JPH0466652A - Alloy steel for injection molding powder metallurgy excellent in hardenability - Google Patents

Alloy steel for injection molding powder metallurgy excellent in hardenability

Info

Publication number
JPH0466652A
JPH0466652A JP17723090A JP17723090A JPH0466652A JP H0466652 A JPH0466652 A JP H0466652A JP 17723090 A JP17723090 A JP 17723090A JP 17723090 A JP17723090 A JP 17723090A JP H0466652 A JPH0466652 A JP H0466652A
Authority
JP
Japan
Prior art keywords
hardenability
injection molding
molding powder
alloy
powder metallurgy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17723090A
Other languages
Japanese (ja)
Inventor
Yoshio Kijima
木嶋 良雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP17723090A priority Critical patent/JPH0466652A/en
Priority to DE69024582T priority patent/DE69024582T2/en
Priority to EP90310942A priority patent/EP0421811B1/en
Priority to US07/716,742 priority patent/US5141554A/en
Publication of JPH0466652A publication Critical patent/JPH0466652A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To offer an alloy steel improved in hardenability by specifying the content of Mn and C in a ferrous alloy for injection molding powder metallurgy. CONSTITUTION:The compsn. of an alloy steel for injection molding powder metallurgy is formed of, by weight, 0.5 to 3% Mn, 0.3 to 1%C and the balance Fe. Mn improves its hardenability, and C is an element essential for finely maintaining the hardenability. The metallic powder having the above compsn. is used as the raw material for an injection molding powder metallurgical method. This alloy is excellent in the degree of sintering, and the post workability of the sintered body is equal to that of an Fe-Ni-C alloy. Furthermore, by the heat treatment of hardening and tempering, the hardness of the surface exceeds 700 Hv, so that its wear resistance is made excellent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、焼入性に優れた射出成形粉末冶金用合金鋼の
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in alloy steel for injection molding powder metallurgy, which has excellent hardenability.

〔従来の技術〕[Conventional technology]

三次元的に複雑な形状を有する製品を製造するため、純
Fe、 Fe−Ni系合金、Fe−N1−C系合金。
In order to manufacture products with three-dimensionally complex shapes, we use pure Fe, Fe-Ni alloys, and Fe-N1-C alloys.

ステンレス鋼、析出硬化型ステンレス鋼、高速度鋼、超
硬合金等の金属粉末とバインダーを混練して得た混練物
を射出成形し、その後脱バインダーして焼結する射出成
形粉末冶金法が知られている。
The injection molding powder metallurgy method is known in which the kneaded material obtained by kneading a binder with metal powder such as stainless steel, precipitation hardening stainless steel, high speed steel, and cemented carbide is injection molded, and then the binder is removed and sintered. It is being

そしてこれらの合金は通常、焼結後、更に、サイジング
加工を始めとしてフライス加工、穴あけ加工、タップ加
工、バレル研磨など種々な後加工および焼入れ焼戻し処
理、軟化焼鈍、磁気焼鈍、時効処理、HIP処理などの
熱処理を経て製品となるが、これらの製品には焼結上り
状態で後加工性が良好でしかも焼入れ焼戻し処理により
表面硬化し、耐摩耗性が良好であるという要求が広い分
野でなされてきている。
After sintering, these alloys are usually subjected to various post-processing processes such as sizing, milling, drilling, tapping, and barrel polishing, as well as quenching and tempering treatments, softening annealing, magnetic annealing, aging treatment, and HIP treatment. These products are made into products after undergoing heat treatments such as sintering, but there are demands in a wide range of fields for these products to have good post-processability in the sintered state, and also to be surface hardened by quenching and tempering, and to have good wear resistance. ing.

このような特性を前記合金の中で最も満たす材質として
、FeN1−C合金が従来より使われてきた。
FeN1-C alloy has conventionally been used as the material that best satisfies these characteristics among the alloys.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかるに、Fe−N1−C合金は、焼結上り状態で後加
工性は良いものの焼入性が十分でなく、油焼入および焼
戻しの熱処理をした後の硬度がビッカース硬度(Hv)
で700を超えることは無く、耐摩耗性に今−歩優れな
かった。かかる理由から本発明の目的は、焼結上り状態
にて後加工性がFe −Ni−C合金と同等程度で、し
かも熱処理により表面硬度がHv700を超える特性を
有する焼入性に優れた射出成形粉末冶金用合金鋼を提供
することにある。
However, although the Fe-N1-C alloy has good post-workability in the sintered state, its hardenability is insufficient, and the hardness after oil quenching and tempering heat treatment is Vickers hardness (Hv).
It never exceeded 700, and the wear resistance was not excellent. For these reasons, the object of the present invention is to provide injection molding with excellent hardenability, which has post-processability in the sintered state equivalent to that of Fe-Ni-C alloys, and has a surface hardness exceeding Hv700 after heat treatment. The purpose of the present invention is to provide alloy steel for powder metallurgy.

