JPS6332342A - Apparatus for extracting and thickening organic matter in water - Google Patents

Apparatus for extracting and thickening organic matter in water

Info

Publication number
JPS6332342A
JPS6332342A JP17602086A JP17602086A JPS6332342A JP S6332342 A JPS6332342 A JP S6332342A JP 17602086 A JP17602086 A JP 17602086A JP 17602086 A JP17602086 A JP 17602086A JP S6332342 A JPS6332342 A JP S6332342A
Authority
JP
Japan
Prior art keywords
water
organic matter
valve
volatile
org
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17602086A
Other languages
Japanese (ja)
Other versions
JPH0547061B2 (en
Inventor
Kazuo Tateishi
立石 和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP17602086A priority Critical patent/JPS6332342A/en
Publication of JPS6332342A publication Critical patent/JPS6332342A/en
Publication of JPH0547061B2 publication Critical patent/JPH0547061B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To extract and thicken volatile and hardly volatile org. matters in water by providing a sample introducing device and volatile org. matter adsorption tube to the upper part of a purging bottle and providing a hardly volatile org. matter adsorption tube to the lower part thereof. CONSTITUTION:Valves except a valve 1 are closed and a vacuum pump 2 is run, then the valve 3 is opened to evacuate the inside of the system. The valve 9 is further opened to inject the sample water in a sample bottle 7 into a purging bottle 10. The inert gas introduced by opening the valve 11 is passed through a trap 12 for removing org. matter and after the gas is thereby cleaned, the gas is fed to a bubbler 16 in the purging bottle 10. The volatile org. matter in the water is bubbled and expelled by the inert gas and is passed through the volatile org. matter adsorption tube 18 and is adsorbed and trapped in the adsorbent in the tube. The sample water after the bubbling is passed through the hardly volatile org. matter adsorption tube 20 so that the hardly volatile org. matter is adsorbed and trapped in the adsorvent in the tube, by which both the volatile and hardly volatile org. matters are extracted and thickened.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は水中の微量な有機物を水中より抽出し、濃縮す
る装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an apparatus for extracting and concentrating trace amounts of organic matter in water.

(従来の技術) 水道水、河川水、湖沼水、および医薬用、電子工業用超
純水等に含有されている有機物は、人体への安全性、公
害問題、製品の良品率等の点て問題となっており、従来
より、その分析方法が種々考案されてきた。水中に陰有
される有機物は多くの場合、PPbあるいはρptとい
う極微少量の存在が上記の問題点を引き起こすため、あ
まりに微量過ぎて現在の機器分析法では、直接分析する
ことは不可能であり、機器分析法による分析に先立ち、
予め、有機物を水中から抽出濃縮する必要かある。抽出
濃縮の方法としては、揮発性有fi ’Mに対してはパ
ージ・トラ・ツブ法か難揮発性有機物に対しては樹脂吸
着法と溶媒抽出法がよく利用されている。パージ・トラ
・ツブ法は、チ・ソ素なとの不活性ガスにより試料水の
パフリングを行い、水中より揮発性有機物を追い出すと
共に該揮発性有機物を特殊な充填剤を充填したカラムに
不活性ガスと共に通して充填剤に吸着させ抽出濃縮する
方法である。樹脂吸着法は主にX八り樹脂を充填したカ
ラムに試料水を通水し、水中の難揮発性有機物を樹脂に
吸着させ、これ含有機溶媒によって溶出し、該有機溶媒
を蒸発させて濃縮する方法である。溶媒抽出法は水と水
への溶解度の低い少量の廟は溶媒とを接触させて水中有
機物を有機溶媒中に抽出し、有機溶媒を蒸発させて水中
の難揮発性有機物を1遇縮する方法である。
(Conventional technology) Organic substances contained in tap water, river water, lake water, and ultrapure water for medical and electronic industries are problematic in terms of safety for the human body, pollution problems, and quality of products. This has become a problem, and various analysis methods have been devised in the past. In many cases, the existence of very small amounts of organic matter such as PPb or ρpt in water causes the above problems, and the amount is too small to be directly analyzed using current instrumental analysis methods. Prior to analysis by instrumental analysis method,
Is it necessary to extract and concentrate organic matter from water in advance? As a method for extraction and concentration, the purge-travel method is often used for volatile fi'M, and the resin adsorption method and solvent extraction method are used for refractory organic substances. The purge-tra-tub method involves puffing the sample water with an inert gas such as nitrogen, expelling volatile organic matter from the water, and transferring the volatile organic matter to an inert column filled with a special packing material. This is a method of extracting and concentrating gas by passing it through the gas and adsorbing it onto a filler. The resin adsorption method mainly involves passing sample water through a column filled with X-ray resin, allowing the resin to adsorb the non-volatile organic substances in the water, eluting them with a solvent containing them, and concentrating the organic solvent by evaporating it. This is the way to do it. The solvent extraction method is a method in which a small amount of organic matter with low solubility in water is brought into contact with a solvent, the organic matter in the water is extracted into an organic solvent, and the organic solvent is evaporated to reduce the non-volatile organic matter in the water. It is.

