JP2020134434A - Method of evaluating organic substances in ultrapure water, and organic substance identification method in ultrapure water production system - Google Patents

Method of evaluating organic substances in ultrapure water, and organic substance identification method in ultrapure water production system Download PDF

Info

Publication number
JP2020134434A
JP2020134434A JP2019031452A JP2019031452A JP2020134434A JP 2020134434 A JP2020134434 A JP 2020134434A JP 2019031452 A JP2019031452 A JP 2019031452A JP 2019031452 A JP2019031452 A JP 2019031452A JP 2020134434 A JP2020134434 A JP 2020134434A
Authority
JP
Japan
Prior art keywords
ultrapure water
organic substance
porous body
production system
eluate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019031452A
Other languages
Japanese (ja)
Other versions
JP7195177B2 (en
Inventor
晃彦 津田
Akihiko Tsuda
晃彦 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2019031452A priority Critical patent/JP7195177B2/en
Publication of JP2020134434A publication Critical patent/JP2020134434A/en
Application granted granted Critical
Publication of JP7195177B2 publication Critical patent/JP7195177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

To provide a method of evaluating organic substances in ultrapure water of an ultrapure water production system and a method of identifying a causative substance and a place of occurrence in membrane fouling at outlets of the system.SOLUTION: A method of evaluating organic substances includes: a first step (sampling step A) of sampling ultrapure water of an ultrapure water production system; a second step (adhesion step B) of passing the sampled ultrapure water through a porous body and causing organic substances in the ultrapure water to be absorbed onto the porous body; a third step (eluting step C) of eluting the organic substances from the porous body in which the organic substances are concentrated to obtain an eluate; a fourth step (measurement step D) of measuring the eluate by fluorography; and a fifth step (evaluation step E) of evaluating the organic substances in the ultrapure water on the basis of the measurement in the fourth step. Identifying a location of membrane fouling is identifying, by fluorography, a location where the same fluorescence peaks occur by comparing the fluorescence peaks of the organic substances on the filtration membrane in which membrane fouling occurs with the fluorescence peaks obtained by the above method from the outlet water of each device of the production system.SELECTED DRAWING: Figure 1

Description

本発明は超純水製造システムの超純水に含まれる有機物を評価する超純水中の有機物評価方法に関する。又、本発明は超純水製造システムにおける有機物特定方法に関する。 The present invention relates to an organic substance evaluation method in ultrapure water for evaluating organic substances contained in ultrapure water in an ultrapure water production system. The present invention also relates to a method for identifying organic substances in an ultrapure water production system.

液晶・半導体・電子部品製造の洗浄工程など高品質の超純水が要求されている。超純水製造システムとしては、この要望に応えるため、前処理、一次純水製造システム、二次超純水製造システムなどがユニット化されたものが知られている。 High-quality ultrapure water is required for cleaning processes for manufacturing liquid crystals, semiconductors, and electronic components. As an ultrapure water production system, in order to meet this demand, a pretreatment, a primary pure water production system, a secondary ultrapure water production system, and the like are known as a unit.

超純水製造システムの出口には、限外ろ過膜(UF膜)が配置されていることが多いが、ほとんど不純物を含まない超純水中にも極微量の有機物が残存し、この極微量の有機物が出口のUF膜の閉塞、いわゆる膜ファウリングをもたらすことがある。この膜ファウリングが発生した段階では、極微量の有機物は、使用しているイオン交換樹脂や膜材など、機能材及び構成部材からの溶出や、系内に存在する生物起源の有機物によるものと予測できる。 An ultrafiltration membrane (UF membrane) is often placed at the outlet of the ultrapure water production system, but a very small amount of organic matter remains even in the ultrapure water that contains almost no impurities, and this very small amount Organic matter can result in blockage of the exit UF membrane, so-called membrane fouling. At the stage when this membrane fouling occurs, the trace amount of organic matter is due to elution from functional materials and constituent members such as the ion exchange resin and membrane material used, and organic matter of biological origin existing in the system. Can be predicted.

