Japanese Patent Publication No. 58-54185 and Japanese Patent Application Laid-open No. 2-1.
No. 38443 is disclosed.

前者は、Fe−Ni系パーマロイ合金粉末のプレス成形
時の圧縮性や磁性を向上するため、炭素量を低減し、酸
素量も規定して、圧縮性も向上するものである。
The former improves compressibility and magnetism during press molding of Fe-Ni based permalloy alloy powder by reducing the amount of carbon and regulating the amount of oxygen, which also improves compressibility.

後者は■を添加したFe−Go系焼結磁性材料の炭素量
と酸素量を規定して、磁気特性、とくに保磁力と最大透
磁率を向上することが示されている。
The latter has been shown to improve magnetic properties, particularly coercive force and maximum permeability, by regulating the carbon content and oxygen content of a Fe--Go based sintered magnetic material to which ■ is added.

磁気特性を向上するためには、炭素量と酸素量を低減す
る必要があることが知られている。本願発明者は、磁気
特性の他に溶接性をも向上するためには、炭素量と酸素
量を低減すると共に、ブローホールを生じる原因となる
窒素含有量も低減することが重要であることを見出した
ものである。
It is known that in order to improve magnetic properties, it is necessary to reduce the amount of carbon and oxygen. The inventor of this application has found that in order to improve not only magnetic properties but also weldability, it is important to reduce the amount of carbon and oxygen, as well as reduce the nitrogen content, which causes blowholes. This is what I found.

上述の特公昭58−54185号公報、特開平2(38
443号公報には、溶接性と窒素含有量との関係につい
ては開示されていない。
The above-mentioned Japanese Patent Publication No. 58-54185, Japanese Patent Application Publication No. 38
No. 443 does not disclose the relationship between weldability and nitrogen content.

本発明の目的は、溶接性に優れ、溶接強度の高い軟質磁
性合金焼結体およびその製造方法を提供することである
An object of the present invention is to provide a soft magnetic alloy sintered body with excellent weldability and high welding strength, and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、重量%で炭素0.05%以下、酸素と窒素の
総和が0.05%以下であるパーメンダ合金からなり、
優れた溶接性を有することを特徴とする軟質磁性合金焼
結体であり、重量%で炭素0.05%以下、酸素と窒素
の総和が0.05%以下であるパーマロイ合金からなり
、優れた溶接性を有することを特徴とする軟質磁性合金
焼結体である。さらに、水アトマイズ法により軟質磁性
合金の粉末を製造し、該粉末の酸素量(重量%)の0.
15〜0.40倍の炭素粉末を添加し、所望の形状に成
形した後、還元性または中性雰囲気中で400〜650
℃の温度で0.5時間以上3時間以下保持して脱脂した
後、還元性雰囲気または真空中で焼結し優れた溶接性を
有することを特徴とする軟質磁性合金焼結体の製造方法
である。
The present invention consists of a permenda alloy in which carbon is 0.05% or less and the sum of oxygen and nitrogen is 0.05% or less by weight,
It is a soft magnetic alloy sintered body characterized by excellent weldability, and is made of a permalloy alloy with a carbon content of 0.05% or less and a total of oxygen and nitrogen content of 0.05% or less by weight. This is a soft magnetic alloy sintered body characterized by having weldability. Furthermore, a soft magnetic alloy powder is produced by a water atomization method, and the oxygen content (weight %) of the powder is 0.
After adding 15 to 0.40 times the amount of carbon powder and molding it into the desired shape, it is heated to 400 to 650 in a reducing or neutral atmosphere.
A method for producing a soft magnetic alloy sintered body characterized by having excellent weldability by degreasing it by holding it at a temperature of 0.5 hours or more and less than 3 hours at a temperature of °C, and then sintering it in a reducing atmosphere or vacuum. be.

すなわち、本発明は主として溶接性を向上したFe−G
o系のパーメンダ合金、およびFe−Ni系のパーマロ
イ合金からなる軟質磁性合金の焼結体、およびその製造
方法である。
That is, the present invention mainly focuses on Fe-G with improved weldability.
The present invention provides a sintered body of a soft magnetic alloy consisting of an o-based permenda alloy and a Fe-Ni-based permalloy alloy, and a method for producing the same.