(発明か解決しようとする問題点) ところで以上述べたb′C来の抽出濃縮法では揮発性有
機物か、または難揮発性有機物のどちらかを抽出a縮す
ることは可能であるが、これら両者を抽出濃縮すること
は不可能てあり、長時間をかけて別々に抽出濃縮する必
要かあった。また、樹脂吸着法では、水中の溶存空気か
試料水を樹脂を充填しだカラムに通水している間に樹脂
上に気泡となって析出し、水と樹脂との接触面積がしだ
いに小さくなるという問題点があった6 本発明の目的はこのような従来の欠点を解消し、水中の
揮発性有機物と難揮発性有機物の両者を抽出イ農縮する
ことが可能であり、かつ、難揮発性有N Jhnの水中
からの抽出に樹脂吸着を利用するがこの樹脂に水中の溶
存空気が気泡となって析出することのない水中有機物抽
出濃縮装置を提供することにある。
(Problem to be solved by the invention) By the way, in the above-mentioned extraction and concentration method based on b'C, it is possible to extract and condense either volatile organic substances or non-volatile organic substances. It was impossible to extract and concentrate the two components, and it was necessary to extract and concentrate them separately over a long period of time. In addition, in the resin adsorption method, dissolved air in water or sample water is filled with resin, and while the water is flowing through the column, air bubbles are deposited on the resin, and the contact area between the water and the resin gradually becomes smaller. 6 The purpose of the present invention is to eliminate such conventional drawbacks, to make it possible to extract and reduce both volatile organic matter and non-volatile organic matter in water, and to To provide an apparatus for extracting and concentrating organic matter in water, which utilizes resin adsorption to extract volatile NJhn from water, but does not cause dissolved air in the water to form bubbles and precipitate on the resin.

(問題点を解決するための手段) 本発明は不活性ガス導入ハルツ、パージビン、脱水管、
揮発性有機物吸着管を順にパイプにより接続配管し、不
活性ガス導入ハルツとパージビンとの間の配管に真空ポ
ンプを接続して設け、パージビン上部に試料水導入器を
接続して設け、更に、パージビンの下部に難揮発性有機
物吸着管を接続して設けたことを特徴とする水中有機物
抽出a線装置である。
(Means for solving the problem) The present invention provides an inert gas introduction Harz, a purge bin, a dehydration pipe,
Volatile organic matter adsorption tubes are connected with pipes in order, a vacuum pump is connected to the piping between the inert gas introduction Harz and the purge bin, a sample water inlet is connected to the top of the purge bin, and the purge bin is connected to the vacuum pump. This is an A-ray apparatus for extracting organic matter in water, which is characterized by having a refractory organic matter adsorption tube connected to the lower part of the vessel.

(1を用) 本発明の水中有機物抽出濃縮装置ては、先ずパージビン
中に真空を利用して試料水を注入し、水中の揮発性有機
↑勿を清浄な不活性カスによりハフリングして追い出し
、これと揮発性有機物吸着管に通気して管内の充填剤に
吸着トラ・lプさせる。
(Using 1) In the underwater organic matter extraction and concentration apparatus of the present invention, first, sample water is injected into a purge bottle using a vacuum, and volatile organic matter in the water is huffed and expelled using clean inert scum. This and the volatile organic matter adsorption tube are vented to trap the adsorption into the filler inside the tube.