膜ファウリング物質同定のための分析手法としては、実際に閉塞した膜から薬品により閉塞成分を抽出する方法や、膜表面堆積物を直接測定する方法が知られている。 As an analytical method for identifying a membrane fouling substance, a method of extracting an occluded component from an actually occluded membrane with a chemical and a method of directly measuring a membrane surface deposit are known.

例えば、特許文献1では、ろ過対象水のろ過に用いた分離膜の汚染状態を分析する方法であって、ろ過後の分離膜に対して蛍光分光法及び近赤外分光法のいずれか一方又は双方を用いて測定する方法を提案している。 For example, in Patent Document 1, it is a method of analyzing the contaminated state of the separation membrane used for filtering the water to be filtered, and the separated membrane after filtration is subjected to either fluorescence spectroscopy or near-infrared spectroscopy or We are proposing a method for measuring using both.

特開2016−107235号公報Japanese Unexamined Patent Publication No. 2016-107235

特許文献1では、薬品による閉塞膜からの閉塞物成分の抽出は手間と時間を要するため膜面を直接評価する手法を採用している。有機物濃度がppmオーダーで高濃度の場合は、直接膜面を観察する手法や試料水中の分析を行うことで簡便に測定することが可能である。
しかしながら、超純水製造システムでは、膜ファウリングが発生する前では、超純水中の有機物濃度が極低濃度(0.Xppb〜数ppb)程度であることから、装置ろ過膜の汚染状況について把握することができず、その原因を特定することも困難である。
Patent Document 1 employs a method of directly evaluating the membrane surface because it takes time and effort to extract the blocked matter component from the closed membrane by a chemical. When the organic matter concentration is on the order of ppm, it can be easily measured by directly observing the film surface or analyzing the sample water.
However, in the ultrapure water production system, before the membrane fouling occurs, the concentration of organic substances in the ultrapure water is about extremely low (0.Xppb to several ppb). It is not possible to grasp the cause, and it is difficult to identify the cause.

また、このような極低濃度の超純水中の有機物は、超純水を直接分析しても有機物の評価を行うことは非常に難しい。したがって、超純水のように極微量の有機物しか含まれない試料中の有機物を評価する場合には、濃縮による操作が不可欠である。 Further, it is very difficult to evaluate the organic matter in the ultrapure water having such an extremely low concentration even if the ultrapure water is directly analyzed. Therefore, when evaluating organic substances in a sample containing only a very small amount of organic substances such as ultrapure water, an operation by concentration is indispensable.

ところが、濃縮すると言っても、加熱濃縮では生物起源の有機物などの場合に、当該有機物が変性してしまうため、正確な原因を究明することが困難となる。また、加熱濃縮では濃縮すべき超純水量が多量であるために、多大なコストが掛かる。 However, even if it is said to be concentrated, it is difficult to find out the exact cause because the organic matter of biological origin is denatured by heat concentration. In addition, heat concentration requires a large amount of ultra-pure water to be concentrated, resulting in a large cost.

そこで、本発明では超純水中の有機物を変性させることなく、安価に濃縮して有機物を評価する方法を提供することを目的とする。また、本発明は、超純水製造システムのどこで膜ファウリングの原因物質が発生しているかを特定する方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for evaluating an organic substance at low cost without denaturing the organic substance in ultrapure water. Another object of the present invention is to provide a method for identifying where a causative substance of membrane fouling is generated in an ultrapure water production system.

本発明者は、超純水中の有機物を多孔質体上で濃縮し、これを溶出した溶出液の状態で蛍光光度法により分析することで、有機物を変性させずに安価に特定することができることを見出し、本発明を完成するに至った。 The present inventor can concentrate the organic matter in ultrapure water on a porous body and analyze it in the state of the eluate in which it is eluted by the fluorescence fluorescence method, so that the organic matter can be specified inexpensively without being denatured. We found what we could do and came to complete the present invention.