本発明において、目的とする溶接性に優れた軟質磁性焼
結合金を得るために、本発明者らが見出した方法は、窒
素含有量の少ない原料合金を用いて、水アトマイズ法に
より製造された軟質磁性合金粉末に、焼結体の酸素十窒
素含有量が0.05wt%以下で、かつ炭素量が0.0
5wt%以下になるように、C粉末を添加するものであ
る。
In the present invention, in order to obtain the desired soft magnetic sintered alloy with excellent weldability, the method discovered by the present inventors is to manufacture the alloy by water atomization using a raw material alloy with low nitrogen content. The soft magnetic alloy powder has a sintered body with an oxygen and nitrogen content of 0.05 wt% or less and a carbon content of 0.0.
C powder is added so that the amount is 5 wt% or less.

焼結体の酸素十窒素含有量を0.05wt%以下に低減
しないと、溶接時、溶接部にブローホールを生じ、溶接
強度が低くなる。また、焼結体の炭素量は0.05wt
%以下でないと磁気特性が悪くなる。
If the oxygen and nitrogen content of the sintered body is not reduced to 0.05 wt% or less, blowholes will occur in the weld during welding, and the weld strength will decrease. In addition, the amount of carbon in the sintered body is 0.05wt
% or less, the magnetic properties will deteriorate.

成形前のC粉末の添加量は、原料粉末の酸素含有量との
兼ね合いで決まり、本発明者らが行なった種々の実験に
より、添加する炭素量は、粉末の酸素含有量の0.15
倍以上0.4倍以下であれば、焼結後の炭素量が0.0
5wt%以下で、かつ酸素含有量が低く抑えられること
を見出している。0.15倍未満では脱酸が十分行なえ
ず、0.4倍を超えて添加するとC量が高くなって磁気
特性が低下する。そして、このC粉末を添加した軟質時
整合金粉末にバインダを添加、混練して、成形する。
The amount of C powder added before molding is determined based on the oxygen content of the raw material powder, and according to various experiments conducted by the present inventors, the amount of carbon added is 0.15 of the oxygen content of the powder.
If the carbon content after sintering is 0.0 times or more and 0.4 times or less
It has been found that the oxygen content can be kept low at 5 wt% or less. If it is less than 0.15 times, deoxidation cannot be performed sufficiently, and if it is added more than 0.4 times, the amount of C increases and the magnetic properties deteriorate. Then, a binder is added to the soft, consistent gold powder to which the C powder has been added, and the mixture is kneaded and molded.

脱脂は、温度400〜650℃、保持時間は0.5時間
以上3時間以下で行なう。脱脂温度が400℃未満では
脱脂が十分に行なわれず、バインダが残存してしまい、
650℃まで昇温すると脱脂は、はぼ完全に終了してし
まうため、それ以上昇温する必要はないので脱脂温度は
400〜650℃とした。
Degreasing is carried out at a temperature of 400 to 650°C and a holding time of 0.5 hours or more and 3 hours or less. If the degreasing temperature is less than 400°C, degreasing will not be carried out sufficiently and the binder will remain.
Since degreasing almost completely ends when the temperature is raised to 650°C, there is no need to raise the temperature any further, so the degreasing temperature was set at 400 to 650°C.

脱脂時の保持時間は、0.5時間未満では脱脂が十分に
行なわれず、バインダが残存する可能性があり、3時間
保持すれば十分脱脂が行なわれ、それ以上保持する必要
がないので、保持時間は0.5〜3時間とした。
If the holding time during degreasing is less than 0.5 hours, the degreasing will not be sufficient and the binder may remain. If the holding time is held for 3 hours, the degreasing will be sufficient and there is no need to hold it any longer. The time was 0.5 to 3 hours.

脱脂時の昇温速度は、成形体の肉厚に応じ、適切な速度
にすればよいが、雰囲気は還元性または中性雰囲気が必
要である。適切なC含有量を決定しやすくするためには
、脱脂温度、保持時間、昇温速度等の条件を一定してお
くのが望ましい。
The rate of temperature increase during degreasing may be set to an appropriate rate depending on the thickness of the molded body, but the atmosphere must be a reducing or neutral atmosphere. In order to easily determine an appropriate C content, it is desirable to keep conditions such as degreasing temperature, holding time, and temperature increase rate constant.