次にパブリンク後の試料水を雅揮発性有機才勿吸着管に
通水して管内の充填剤に難揮発性有機物を吸着トラップ
させる。以上により水中の揮発性有機物と難揮発性有機
物の両者を抽出濃縮することかできる。また、不活性カ
スによるパブリンクにより溶存空気が除去された後に試
料水を難揮発性有機物吸着管に通水し、難揮発性有機物
を管内の充填剤に吸着トラップさせるため、充填剤上に
気泡が発生することがなく、試料水と充填剤との接触面
積は小さくなることはない。
Next, the sample water after pub linking is passed through the volatile organic matter adsorption tube, and the filler inside the tube adsorbs and traps the non-volatile organic substances. As described above, it is possible to extract and concentrate both volatile organic substances and refractory organic substances in water. In addition, after the dissolved air is removed by inert scum, the sample water is passed through the refractory organic matter adsorption tube, and in order to trap the refractory organic matter on the filler in the tube, air bubbles are formed on the filler. does not occur, and the contact area between the sample water and the filler does not become small.

(実施例) 以下に本発明の望ましい実施例を図面により説明する。(Example) Preferred embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示す水中有機物抽出a線装
置の構成図である。先ずバルブ1以外の全てのバルブを
閉じた状態で真空ポンプ2を作動させ、バルブ3を開い
て系内を真空に引く冷却トラップ4は、真空ポンプ2の
オイル蒸気による系内の汚染を防止するために設けであ
る。冷却トラップ4の冷媒には液体チッ素または液体酸
素を用いる。系内分充分に真空に引くと共に真空により
系内を清浄化した後、バルブ3を閉じる。以上の操作と
同時にバルブ1よりチッ素ガスを導入し、親有機物トラ
ップ5を介してフード付き試料水導入器6内を清浄なチ
ッ素ガスによりパージしておき、パージを継続しながら
試料水入りの試料ビ〉7をフード付き試料水導入器6内
の試料水導入パ、イブ8をさし込むようにしてフード付
き試料水導入器6内に挿入する。親有機物トラップ5は
ステンレス管中にモレキュラーシーブ13Xを充填した
ものを用い冷媒には液体酸素を用いる。次にバルブ9を
開いて内外の圧力差によりパージビン10へ試料ビン7
中の試料水を注入する。試料水の注入を終了した後バル
ブ9を閉じ、バルブL1を開いて少しずつチ・ソ素ガス
を系内に導入する。導入されたチッ素ガスは親有機物ト
ラ・ツブ12により清浄化され、系内に導入される。親
有機物トラップ12はステンレス管中にモレキュラーシ
ーブ13Xを充填したものと用い冷媒には液体酸素を用
いる。圧力計13の目盛りが1気圧を少し越えた時点で
バルブ11を一旦閉じ、バルブ14を開いてから、流量
計15の目盛りにより最適なチッ素カス流量となるよう
バルブ11の開閉麿牙調節してパージビン10へ清浄な
チッ素ガスを送り、パージビン10中のバブラー16に
より送られたチッ素ガスを微小な気泡とじて試料水をハ
フリングする。このバブリングにより試料水中より追い
出された揮発性有機物はチ・・l素カスに伴い過塩素酸
マグネシウムの充填された脱水管17中を通過する間に
脱水され、バルブ14を通過してテナ・ソクスGCの充
填された揮発性有機物吸着管1日内に吸着トラップされ
る。チッ素ガスはそのまま揮発性有機物吸着管18の出
口より放出される。バブリングは試料水から揮発性有a
 thが完全に除去されるまで継続し、バルブ14を閉
じることにより終了する。終了後、バルブ11は圧力計
13の目盛りが1.5気圧以上となるまで開いておき、
閉しる。これによりバージビンを3む系内は清浄なチ・
ソ素ガスにより 1.5気圧以上の加圧状態となってい
る。ここでバルブ19を少しずつ開いて50+口Q/’
rnin程度の流量でパージビン10中の試料水をXA
D樹脂の充填しである難揮発性有機物吸着管20に通し
、試料水中の難揮発性有機物を吸着トラップさせる。バ
ージビン10中の全試料水が流下した後パルプ19を閉
じて通水を終了する。以上により試料水中の揮発性有機
物を揮発性有機物吸着管18に難揮発性有機物を難揮発
性有機物吸着管20に全て吸着トラップさせることかで
きる。上記操作において、難揮発性有機物吸着管20内
に充填しであるXAD樹脂には、予め十分にバブリング
した試料水3通水するため、溶存空気が除去されている
ために気泡が発生することはなく、XADII脂と試料
水との接触面積が減少することはない。上記の吸着トラ
ップ操作終了後、揮発性有機物は揮発性有機物吸着管1
日を不活性カスを通しなから加熱することにより脱着し
て機器分析装置に導入し、分析する。難揮発性有機物は
難揮発性有機物吸着管20より有機溶媒により脱着し、
該有機溶媒を蒸発して濃縮し、機器分析装置に導入して
力・析する。本発明の水中有機物抽出濃縮装置による抽
出濃縮後、ガスクロマ1−クラフ質量分析計によって分
析した場合の定量下限は揮発性有機物かo、otpρし
、難揮発性有機物がtpptであり、極めて微量な水中
有機物の分析が可能である。
FIG. 1 is a block diagram of an a-ray apparatus for extracting organic matter in water showing an embodiment of the present invention. First, the vacuum pump 2 is operated with all valves other than valve 1 closed, and the cooling trap 4, which evacuates the system by opening valve 3, prevents contamination of the system by oil vapor from the vacuum pump 2. This is provided for this purpose. Liquid nitrogen or liquid oxygen is used as a refrigerant for the cooling trap 4. After the system is sufficiently evacuated and cleaned by vacuum, the valve 3 is closed. Simultaneously with the above operations, nitrogen gas is introduced from valve 1, and the inside of the hooded sample water inlet 6 is purged with clean nitrogen gas through the organophilic trap 5. While the purging is continued, the sample water is introduced. Insert the sample 7 into the hooded sample water introducer 6 by inserting the sample water introduction pipe 8 in the hooded sample water introducer 6. The organophilic trap 5 is a stainless steel pipe filled with molecular sieve 13X, and liquid oxygen is used as the refrigerant. Next, open the valve 9 to transfer the sample bottle 7 to the purge bin 10 due to the pressure difference between the inside and outside.