すなわち、本発明は、超純水製造システムの超純水をサンプリングする第1工程と、該サンプリングされた超純水を多孔質体に通過させて、該超純水中の有機物を該多孔質体上に付着させる第2工程と、該有機物を付着した多孔質体から該有機物を溶出させて溶出液を得る第3工程と、該溶出液を蛍光光度法により測定する第4工程と、前記第4工程における測定に基づき前記超純水中の有機物を評価する第5工程とを有することを特徴する評価方法、に関する。 That is, in the present invention, the first step of sampling ultrapure water in an ultrapure water production system and the sampled ultrapure water are passed through a porous body to allow organic substances in the ultrapure water to be made porous. The second step of adhering to the body, the third step of eluting the organic substance from the porous body to which the organic substance is attached to obtain an eluent, the fourth step of measuring the eluate by the fluorescence photometric method, and the above. The present invention relates to an evaluation method characterized by having a fifth step of evaluating organic substances in the ultrapure water based on the measurement in the fourth step.

又、本発明は、超純水製造システムの出口に設けられたろ過膜の前段にある複数の装置のそれぞれの出口の超純水をサンプリングする第1工程と、
該サンプリングされた超純水をそれぞれ多孔質体に通過させて、該超純水中の有機物を該多孔質体上に付着させる第2工程と、
それぞれの多孔質体に付着した有機物を溶出させて溶出液を得る第3工程と、
前記ろ過膜に付着した有機物を溶出させて対照溶出液を得る第4工程と、
前記第3工程で得た各溶出液と、前記第4工程で得た対照溶出液を蛍光光度法により測定する第5工程と、
前記第5工程の測定結果より得られる、前記対照溶出液に現れる蛍光ピークとそれぞれの前記溶出液に現れる蛍光ピークとを比較して、前記対照溶出液に現れる蛍光ピークで同定される有機物を含む前記超純水を特定する第6工程と、
を有することを特徴とする超純水製造システムにおける有機物特定方法、に関する。
Further, the present invention includes a first step of sampling ultrapure water at each outlet of a plurality of devices in front of a filtration membrane provided at the outlet of an ultrapure water production system.
The second step of passing the sampled ultrapure water through the porous body and adhering the organic matter in the ultrapure water onto the porous body.
The third step of eluting the organic matter adhering to each porous body to obtain an eluate, and
The fourth step of eluting the organic matter adhering to the filtration membrane to obtain a control eluate, and
Each eluate obtained in the third step and a control eluate obtained in the fourth step are measured by a fluorescence intensity method in a fifth step.
The fluorescence peak appearing in the control eluate and the fluorescence peak appearing in each of the eluents obtained from the measurement result of the fifth step are compared, and the organic substance identified by the fluorescence peak appearing in the control eluate is contained. The sixth step of identifying the ultrapure water and
The present invention relates to a method for identifying an organic substance in an ultrapure water production system, which comprises the above.

本発明により、超純水中の有機物を変性させることなく、安価に濃縮して有機物を評価する方法を提供できる。また、本発明により、超純水製造システムのどこで膜ファウリングの原因物質が発生しているかを特定する方法を提供できる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method for evaluating an organic substance by concentrating it at low cost without denaturing the organic substance in ultrapure water. Further, the present invention can provide a method for identifying where in the ultrapure water production system the causative substance of membrane fouling is generated.