焼結は、焼結後の酸素含有量を極力少なくするために、
水素等の還元雰囲気中で行なう。還元性雰囲気を使うこ
とにより、MeO十G−+Me、 G Oの反応により
、焼結体の酸素含有量は目的の量まで低減できるし、ま
た窒素含有量は極端に増加することはないので、溶接性
に優れた軟質磁性合金焼結体を得ることができる。
Sintering is done in order to minimize the oxygen content after sintering.
It is carried out in a reducing atmosphere such as hydrogen. By using a reducing atmosphere, the oxygen content of the sintered body can be reduced to the desired amount through the reaction of MeO+G-+Me, GO, and the nitrogen content will not increase excessively. A soft magnetic alloy sintered body with excellent weldability can be obtained.

r実施例〕 次に実施例と図面に基づいて本発明をさらに詳細に説明
する。
Embodiment] Next, the present invention will be described in further detail based on an embodiment and drawings.

第1表に本発明の一実施例の概略を示す。水アトマイズ
法により1、パーメンダ合金およびパーマロイ合金の粉
末を製造し、成分組成を確認した。
Table 1 outlines one embodiment of the present invention. 1. Permenda alloy and permalloy alloy powders were produced using the water atomization method, and their component compositions were confirmed.

この合金粉末に炭素粉末を添加混合し、成形、脱脂、焼
結の工程を経て、焼結体を得た後、成分組成を確認する
と共に溶接テストを実施した。以下に実施例の具体的な
内容を説明する。
Carbon powder was added to and mixed with this alloy powder, and a sintered body was obtained through the steps of molding, degreasing, and sintering.The component composition was confirmed and a welding test was conducted. The specific contents of the example will be explained below.

実施例1(第1表のNo、l) 水アトマイズ法により、Go 49.6%、炭素量0.
01%、酸素含有量0.406%、窒素含有量0.00
31%、Si 0.11%、Mn0.02%、P 0.
006%、S O,004%、Ni 0.24%、Cr
 0.07%、残部Feおよび不可避不純物からなるパ
ーメンダの粉末を得た。製造された粉末の平均粒径は1
4.0μmであった。この粉末にグラファイトの粉末0
.11%(酸素量0.406%に対し0.271倍)を
添加し混合した。この粉末にバインダを加え、混線後、
射出成形を行なった。
Example 1 (No. 1 in Table 1) Go 49.6%, carbon content 0.
01%, oxygen content 0.406%, nitrogen content 0.00
31%, Si 0.11%, Mn 0.02%, P 0.
006%, SO, 004%, Ni 0.24%, Cr
Permenda powder consisting of 0.07%, the balance Fe and unavoidable impurities was obtained. The average particle size of the powder produced is 1
It was 4.0 μm. 0 graphite powder in this powder
.. 11% (0.271 times the amount of oxygen, 0.406%) was added and mixed. Add a binder to this powder, and after mixing,
Injection molding was performed.

次に昇温速度50℃/時間で昇温し、600℃で3時間
保持して脱脂を行なった。脱脂後の炭素量、酸素含有量
および窒素含有量は、それぞれ0.15%、0.246
%、0.003%であった。焼結は水素雰囲気中で12
00℃で1時間保持して行なった。焼結後の炭素量、酸
素含有量および窒素含有量は、それぞれ0.031%、
0.010%、0.006%であった。
Next, the temperature was raised at a temperature increase rate of 50°C/hour and held at 600°C for 3 hours to perform degreasing. The carbon content, oxygen content and nitrogen content after degreasing are 0.15% and 0.246, respectively.
%, 0.003%. Sintering is carried out in a hydrogen atmosphere for 12
The temperature was maintained at 00°C for 1 hour. The carbon content, oxygen content and nitrogen content after sintering are 0.031%, respectively.
They were 0.010% and 0.006%.

この焼結体を他の部品にスポット溶接して溶接部の調査
を行なった。ナゲツト径は0.73mmで剪断強度は7
1.6kgであり、普通溶製材のスポット溶接品の強度
74.8kgと比較して、あまり変わらない良好な値を
示した。
This sintered body was spot welded to other parts and the welded area was investigated. The nugget diameter is 0.73mm and the shear strength is 7
The strength was 1.6 kg, which was a good value that was not much different from the strength of a spot welded product made of ordinary ingot material, which was 74.8 kg.

