JPS6332744B2 - - Google Patents

Info

Publication number
JPS6332744B2
JPS6332744B2 JP56017217A JP1721781A JPS6332744B2 JP S6332744 B2 JPS6332744 B2 JP S6332744B2 JP 56017217 A JP56017217 A JP 56017217A JP 1721781 A JP1721781 A JP 1721781A JP S6332744 B2 JPS6332744 B2 JP S6332744B2
Authority
JP
Japan
Prior art keywords
porcelain
dielectric constant
temperature
temperature characteristics
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56017217A
Other languages
Japanese (ja)
Other versions
JPS57129870A (en
Inventor
Shoichiro Nomura
Masami Kawabuchi
Akira Fukumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56017217A priority Critical patent/JPS57129870A/en
Publication of JPS57129870A publication Critical patent/JPS57129870A/en
Publication of JPS6332744B2 publication Critical patent/JPS6332744B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高い誘電率をもち、しかもその温度
特性が優れた磁器の製造方法に関するもので、磁
気コンデンサなどに適した磁器を提供するもので
ある。 現在一般に用いられている磁器コンデンサ用材
料としてはチタン酸バリユーム系磁器がある。こ
の材料は、数千〜数万の高い比誘電率を持つてい
るが、温度変化による誘電率変化が大きい事、即
ち温度特性が悪い事、磁器化するための温度範囲
が狭いなどの欠点があり、実際には適当な添加物
を加えて、電気的,窯業的特性を改善し、コンデ
ンサ材料として使用している。 一般に、温度特性と誘電率は相反する性質をも
ち、例えば、比誘電率が5000程度のチタン酸バリ
ユーム系磁器を用いているコンデンサでは、その
温度特性は、第1図に示す如く、−25℃〜80℃で
は約30%容量が変化する。(なお容量変化の大部
分は誘電率変化である)。この温度特性を改良す
るためには、相反効果から誘電率の小さい磁器材
料、例えば酸化チタン磁器等が用いられる。この
場合の温度特性は数%程度であるが、基本的に誘
電率が数10〜100程度と小さく、容量の小さなも
のしか作れない。 本発明は、前述したチタン酸バリユーム系磁器
および酸化チタン系磁器のそれぞれの特長であ
る、高誘電率で温度特性良好な磁器の製造方法を
提供するものである。 本発明の製造方法は、 (1―W){Pb(Mg1/3Nb2/3)O3}+W{Pb(Zr1/2
Ti1/2)O3}で表わされる組成物(ただし、0.05
W0.3)を、温度900〜1200℃、圧力100〜500
Kg/cm2で加熱加圧焼結するものであり、以下、本
発明の実施例に基づいて図面と共に説明する。 磁器材料の組成は、 (1―W){Pb(Mg1/3Nb2/3)O3}+W{Pb(Zr1/2
Ti1/2)O3}(以下(1―W)(PMN)+W(PZT)
と略す)であり、Wは、0.05W0.3の範囲の
ものである。次に製造方法の条件の一実施例を、
W=0.1とW=0.2の場合について述べる。 原料にはPMNの粉末およびPbO,ZrO2
TiO2を用い、アルコールを加えてボールミルす
る。仮焼は、900℃〜1100℃で、1ないし2回行
つた。ボールミル後ホツトプレス焼成を行う。こ
の場合の焼成条件が、本発明の重要なポイント
で、焼成条件によつて誘電率の温度特性が変化す
る。 第2図はW=0.1,即ち0.9PMN+0.1PZTの組
成の磁器と、W=0.2、即ち0.8PMN+0.2PZTの
組成の磁器の焼成条件による誘電率変化の模様を
示したもので、図中実線は、それぞれ、下記の条
件で焼成したものの温度特性を示す。 0.9PMN+0.1PZT;最高温度1130℃,30分
1100℃以上110分保持 圧力200Kg/cm2 0.8PMN+0.2PZT;最高温度1130℃,40分
圧力100Kg/cm2 また、これら2種類の材料を1250℃でそれぞれ
焼成すると、図中破線で示した温度特性を示し、
誘電率は約14000〜15000となる。 第2図より、温度特性の良さは、粒子間の固相
反応の不完全さに由来するものであることが言え
る。即ち、これら2種類の材料は、一種の複合材
料である。ただ、反応は不十分と言え、ホツトプ
レス法を用いているため密度は高く、W=0.1の
場合にはX線密度の93.2%、W=0.2の場合には
97%に達しており、十分緻密な磁器と言うことが
できる。 焼成条件が、誘電率の温度特性に及ぼす影響を
W=0.1の場合を例に詳しく示したのが第3図で
ある。 図中の曲線1〜4の特性は、下記の条件で焼成
したものである。 曲線1 最高温度1120℃,30分 1100℃以上60分保持 圧力 200Kg/cm2 曲線2 最高温度1130℃,30分 1100℃以上120分保持 圧力 200Kg/cm2 曲線3 最高温度1150℃,60分 圧力 100Kg/cm2 曲線4 1250℃で焼成。 第3図および曲線1〜4の条件で明らかなよう
に、焼成条件によつて、誘電率の大きさ、温度特
性が変化し、これらの条件を制御する事により、
所定の誘電率,温度特性(変化率および室温付近
における変化の極性)を得る事ができる。また、
第2図より、誘電率の絶対値およびその温度変化
量は、第1表に示す如く、温度変化量は、従来の
チタン酸バリユーム系磁器の約1/10、誘電率で
は、酸化チタン系磁器の10〜100倍の値を示し、
高誘電率で、しかも温度特性の良い磁器材料であ
ると言える。
The present invention relates to a method for manufacturing porcelain having a high dielectric constant and excellent temperature characteristics, and provides porcelain suitable for magnetic capacitors and the like. Barium titanate ceramics are currently commonly used materials for ceramic capacitors. This material has a high dielectric constant of several thousand to tens of thousands, but it has drawbacks such as large changes in dielectric constant due to temperature changes, that is, poor temperature characteristics, and a narrow temperature range for making it into porcelain. In fact, it is used as a capacitor material by adding appropriate additives to improve its electrical and ceramic properties. In general, temperature characteristics and dielectric constant have contradictory properties. For example, in a capacitor using barium titanate porcelain with a dielectric constant of about 5000, the temperature characteristic is -25℃ as shown in Figure 1. At ~80°C, the capacity changes by approximately 30%. (Note that most of the capacitance change is a dielectric constant change). In order to improve this temperature characteristic, a porcelain material with