本発明の有機物評価方法の工程を説明するフロー図である。It is a flow figure explaining the process of the organic matter evaluation method of this invention. 超純水製造システムの構成とサンプリングか所を説明する概略図である。It is the schematic explaining the structure of the ultrapure water production system and the sampling place. 本発明の膜ファウリングの発生か所を特定する方法の工程を説明するフロー図である。It is a flow figure explaining the process of the method of identifying the occurrence place of the membrane fouling of this invention. 閉塞UF膜(A)と新品UF膜(B)からIPAにより溶出した溶出液の蛍光3次元スペクトルを示す。The fluorescence three-dimensional spectrum of the eluate eluted by IPA from the closed UF membrane (A) and the new UF membrane (B) is shown. 図4(A)から図4(B)を差し引いた差スペクトルを示す。The difference spectrum which subtracted FIG. 4 (B) from FIG. 4 (A) is shown. 純水タンクから採取した超純水の蛍光3次元スペクトルを示す。The fluorescence three-dimensional spectrum of ultrapure water collected from a pure water tank is shown.

本発明に係る方法は、図1のフロー図に示すように、超純水製造システムの超純水をサンプリングするサンプリング工程Aと、該サンプリングされた超純水を多孔質体に通過させて、該超純水中の有機物を該多孔質体上に付着させる付着工程Bと、該有機物を付着した多孔質体から該有機物を溶出して溶出液を得る溶出工程Cと、該溶出液を蛍光光度法により測定する測定工程Dと、測定工程Dにおける測定に基づき超純水中の有機物を評価する評価工程Eを有する。
尚、本発明では、不純物を高度に除去した水であり、比抵抗10MΩ・cm以上の水を超純水と定義する。
As shown in the flow chart of FIG. 1, the method according to the present invention involves a sampling step A for sampling ultrapure water in an ultrapure water production system and passing the sampled ultrapure water through a porous body. Adhesion step B in which the organic substance in the ultrapure water is adhered onto the porous body, elution step C in which the organic substance is eluted from the porous body to which the organic substance is adhered to obtain an eluent, and the eluent is fluorescent. It has a measurement step D for measuring by the photometric method and an evaluation step E for evaluating organic substances in ultrapure water based on the measurement in the measurement step D.
In the present invention, water from which impurities are highly removed and having a specific resistance of 10 MΩ · cm or more is defined as ultrapure water.

まず、超純水をサンプリングするサンプリング工程Aを実施する。なお、後述するように、膜ファウリングの原因物質を特定する場合、膜ファウリングが発生しているろ過膜の前段にある超純水製造システムの各装置の出口水をそれぞれサンプリングすることとなる。 First, a sampling step A for sampling ultrapure water is performed. As will be described later, when identifying the causative substance of membrane fouling, the outlet water of each device of the ultrapure water production system in front of the filtration membrane in which membrane fouling is generated is sampled. ..

次に、該サンプリングされた超純水を多孔質体に通過させて、該超純水中の有機物を該多孔質体上に付着させる付着工程Bを実施する。 Next, the adhesion step B is carried out in which the sampled ultrapure water is passed through the porous body and the organic substances in the ultrapure water are adhered onto the porous body.

一般に、超純水製造システムの出口のろ過膜には、限外ろ過膜(UF膜)が使用されている。該UF膜は分画分子量が数千の多孔質膜であることから、これに捉えられる有機物の分子量は数千以上となる。つまり、膜ファウリングの原因物質となる有機物の分子量は1000以上といえる。そこで、超純水中の極微量の有機物の濃縮に、同様の分画分子量を有する多孔質体あるいは吸着性能を有する多孔質体を使用して、該多孔質体上に有機物を付着させて濃縮する。 Generally, an ultrafiltration membrane (UF membrane) is used as the filtration membrane at the outlet of the ultrapure water production system. Since the UF membrane is a porous membrane having a molecular weight cut off of several thousand, the molecular weight of the organic substance captured therein is several thousand or more. That is, it can be said that the molecular weight of the organic substance that causes the membrane fouling is 1000 or more. Therefore, for the concentration of a very small amount of organic matter in ultrapure water, a porous body having the same molecular weight cut-off or a porous body having adsorption performance is used, and the organic substance is adhered onto the porous body and concentrated. To do.