Inject the sample water inside. After the injection of the sample water is completed, the valve 9 is closed, and the valve L1 is opened to gradually introduce the dichloromethane gas into the system. The introduced nitrogen gas is purified by the organophilic tube 12 and introduced into the system. The organophilic trap 12 is a stainless steel tube filled with a molecular sieve 13X, and liquid oxygen is used as the refrigerant. When the scale of the pressure gauge 13 slightly exceeds 1 atmosphere, close the valve 11 once, open the valve 14, and then adjust the opening and closing of the valve 11 according to the scale of the flow meter 15 to obtain the optimal nitrogen gas flow rate. Then, clean nitrogen gas is sent to the purge bottle 10, and the nitrogen gas sent by the bubbler 16 in the purge bottle 10 is broken into minute bubbles to huff the sample water. The volatile organic substances expelled from the sample water by this bubbling are dehydrated while passing through the dehydration tube 17 filled with magnesium perchlorate along with the chlorine scum, and then passed through the valve 14 to the Tena Sox. The volatile organic matter is adsorbed and trapped within one day in the GC-filled volatile organic matter adsorption tube. The nitrogen gas is released as it is from the outlet of the volatile organic matter adsorption tube 18. Bubbling is volatile from the sample water.
The process continues until th is completely removed and ends by closing the valve 14. After finishing, the valve 11 is kept open until the scale of the pressure gauge 13 becomes 1.5 atmospheres or more.
Close. This ensures that the inside of the system containing the barge bin is clean.
It is pressurized to more than 1.5 atmospheres due to SO gas. Now open valve 19 little by little to 50+ mouths Q/'
XA the sample water in the purge bottle 10 at a flow rate of about rnin.
The sample water is passed through a refractory organic matter adsorption tube 20 filled with resin D, and the refractory organic matter in the sample water is adsorbed and trapped. After all of the sample water in the barge bottle 10 has flowed down, the pulp 19 is closed to end the water flow. As described above, all the volatile organic substances in the sample water can be adsorbed and trapped in the volatile organic substance adsorption tube 18 and the hardly volatile organic substances can be adsorbed and trapped in the hardly volatile organic substance adsorption tube 20. In the above operation, three samples of water that have been sufficiently bubbled in advance are passed through the XAD resin filled in the non-volatile organic matter adsorption tube 20, so dissolved air is removed and no air bubbles are generated. Therefore, the contact area between the XADII fat and the sample water does not decrease. After the above adsorption trap operation is completed, the volatile organic matter is removed from the volatile organic matter adsorption tube 1.
It is desorbed by passing it through an inert gas and then heating it, and then it is introduced into an instrumental analyzer and analyzed. The refractory organic matter is desorbed by an organic solvent from the refractory organic matter adsorption tube 20,
The organic solvent is concentrated by evaporation and introduced into an instrumental analyzer for analysis. After extraction and concentration using the water organic matter extraction and concentration device of the present invention, the lower limit of quantification when analyzed using a gas chroma 1-Clough mass spectrometer is o, otpρ for volatile organic matter, and tppt for hardly volatile organic matter. It is possible to analyze organic substances.