a small dielectric constant, such as titanium oxide porcelain, is used due to the reciprocal effect. In this case, the temperature characteristics are on the order of a few percent, but the dielectric constant is basically a small number of tens to 100, and only small capacitances can be made. The present invention provides a method for producing porcelain having a high dielectric constant and good temperature characteristics, which are the characteristics of the barium titanate porcelain and titanium oxide porcelain described above. The manufacturing method of the present invention is as follows: (1-W) { Pb (Mg 1/3 Nb 2/3 ) O 3 }+W
Ti 1/2 ) O 3 } (however, 0.05
W0.3), temperature 900~1200℃, pressure 100~500
It is sintered under heat and pressure at Kg/cm 2 , and will be described below with reference to the drawings based on embodiments of the present invention. The composition of the porcelain material is (1-W) {Pb (Mg 1/3 Nb 2/3 ) O 3 } + W {Pb (Zr 1/2
Ti 1/2 ) O 3 } (hereinafter (1-W) (PMN) + W (PZT)
), and W is in the range of 0.05W0.3. Next, an example of the conditions of the manufacturing method is as follows.
The cases of W=0.1 and W=0.2 will be described. Raw materials include PMN powder, PbO, ZrO 2 ,
Ball mill with TiO 2 and add alcohol. Calcination was performed once or twice at 900°C to 1100°C. After ball milling, hot press firing is performed. The firing conditions in this case are an important point in the present invention, and the temperature characteristics of the dielectric constant change depending on the firing conditions. Figure 2 shows the pattern of permittivity changes depending on firing conditions for porcelain with a composition of W = 0.1, or 0.9PMN + 0.1PZT, and porcelain with a composition of W = 0.2, or 0.8PMN + 0.2PZT. respectively show the temperature characteristics of those fired under the following conditions. 0.9PMN+0.1PZT; Maximum temperature 1130℃, 30 minutes
Hold over 1100℃ for 110 minutes Pressure 200Kg/cm 2 0.8PMN+0.2PZT; Maximum temperature 1130℃, 40 minutes
Pressure: 100Kg/cm 2 Also, when these two types of materials are fired at 1250℃, they exhibit the temperature characteristics shown by the broken line in the figure.
The dielectric constant is approximately 14,000 to 15,000. From FIG. 2, it can be said that the good temperature characteristics are due to the incompleteness of the solid phase reaction between particles. That is, these two types of materials are a type of composite material. However, the reaction can be said to be insufficient, and the density is high because the hot press method is used, and when W = 0.1, the X-ray density is 93.2%, and when W = 0.2, the density is high.
It reaches 97% and can be said to be a sufficiently dense porcelain. FIG. 3 shows in detail the influence of the firing conditions on the temperature characteristics of the dielectric constant, taking the case of W=0.1 as an example. The characteristics of curves 1 to 4 in the figure are those obtained by firing under the following conditions. Curve 1 Maximum temperature 1120℃, 30 minutes 1100℃ or more, 60 minutes holding pressure 200Kg/cm 2 Curve 2 Maximum temperature 1130℃, 30 minutes 1100℃ or more 120 minutes Holding pressure 200Kg/cm 2 Curve 3 Maximum temperature 1150℃, 60 minutes pressure 100Kg/ cm2 Curve 4 Fired at 1250℃. As is clear from Figure 3 and the conditions of curves 1 to 4, the dielectric constant and temperature characteristics change depending on the firing conditions, and by controlling these conditions,
A predetermined dielectric constant and temperature characteristics (rate of change and polarity of change near room temperature) can be obtained. Also,
From Figure 2, the absolute value of the dielectric constant and the amount of temperature change thereof are as shown in Table 1. It shows a value 10 to 100 times that of
It can be said that it is a porcelain material with a high dielectric constant and good temperature characteristics.