ここで、付着工程Bは、分析装置で分析可能な濃度、すなわち、ppbオーダーの超純水中の有機物がppmオーダーまで濃縮されるまで実施する。 Here, the adhesion step B is carried out until the concentration that can be analyzed by the analyzer, that is, the organic matter in the ppb order ultrapure water is concentrated to the ppm order.

使用する多孔質体としては、ろ過膜として使用されている限外ろ過膜(UF膜)、モノリス樹脂、若しくは合成吸着剤を用いることができる。 As the porous body to be used, an ultrafiltration membrane (UF membrane) used as a filtration membrane, a monolith resin, or a synthetic adsorbent can be used.

付着工程Bでは、多孔質体を所定の口径の管状部材に配置した形態の濃縮キットを使用することが好ましい。
例えば、UF膜を使用する場合、UF膜を内包する、市販のペンシル型モジュールを濃縮キットとして使用することができる。モノリス樹脂や合成吸着剤は、超純水製造システムの接続配管にチューブを接続し、モノリス樹脂や合成吸着剤を充填したカラムにチューブとの接続具を取り付けて濃縮キットを構成し、流量及び時間を調整して付着工程Bを実施することができる。
In the attachment step B, it is preferable to use a concentration kit in which the porous body is arranged on a tubular member having a predetermined diameter.
For example, when a UF membrane is used, a commercially available pencil-type module containing the UF membrane can be used as a concentration kit. For monolith resin and synthetic adsorbent, connect a tube to the connection pipe of the ultrapure water production system, and attach a connector to the tube to a column filled with monolith resin or synthetic adsorbent to form a concentration kit, and configure the concentration kit, flow rate and time. Can be adjusted to carry out the adhesion step B.

濃縮キット用のUF膜は超純水製造システムの出口に設けられたろ過膜に使用されるものと同等かそれよりやや低い分画分子量を有するものを使用することができる。濃縮を速めるために、ろ過面積と通水量を最適化し、出口のろ過膜での有機物捕捉よりも速く濃縮することが好ましい。 As the UF membrane for the concentration kit, one having a molecular weight cut-off equal to or slightly lower than that used for the filtration membrane provided at the outlet of the ultrapure water production system can be used. In order to accelerate the concentration, it is preferable to optimize the filtration area and the amount of water flow, and concentrate faster than the organic matter trapping by the filtration membrane at the outlet.

モノリス樹脂とはモノリス状有機多孔質体の骨格中にイオン交換基を導入したもので、モノリスアニオン交換体は、モノリス状有機多孔質体の骨格中にアニオン交換基が均一に分布するように導入されている多孔質体、モノリスカチオン交換体は、モノリス状有機多孔質体の骨格中にカチオン交換基が均一に分布するように導入されている多孔質体である。なお、モノリス状有機多孔質体は、骨格が有機ポリマーにより形成されており、骨格間に反応液の流路となる連通孔を多数有する多孔質体である。 The monolith resin is an ion exchange group introduced into the skeleton of the monolithic organic porous body, and the monolith anion exchanger is introduced so that the anion exchange groups are uniformly distributed in the skeleton of the monolithic organic porous body. The porous body and the monolithic cation exchanger are the porous bodies in which the cation exchange groups are introduced so as to be uniformly distributed in the skeleton of the monolithic organic porous body. The monolithic organic porous body is a porous body in which the skeleton is formed of an organic polymer and has a large number of communication holes serving as flow paths for the reaction solution between the skeletons.

モノリスアニオン交換体の構造は、連続骨格相と連続空孔相からなる有機多孔質体であって、連続骨格の厚みは1〜100μm、連続空孔の平均直径は1〜1000μm、全細孔容積は0.5〜50mL/gである。 The structure of the monolith anion exchanger is an organic porous body consisting of a continuous skeleton phase and a continuous pore phase, the thickness of the continuous skeleton is 1 to 100 μm, the average diameter of the continuous pores is 1 to 1000 μm, and the total pore volume. Is 0.5 to 50 mL / g.