(発明の効果) 以上のように本発明の水中有機物抽出濃縮装置を用いれ
ば、水中の極微量な揮発性有機物と難揮発性有機物を共
に水中より抽出濃縮することかでき、抽出濃縮後は機器
分析法により各有機物を分析することができる。難揮発
性有機物の水中からの抽出においては、先に行う揮発性
有機物の水中からの抽出時に、不活性ガスによる十分な
バブリングを行うために溶存空気が完全に除去されてい
るため、難揮発性有機物吸着管内の樹脂表面に気泡か発
生せず、試料水と樹脂との接触面積が減少することはな
い。本発明の水中有機物抽出濃縮装置による抽出濃縮後
、ガスクロマトグラフ質量分析計によって分析した場合
の定量下限は揮発性有機物が0.01ppt、難揮発性
有機物が12ptであり、極めて微量な水中有機物の分
析が可能である。
(Effects of the Invention) As described above, by using the apparatus for extracting and concentrating organic matter in water of the present invention, it is possible to extract and concentrate both minute amounts of volatile organic matter and non-volatile organic matter in water, and after extraction and concentration, the equipment Each organic substance can be analyzed using analytical methods. When extracting non-volatile organic substances from water, dissolved air is completely removed by sufficient bubbling with inert gas during the previous extraction of volatile organic substances from water. No bubbles are generated on the resin surface in the organic matter adsorption tube, and the contact area between the sample water and the resin is not reduced. After extraction and concentration using the organic matter extraction and concentration device of the present invention, the lower limit of quantification when analyzed using a gas chromatograph mass spectrometer is 0.01 ppt for volatile organic matter and 12 pt for non-volatile organic matter, which is an extremely small amount for analysis of organic matter in water. is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す水中有機物抽出濃縮装
置の構成図である。 図において、 ■・・・バルブ    2・・・真空ポンプ3・・・バ
ルブ    4・・・冷却トラップ5・・・脱有機物ト
ラップ 6・・・フード付き試料水導入器 7・・・試料ビン   8・・・試料水導入パイプ9・
・・バルブ    10・・・パージビン11・・・バ
ルブ    12・・脱有機物トラ・ツブI3・・・圧
力計    14・・・バルブ15・・・流量計   
 16・・・バブラー17・・・脱水管    1日・
揮発性有機物吸着管19・・・バルブ    20・・
・難揮発性有機物吸着管代f!l弁理士 内原晋−1で
・ 1 、、 ) \こン゛
FIG. 1 is a block diagram of an apparatus for extracting and concentrating organic matter in water showing an embodiment of the present invention. In the figure, ■... Valve 2... Vacuum pump 3... Valve 4... Cooling trap 5... Organic matter removal trap 6... Hooded sample water introducer 7... Sample bottle 8.・・Sample water introduction pipe 9・
...Valve 10...Purge bin 11...Valve 12...Organic removal tube I3...Pressure gauge 14...Valve 15...Flow meter
16... Bubbler 17... Dehydration pipe 1 day.
Volatile organic matter adsorption tube 19...Valve 20...
・Difficult-volatile organic matter adsorption tube cost f! l Patent attorney Susumu Uchihara - 1,,) \Con゛

Claims (1)

【特許請求の範囲】[Claims] 不活性ガス導入バルブ、パージビン、脱水管、揮発性有
機物吸着管を順にパイプにより接続配管し、不活性ガス
導入バルブとパージビンとの間の配管に真空ポンプを接
続して設け、パージビン上部に試料水導入器を接続して
設け、更に、パージビンの下部に難揮発性有機物吸着管
を接続して設けたことを特徴とする水中有機物抽出濃縮
装置。
The inert gas inlet valve, purge bottle, dehydration tube, and volatile organic matter adsorption tube are connected in this order with pipes, and a vacuum pump is connected to the pipe between the inert gas inlet valve and the purge bin, and the sample water is placed above the purge bin. 1. An apparatus for extracting and concentrating organic matter in water, characterized in that an inlet is connected to the inlet, and a non-volatile organic matter adsorption tube is connected to the lower part of the purge bin.
JP17602086A 1986-07-25 1986-07-25 Apparatus for extracting and thickening organic matter in water Granted JPS6332342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17602086A JPS6332342A (en) 1986-07-25 1986-07-25 Apparatus for extracting and thickening organic matter in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17602086A JPS6332342A (en) 1986-07-25 1986-07-25 Apparatus for extracting and thickening organic matter in water