【表】 なお、誘電正接tanδは、−20℃で7〜8%、0
℃で約4%、室温で1〜2%と、従来の磁器と比
べても遜色ないものである。 以上説明したように本発明の磁器の製造方法に
おいては、 (1―W){Pb(Mg1/3Nb2/3)O3}+W{Pb(Zr1/2
Ti1/2)O3}(ただし、0.05W0.3)で表わされ
る組成物を、温度900〜1200℃、圧力100〜500
Kg/cm2で加熱加圧焼結するので、高い誘電率をも
ち、しかもその温度特性が優れた磁器を製造する
ことができ、磁器コンデンサの材料に好適なもの
が得られる。
[Table] Note that the dielectric loss tangent tan δ is 7 to 8% at -20℃, 0
It is about 4% at °C and 1 to 2% at room temperature, which is comparable to conventional porcelain. As explained above, in the method for manufacturing porcelain of the present invention, (1-W) {Pb (Mg 1/3 Nb 2/3 ) O 3 } + W {Pb (Zr 1/2
Ti 1/2 ) O 3 } (0.05W0.3) at a temperature of 900 to 1200°C and a pressure of 100 to 500°C.
Since sintering is carried out under heat and pressure at Kg/cm 2 , it is possible to produce porcelain that has a high dielectric constant and excellent temperature characteristics, making it suitable for use as a material for ceramic capacitors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のチタン酸バリユーム磁器の温度
特性を示す図、第2図は本発明製造方法の一実施
例により製造されたPMN―PZT系磁器の温度特
性を示す図、第3図は本発明製造方法における
PMN―PZT系磁器の温度特性の焼成条件依存性
を示す図である。
Fig. 1 is a diagram showing the temperature characteristics of conventional barium titanate porcelain, Fig. 2 is a diagram showing the temperature characteristics of PMN-PZT porcelain manufactured by an embodiment of the manufacturing method of the present invention, and Fig. 3 is a diagram showing the temperature characteristics of the conventional barium titanate porcelain. In the invention manufacturing method
FIG. 3 is a diagram showing the dependence of the temperature characteristics of PMN-PZT ceramic on firing conditions.