モノリスアニオン交換体の乾燥状態での連続骨格の厚みは1〜100μmである。モノリスアニオン交換体の連続骨格の厚みが、1μm未満であると、体積当りのアニオン交換容量が低下するといった欠点のほか、機械的強度が低下して、特に高流速で通液した際にモノリスアニオン交換体が大きく変形してしまうため好ましくない。更に、反応液とモノリスアニオン交換体との接触効率が低下し、触媒活性が低下するため好ましくない。一方、モノリスアニオン交換体の連続骨格の厚みが、100μmを越えると、骨格が太くなり過ぎ、基質の拡散に時間を要するようになって触媒活性が低下するため好ましくない。なお、連続骨格の厚みは、SEM観察により決定される。 The thickness of the continuous skeleton of the monolith anion exchanger in the dry state is 1 to 100 μm. If the thickness of the continuous skeleton of the monolith anion exchanger is less than 1 μm, the anion exchange capacity per volume decreases, and the mechanical strength decreases, especially when the monolith anion is passed at a high flow velocity. It is not preferable because the exchange body is greatly deformed. Further, the contact efficiency between the reaction solution and the monolith anion exchanger is lowered, and the catalytic activity is lowered, which is not preferable. On the other hand, if the thickness of the continuous skeleton of the monolith anion exchanger exceeds 100 μm, the skeleton becomes too thick, it takes time to diffuse the substrate, and the catalytic activity decreases, which is not preferable. The thickness of the continuous skeleton is determined by SEM observation.

モノリスアニオン交換体の乾燥状態での連続空孔の平均直径は、1〜1000μmである。モノリスアニオン交換体の連続空孔の平均直径が、1μm未満であると、通水時の圧力損失が高くなるため好ましくない。一方、モノリスアニオン交換体の連続空孔の平均直径が、1000μmを超えると、被処理液とモノリスアニオン交換体との接触が不十分となり、除去性能が低下するため好ましくない。なお、モノリスアニオン交換体の乾燥状態での連続空孔の平均直径は、水銀圧入法により測定され、水銀圧入法により得られた細孔分布曲線の極大値を指す。 The average diameter of the continuous pores of the monolith anion exchanger in the dry state is 1 to 1000 μm. If the average diameter of the continuous pores of the monolith anion exchanger is less than 1 μm, the pressure loss during water flow increases, which is not preferable. On the other hand, if the average diameter of the continuous pores of the monolith anion exchanger exceeds 1000 μm, the contact between the liquid to be treated and the monolith anion exchanger becomes insufficient and the removal performance deteriorates, which is not preferable. The average diameter of the continuous pores of the monolith anion exchanger in the dry state is measured by the mercury intrusion method and refers to the maximum value of the pore distribution curve obtained by the mercury intrusion method.

モノリスアニオン交換体の乾燥状態での全細孔容積は0.5〜50mL/gである。モノリスアニオン交換体の全細孔容積が、0.5mL/g未満であると、被処理液の接触効率が低くなるため好ましくなく、更に、単位断面積当りの透過液量が小さくなり、処理量が低下してしまうため好ましくない。一方、モノリスアニオン交換体の全細孔容積が、50mL/gを超えると、体積当りのアニオン交換容量が低下し、除去性能が低下するため好ましくない。また、機械的強度が低下して、特に高速で通液した際にモノリスアニオン交換体が大きく変形し、通液時の圧力損失が急上昇してしまうため好ましくない。なお、全細孔容積は、水銀圧入法で測定される。 The total pore volume of the monolith anion exchanger in the dry state is 0.5 to 50 mL / g. If the total pore volume of the monolith anion exchanger is less than 0.5 mL / g, the contact efficiency of the liquid to be treated becomes low, which is not preferable, and further, the amount of permeated liquid per unit cross section becomes small, and the treatment amount Is not preferable because it reduces. On the other hand, if the total pore volume of the monolith anion exchanger exceeds 50 mL / g, the anion exchange capacity per volume decreases and the removal performance deteriorates, which is not preferable. Further, the mechanical strength is lowered, and the monolith anion exchanger is significantly deformed especially when the liquid is passed at a high speed, and the pressure loss at the time of passing the liquid rises sharply, which is not preferable. The total pore volume is measured by the mercury intrusion method.