実施例4(第1表のNo、4) 水アトマイズ法により、Ni 78.3%、Mo4.6
%、Si0.07%、Mn0.19%、S O,008
%、Cr 0.059%、Cu O,013%、炭素量
0.006重量%、酸素含有量0.38%、窒素含有量
0.0016%、残部不可避不純物とFeからなるパー
マロイ粉末を得た。製造された粉末の平均粒径は6.9
μmであった。この粉末にグラファイトの粉末0.10
%(酸素量0.38%に対し0.26倍)を添加し混合
した。この粉末にバインダを加え、混線後射出成形を行
なった。
Example 4 (No. 4 in Table 1) Ni 78.3%, Mo 4.6 by water atomization method
%, Si0.07%, Mn0.19%, SO,008
%, Cr 0.059%, Cu O, 013%, carbon content 0.006% by weight, oxygen content 0.38%, nitrogen content 0.0016%, and the balance was obtained with inevitable impurities and Fe. . The average particle size of the produced powder is 6.9
It was μm. This powder contains graphite powder 0.10
% (0.26 times the oxygen amount of 0.38%) and mixed. A binder was added to this powder, and injection molding was performed after mixing.

次に昇温速度15℃/時間で昇温し、600℃で3時間
保持して脱脂を行なった。脱脂後の炭素量は0.12%
、酸素含有量は0.166%、窒素含有量は0.002
%であった。焼結は水素雰囲気中で1200℃で1時間
保持して行なった。焼結後の炭素量、酸素含有量および
窒素含有量はそれぞれ0.048%、0.0186%、
0.002%であった。
Next, the temperature was raised at a temperature increase rate of 15° C./hour and held at 600° C. for 3 hours to perform degreasing. Carbon content after degreasing is 0.12%
, oxygen content is 0.166%, nitrogen content is 0.002
%Met. Sintering was carried out in a hydrogen atmosphere at 1200° C. for 1 hour. The carbon content, oxygen content and nitrogen content after sintering are 0.048%, 0.0186%, respectively.
It was 0.002%.

この焼結体を、他の部品にスポット溶接して、溶接部の
調査を行なった。ナゲツト径は0.68mmで、剪断強
度は72.4kgであり、普通溶製材のスポット溶製品
の強度75.21g(と比べても大きな差はない値を示
した。
This sintered body was spot welded to other parts, and the welded area was investigated. The nugget diameter was 0.68 mm, and the shear strength was 72.4 kg, which was not much different from the strength of the spot melted product of ordinary melted wood, which was 75.21 g.

実施例7(第1表のNo、7) 比較例として実施例1で使用したのと同じ水アトマイズ
法で製造された粉末にバインダのみを加え、混線後射出
成形した。
Example 7 (No. 7 in Table 1) As a comparative example, only a binder was added to the powder produced by the same water atomization method as used in Example 1, and injection molding was performed after cross-wiring.

これを実施例1と同じ条件で脱脂した。脱脂後の炭素量
、酸素含有量および窒素含有量はそれぞれ、0.008
%、0.201%、0.003%であった。焼結も実施
例1と同じ条件で行なった。焼結後の炭素量、酸素含有
量、窒素含有量はそれぞれ0.037%、0.123%
、0.003%であり、酸素含有量が非常に多かった。
This was degreased under the same conditions as in Example 1. The carbon content, oxygen content and nitrogen content after degreasing are each 0.008
%, 0.201%, and 0.003%. Sintering was also performed under the same conditions as in Example 1. Carbon content, oxygen content, and nitrogen content after sintering are 0.037% and 0.123%, respectively.
, 0.003%, indicating a very high oxygen content.

この焼結体を他の部品にスポット溶接した。This sintered body was spot welded to other parts.

ナゲツト径は0.75mm、剪断強度は50.8kgで
、実施例1の70%程度であった。ナゲツト部を走査型
電子顕微鏡で観察すると、ブローホールが観察された。
The nugget diameter was 0.75 mm, and the shear strength was 50.8 kg, which was about 70% of that in Example 1. When the nugget portion was observed using a scanning electron microscope, blowholes were observed.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば溶接性に優れたFe
−Go系パーメンダ合金およびFe−Ni系パーマロイ
合金の焼結体を得ることができ、従来は溶接性が不足で
適用範囲や使用条件が限られていた軟質磁性合金焼結体
の適用範囲を拡大することができ、その工業上の効果は
大きい。
As described above, according to the present invention, Fe has excellent weldability.
- It is possible to obtain sintered bodies of Go-based permender alloys and Fe-Ni-based permalloy alloys, expanding the scope of application of soft magnetic alloy sintered bodies, which previously had limited applicability and usage conditions due to lack of weldability. The industrial effect is great.