Publications (2)

Publication Number Publication Date
JPS6332342A true JPS6332342A (en) 1988-02-12
JPH0547061B2 JPH0547061B2 (en) 1993-07-15

Family

ID=16006319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17602086A Granted JPS6332342A (en) 1986-07-25 1986-07-25 Apparatus for extracting and thickening organic matter in water

Country Status (1)

Country Link
JP (1) JPS6332342A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03142337A (en) * 1989-10-28 1991-06-18 Miyamoto Riken Kogyo Kk Device for gathering very small quantity of material in water
JPH0712788A (en) * 1993-05-17 1995-01-17 Sekiyu Kodan Automatic analysis method and device for dissolved gas
JP2007538012A (en) * 2004-05-15 2007-12-27 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing pure triethylenediamine (TEDA) solution
JP2020134434A (en) * 2019-02-25 2020-08-31 オルガノ株式会社 Method of evaluating organic substances in ultrapure water, and organic substance identification method in ultrapure water production system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4389078B2 (en) * 2002-12-04 2009-12-24 株式会社日立プラントテクノロジー Method for measuring organic volatiles in organic materials

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03142337A (en) * 1989-10-28 1991-06-18 Miyamoto Riken Kogyo Kk Device for gathering very small quantity of material in water
JPH0712788A (en) * 1993-05-17 1995-01-17 Sekiyu Kodan Automatic analysis method and device for dissolved gas
JP2007538012A (en) * 2004-05-15 2007-12-27 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing pure triethylenediamine (TEDA) solution
JP4740236B2 (en) * 2004-05-15 2011-08-03 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing pure triethylenediamine (TEDA) solution
JP2020134434A (en) * 2019-02-25 2020-08-31 オルガノ株式会社 Method of evaluating organic substances in ultrapure water, and organic substance identification method in ultrapure water production system

Also Published As

Publication number Publication date
JPH0547061B2 (en) 1993-07-15

Similar Documents

Publication Publication Date Title
KR950006510B1 (en) Process for separating carbon monoxide having substantially constant purity
US5069887A (en) Method of refining nitrogen trifluoride gas
RU2707767C1 (en) Cryogenic adsorption process for xenon extracting
TW478957B (en) Method and apparatus for separating, removing, and recovering gas components
JPH11211630A (en) Gas sample collecting device and its use method
JPS6332342A (en) Apparatus for extracting and thickening organic matter in water
US4792526A (en) Method for collecting and analyzing hydrocarbons
JP2008296089A (en) Method for isolating and enriching hydrogen isotope
US4054427A (en) Method of recovering krypton and xenon nuclides from waste gases
SU651727A3 (en) Device for introducing liquid sample in gas chromatograph
CN109323909B (en) Gas automatic separation system for inertness in small-gas-volume environment sample
US3680288A (en) Process for regenerating adsorption masses
JP2858143B2 (en) Concentration analysis method and apparatus therefor
US3303002A (en) Method of separating hydrocarbons from a sample
JPH0554880B2 (en)
JPH0650950A (en) Specimen concentration-trap device
JPH0772708B2 (en) Method and apparatus for continuous sampling and analysis of dissolved organic components in water
JPH03242313A (en) Purification of carbon monoxide
RU2794235C1 (en) Device for analysis with additional concentration of the composition of the equilibrium vapor phase
WO2023063300A1 (en) Method and device for measuring concentration of trace gas component in water
JPH0755781A (en) Sample concentration trapping apparatus
JPS62187250A (en) Capillary gas chromatographic apparatus for analyzing volatile component
Zlatkis et al. Rapid analysis of trace organics in aqueous solutions by enrichment in uncoated capillary columns
JPH08313508A (en) Purging method and purge trap device
SU767640A1 (en) Apparatus for preparing liquid sample for chromatographic analysis