〔課題を解決するための手段] 本発明は、上記目的を達成するものとして、0.5〜3
重量%のMn、0.3〜1重量%のCを含有し残部Fe
よりなる焼入性に優れた射出成形粉末冶金用合金鋼であ
る。
[Means for Solving the Problems] The present invention achieves the above object by providing a
Contains weight% Mn, 0.3-1 weight% C, balance Fe
This is an alloy steel for injection molding powder metallurgy with excellent hardenability.

〔作用〕[Effect]

本発明において、Mnは焼入性を改善する元素であり、
またCは焼入性を良好に保つための必須の元素である。
In the present invention, Mn is an element that improves hardenability,
Further, C is an essential element for maintaining good hardenability.

Mnの含有量が0.5重量%未満および、またはCの含
有量が0.3重量%未満では焼入性が十分でなく、一方
Mnの含有量が3重量%を超えおよび、またはCの含有
量が1重量%を超えると焼結上りにて硬すぎて後加工性
が低下する。したがってMnの含有量を0.5〜3重量
%、Cの含有量を0.3〜1重量%とした。
If the Mn content is less than 0.5% by weight and/or the C content is less than 0.3% by weight, the hardenability is insufficient, whereas if the Mn content is more than 3% by weight and/or the C content is less than 0.3% by weight, the hardenability is insufficient. If the content exceeds 1% by weight, it will be too hard after sintering, resulting in poor post-workability. Therefore, the Mn content was set to 0.5 to 3% by weight, and the C content was set to 0.3 to 1% by weight.

以上のような組成を有する金属粉末を用意しこれを射出
成形粉末冶金法の原料粉末として使用すればよい。
A metal powder having the above composition may be prepared and used as a raw material powder for injection molding powder metallurgy.

〔実施例〕〔Example〕

粉砕法で作られたFe−77重量%Mn母合金微粉末(
平均粒径8μm)とカーボンを0.05重量%および0
.9重量%含有するカーボニルFe粉末(平均粒径5μ
m)と天然黒鉛粉末(平均粒径22μm)を第1表に示
す組成に配合し、有機バインダーを加えて各々10kg
混練した。この混練物を金型に射出成形して、幅10m
m、厚み10m1、長さ55m+のテストピースを得た
(試験Nα1〜7)。
Fe-77% by weight Mn master alloy fine powder made by pulverization method (
average particle size 8 μm) and 0.05 wt% carbon and 0
.. Carbonyl Fe powder containing 9% by weight (average particle size 5μ)
m) and natural graphite powder (average particle size 22 μm) were blended into the composition shown in Table 1, an organic binder was added, and 10 kg of each was prepared.
Kneaded. This kneaded material was injection molded into a mold with a width of 10 m.
A test piece with a thickness of 10 m and a length of 55 m+ was obtained (tests Nα1 to Nα7).

これらの成形体を窒素雰囲気中で300°C迄加熱して
脱バインダーし、その後、半連続式真空焼結炉にて真空
度5 X 10−” Torr 、焼結温度1250℃
で健全な焼結体を得た。これらの焼結体は各組成により
若干具なるが92%から95%の相対密度比を示してい
た。
These molded bodies were heated to 300°C in a nitrogen atmosphere to remove the binder, and then heated in a semi-continuous vacuum sintering furnace at a vacuum degree of 5 x 10-” Torr and a sintering temperature of 1250°C.
A healthy sintered body was obtained. These sintered bodies exhibited a relative density ratio of 92% to 95%, although this differed slightly depending on each composition.

次にこれらの焼結体のビッカース硬度を荷重10kgで
測定した後、油焼入れおよび焼戻し処理を施した。焼入
条件は830°Cで30分間保持後油焼入れ、焼戻し条
件は170 ”Cで60分間保持後、空冷とした。最後
にこれらの熱処理体のビッカース硬度を荷重10kgに
て測定した。
Next, the Vickers hardness of these sintered bodies was measured under a load of 10 kg, and then oil quenching and tempering treatments were performed. The quenching conditions were 830°C for 30 minutes followed by oil quenching, and the tempering conditions were 170''C for 60 minutes followed by air cooling.Finally, the Vickers hardness of these heat-treated bodies was measured under a load of 10kg.

更に、カーボンを0.05重量%および0.9重量%含
有するカーボニルFe粉末(平均粒径5μm)とカーボ
ニルNi粉末(平均粒径7μm)を第1表に示す組成に
配合した以外は前記と同様にして焼結体を得、ビッカー
ス硬度を測定した(試験Nα8)。
Furthermore, carbonyl Fe powder (average particle size 5 μm) containing 0.05% by weight and 0.9% by weight of carbon and carbonyl Ni powder (average particle size 7 μm) were blended into the composition shown in Table 1. A sintered body was obtained in the same manner, and its Vickers hardness was measured (test Nα8).

なお、この焼結体の相対密度比は95%であった。Note that the relative density ratio of this sintered body was 95%.

以上の焼結体および熱処理体の硬度測定結果を第1表に
示す−0 第 ■ 表 この表から明らかなように本発明の合金は焼結体硬度が
Hvで270以下と低く、後加工性が従来合金と同等程
度で、しかも熱処理硬度がHvで700以上と高く焼入
性に優れていることがわかる。
The hardness measurement results of the above-mentioned sintered bodies and heat-treated bodies are shown in Table 1. It can be seen that the hardness is comparable to that of conventional alloys, and the heat treatment hardness is as high as 700 or more in Hv, indicating excellent hardenability.