Claims (3)

【特許請求の範囲】[Claims] (1)重量%で炭素0.05%以下、酸素と窒素の総和
が0.05%以下であるパーメンダ合金からなり、優れ
た溶接性を有することを特徴とする軟質磁性合金焼結体
(1) A soft magnetic alloy sintered body made of a Permenda alloy containing 0.05% or less of carbon and 0.05% or less of oxygen and nitrogen in total by weight, and characterized by having excellent weldability.
(2)重量%で炭素0.05%以下、酸素と窒素の総和
が0.05%以下であるパーマロイ合金からなり、優れ
た溶接性を有することを特徴とする軟質磁性合金焼結体
(2) A soft magnetic alloy sintered body made of a permalloy alloy containing 0.05% or less of carbon and 0.05% or less of oxygen and nitrogen in total by weight, and having excellent weldability.
(3)水アトマイズ法により軟質磁性合金の粉末を製造
し、該粉末の酸素量(重量%)の0.15〜0.40倍
の炭素粉末を添加し、所望の形状に成形した後、還元性
または中性雰囲気中で400〜650℃の温度で0.5
時間以上3時間以下保持して脱脂した後、還元性雰囲気
または真空中で焼結し優れた溶接性を有することを特徴
とする軟質磁性合金焼結体の製造方法。
(3) Produce soft magnetic alloy powder by water atomization method, add carbon powder in an amount of 0.15 to 0.40 times the oxygen amount (wt%) of the powder, shape it into a desired shape, and then reduce 0.5 at a temperature of 400-650℃ in a neutral or neutral atmosphere
A method for producing a soft magnetic alloy sintered body, which is characterized in that it has excellent weldability by holding the body for at least 3 hours to degrease it, and then sintering it in a reducing atmosphere or in a vacuum.
JP27707290A 1990-10-16 1990-10-16 Soft magnetic alloy sintered body and its manufacture Pending JPH04154941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27707290A JPH04154941A (en) 1990-10-16 1990-10-16 Soft magnetic alloy sintered body and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27707290A JPH04154941A (en) 1990-10-16 1990-10-16 Soft magnetic alloy sintered body and its manufacture

Publications (1)

Publication Number Publication Date
JPH04154941A true JPH04154941A (en) 1992-05-27

Family

ID=17578392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27707290A Pending JPH04154941A (en) 1990-10-16 1990-10-16 Soft magnetic alloy sintered body and its manufacture

Country Status (1)

Country Link
JP (1) JPH04154941A (en)

Similar Documents

Publication Publication Date Title
US3864809A (en) Process of producing by powder metallurgy techniques a ferritic hot forging of low flow stress
JP3856294B2 (en) Stainless steel powder for sintering, granulated powder for manufacturing sintered stainless steel, and sintered stainless steel
JP3853362B2 (en) Manganese-containing material with high tensile strength
JPH10140206A (en) Low alloy steel powder for sintering and hardening
US4049429A (en) Ferritic alloys of low flow stress for P/M forgings
US11248284B2 (en) Non-magnetic austenitic steel with good corrosion resistance and high hardness
JPH10504353A (en) Iron-based powder containing chromium, molybdenum and manganese
US4263046A (en) Sinterable mass for producing workpieces of alloy steel
JPS6075501A (en) Alloy steel powder for high strength sintered parts
CN115287540A (en) Powder metallurgy duplex stainless steel suitable for welding and preparation method and welding part thereof
JPH04154941A (en) Soft magnetic alloy sintered body and its manufacture
JPS6146521B2 (en)
EP1323840B1 (en) Iron base mixed powder for high strength sintered parts
JPS591763B2 (en) stainless steel powder
CN115287520B (en) Powder metallurgy austenitic-ferritic duplex stainless steel, preparation method thereof and welding piece
JPH0751721B2 (en) Low alloy iron powder for sintering
JP2922248B2 (en) Manufacturing method of sintered alloy with excellent corrosion resistance
JPH06172810A (en) Production of tungsten alloy sintered compact
JPS5823462B2 (en) Fe-Cr-Co spinodal decomposition type sintered magnetic material with high density
JPH04337001A (en) Low-alloy steel powder for powder metallurgy and its sintered molding and tempered molding
JP2735132B2 (en) Manufacturing method of high density Elinvar type Fe-based sintered alloy
JPS6152302A (en) Alloy steel powder for powder metallurgy
JPS58213859A (en) Corrosion-resistant sintered material
JPS6164849A (en) High strength iron sintered alloy
JPH0213001B2 (en)