Claims (1)

【特許請求の範囲】[Claims] 1 (1―W){Pb(Mg1/3Nb2/3)O3}×W{Pb
(Zr1/2Ti1/2)O3},(ただし、0.05W0.3)で表
わされる組成物を、温度900〜1200℃,圧力100〜
500Kg/cm2で加熱加圧焼結することを特徴とする
磁器の製造方法。
1 (1-W) {Pb (Mg 1/3 Nb 2/3 ) O 3 }×W {Pb
(Zr 1/2 Ti 1/2 ) O 3 }, (0.05W0.3) was heated at a temperature of 900 to 1200°C and a pressure of 100 to
A method for manufacturing porcelain characterized by heating and pressure sintering at 500Kg/cm 2 .
JP56017217A 1981-02-06 1981-02-06 Manufacture of ceramics Granted JPS57129870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56017217A JPS57129870A (en) 1981-02-06 1981-02-06 Manufacture of ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56017217A JPS57129870A (en) 1981-02-06 1981-02-06 Manufacture of ceramics

Publications (2)

Publication Number Publication Date
JPS57129870A JPS57129870A (en) 1982-08-12
JPS6332744B2 true JPS6332744B2 (en) 1988-07-01

Family

ID=11937768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56017217A Granted JPS57129870A (en) 1981-02-06 1981-02-06 Manufacture of ceramics

Country Status (1)

Country Link
JP (1) JPS57129870A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264735A (en) * 1988-07-21 1989-10-23 Koyo Seiko Co Ltd Tool adaptor having built-in friction transmitting planetary speed increasing mechanism for grinding wheel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138360A (en) * 1985-12-10 1987-06-22 三菱鉱業セメント株式会社 Dielectric ceramic composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52139996A (en) * 1976-05-17 1977-11-22 Matsushita Electric Ind Co Ltd Production of piezoelectric ceramic material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52139996A (en) * 1976-05-17 1977-11-22 Matsushita Electric Ind Co Ltd Production of piezoelectric ceramic material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264735A (en) * 1988-07-21 1989-10-23 Koyo Seiko Co Ltd Tool adaptor having built-in friction transmitting planetary speed increasing mechanism for grinding wheel

Also Published As

Publication number Publication date
JPS57129870A (en) 1982-08-12

Similar Documents

Publication Publication Date Title
CA1056067A (en) Monolithic base-metal glass-ceramic capacitor
JPS6332744B2 (en)
JP2580374B2 (en) Method for producing composite perovskite type dielectric porcelain powder
JPS6053408B2 (en) Reduced semiconductor ceramic composition
JPS6121183B2 (en)
JPS61203506A (en) High dielectric ceramic composition
JPH02239152A (en) Dielectric ceramic composition and capacitor,having high dielectric constant and stability
CN108530068B (en) Barium-calcium co-doped substituted La2NiO4Giant dielectric ceramic and preparation method thereof
JP2621823B2 (en) Dielectric porcelain composition
JP2521859B2 (en) Dielectric ceramic composition and method for producing the same
JPH0283257A (en) Porcelain composition of high permittivity for temperature compensation and production thereof
JP3336194B2 (en) Dielectric porcelain
JPS5986101A (en) High dielectric constant porcelain composition
JPS61256974A (en) Pyroelectric ceramic and manufacture
JP2620102B2 (en) High dielectric constant porcelain composition
JPS5830002A (en) Dielectric porcelain composition
JPH02141472A (en) Dielectric porcelain composition
JPS6116133B2 (en)
JPH05279110A (en) Ceramic composition
JPH0397662A (en) Dielectric porcelain composition having high dielectric constant and production thereof
JPS59217321A (en) Reduced reoxidized semiconductor capacitor porcelain composition
JPH0616472A (en) Porcelain composition
JPS5849662A (en) High dielectric constant ceramic composition
JPS58209806A (en) High dielectric constant porcelain composition
JPS63170261A (en) Dielectric green tape