〔発明の効果〕〔Effect of the invention〕

本発明により、焼結体で後加工性がFe−N1−C合金
と同等程度で、しかも焼入れおよび焼戻しの熱処理によ
り表面硬度がHv700を超え耐摩耗性に優れた射出成
形粉末冶金製品を提供することができる。
The present invention provides an injection molded powder metallurgy product which is a sintered body and has post-processability comparable to that of Fe-N1-C alloy, and which has a surface hardness exceeding Hv700 after heat treatment of quenching and tempering and has excellent wear resistance. be able to.

特許出願人  住友金属鉱山株式会社Patent applicant: Sumitomo Metal Mining Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)0.5〜3重量%のMn、0.3〜1重量%のC
を含有し残部Feよりなる焼入性に優れた射出成形粉末
冶金用合金鋼。
(1) 0.5-3% by weight of Mn, 0.3-1% by weight of C
An alloy steel for injection molding powder metallurgy that has excellent hardenability and contains Fe with the remainder being Fe.
JP17723090A 1989-10-06 1990-07-06 Alloy steel for injection molding powder metallurgy excellent in hardenability Pending JPH0466652A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP17723090A JPH0466652A (en) 1990-07-06 1990-07-06 Alloy steel for injection molding powder metallurgy excellent in hardenability
DE69024582T DE69024582T2 (en) 1989-10-06 1990-10-05 Steel alloy for use in injection-molded powder-metallurgically produced sintered bodies
EP90310942A EP0421811B1 (en) 1989-10-06 1990-10-05 Alloy steel for use in injection molded sinterings produced by powder metallurgy
US07/716,742 US5141554A (en) 1989-10-06 1991-06-14 Injection-molded sintered alloy steel product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17723090A JPH0466652A (en) 1990-07-06 1990-07-06 Alloy steel for injection molding powder metallurgy excellent in hardenability

Publications (1)

Publication Number Publication Date
JPH0466652A true JPH0466652A (en) 1992-03-03

Family

ID=16027430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17723090A Pending JPH0466652A (en) 1989-10-06 1990-07-06 Alloy steel for injection molding powder metallurgy excellent in hardenability

Country Status (1)

Country Link
JP (1) JPH0466652A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107470A (en) * 1981-12-19 1983-06-27 Kawasaki Steel Corp Preparation of sintered parts
JPS63227751A (en) * 1987-03-17 1988-09-22 Mitsubishi Metal Corp Fe sintered alloy synchronizing ring for transmission
JPS6462402A (en) * 1987-08-31 1989-03-08 Sumitomo Electric Industries Production of spiral precision sintered part by injection molding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107470A (en) * 1981-12-19 1983-06-27 Kawasaki Steel Corp Preparation of sintered parts
JPS63227751A (en) * 1987-03-17 1988-09-22 Mitsubishi Metal Corp Fe sintered alloy synchronizing ring for transmission
JPS6462402A (en) * 1987-08-31 1989-03-08 Sumitomo Electric Industries Production of spiral precision sintered part by injection molding method

Similar Documents

Publication Publication Date Title
EP0271238B1 (en) Wear and corrosion resistant alloy articles
US5141554A (en) Injection-molded sintered alloy steel product
JPH07242903A (en) Stainless steel powder for sintering
JPH10504353A (en) Iron-based powder containing chromium, molybdenum and manganese
JPH0466652A (en) Alloy steel for injection molding powder metallurgy excellent in hardenability
JP7039692B2 (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body
JPS6318001A (en) Alloy steel powder for powder metallurgy
JPH03122258A (en) Alloy steel for injection molding powder metallurgy excellent in hardenability
US3715792A (en) Powder metallurgy sintered corrosion and wear resistant high chromium refractory carbide alloy
JPH09157805A (en) High strength iron base sintered alloy
CA1076397A (en) Wear-resistant shaped magnetic article and process for making the same
JP2704064B2 (en) Iron-based powder for sintering and method for producing the same
JPH10512625A (en) Spheroidizing method for high density sintered alloy and pre-alloyed powder
JPH0472004A (en) Manufacture of porous metallic mold
JPS62501860A (en) Manufacturing method for iron alloy molded products
JPH02153046A (en) High strength sintered alloy steel
EP0024217A1 (en) Process for producing a compacted powder metal part
JP2908018B2 (en) Method for producing high hardness sintered member and metal powder mixture
JPH07103442B2 (en) Manufacturing method of high strength sintered alloy steel
JP3303026B2 (en) High strength iron-based sintered alloy and method for producing the same
JP2579171B2 (en) Manufacturing method of sintered material
KR840001096B1 (en) A hot forging powder material
EP0334968A1 (en) Composite alloy steel powder and sintered alloy steel
JPH04337001A (en) Low-alloy steel powder for powder metallurgy and its sintered molding and tempered molding
US3519502A (en) Method of manufacturing sintered metallic magnets