このようなモノリスアニオン交換体の構造例としては、特開2002−306976号公報や特開2009−62512号公報に開示されている連続気泡構造や、特開2009−67982号公報に開示されている共連続構造や、特開2009−7550号公報に開示されている粒子凝集型構造や、特開2009−108294号公報に開示されている粒子複合型構造等が挙げられる。 Examples of the structure of such a monolith anion exchanger include the open cell structure disclosed in JP-A-2002-306976 and JP-A-2009-62512, and JP-A-2009-67982. Examples thereof include a co-continuous structure, a particle-aggregated structure disclosed in JP-A-2009-7550, and a particle-composite-type structure disclosed in JP-A-2009-108294.

合成吸着剤としては、多孔質の巨大網目構造(Macro Reticular structure:MR構造)を有する球状の架橋高分子であり、主に、スチレン系、アクリル系又はフェノール系の架橋共重合体粒子である。本発明に使用する合成吸着剤としては。比表面積が150〜1000m/g、細孔容積が0.3〜2.0cm/gのものが好ましい。このような合成吸着剤は、本出願人が販売する合成吸着剤、例えば、アンバーライト(登録商標)XAD2000、XAD4、FPX66、XAD1180N、XAD7HP、XAD−2、XAD761(いずれも商品名であり、アンバーライト(登録商標)XAD(登録商標)シリーズである)などが使用できる。 The synthetic adsorbent is a spherical crosslinked polymer having a porous macro reticular structure (MR structure), and is mainly styrene-based, acrylic-based, or phenol-based crosslinked copolymer particles. As a synthetic adsorbent used in the present invention. Those having a specific surface area of 150 to 1000 m 2 / g and a pore volume of 0.3 to 2.0 cm 2 / g are preferable. Such synthetic adsorbents are synthetic adsorbents sold by the applicant, such as Amberlite® XAD2000, XAD4, FPX66, XAD1180N, XAD7HP, XAD-2, XAD761 (all of which are trade names and are Amber). Light (registered trademark) XAD (registered trademark) series) and the like can be used.

次に多孔質体に付着した有機物を溶出させて溶出液を得る溶出工程Cを実施する。多孔質体から有機物を溶出するために、適当な溶媒を用いる。使用できる溶媒としては、水と相溶性があり、有機物及び多孔質体への影響が少ないものが選択される。具体的には、イソプロピルアルコール(IPA)等のアルコール類、希硝酸などの酸水溶液、水酸化テトラメチルアンモニウム(TMAH)等から適宜選択される。特に各種有機物の溶出性に優れるIPAが好ましく使用できる。尚、多孔質体を構成する有機物の一部が溶出されることがあるが、目的とする付着させた有機物(以下、対象有機物とも言う)とは蛍光波長が異なることで、区別できる。 Next, an elution step C is carried out in which an organic substance adhering to the porous body is eluted to obtain an eluate. A suitable solvent is used to elute the organic matter from the porous material. As the solvent that can be used, a solvent that is compatible with water and has little effect on organic substances and porous materials is selected. Specifically, it is appropriately selected from alcohols such as isopropyl alcohol (IPA), an aqueous acid solution such as dilute nitric acid, tetramethylammonium hydroxide (TMAH) and the like. In particular, IPA having excellent elution of various organic substances can be preferably used. Although a part of the organic matter constituting the porous body may be eluted, it can be distinguished from the target attached organic matter (hereinafter, also referred to as a target organic matter) by having a different fluorescence wavelength.

溶媒の使用量は、得られる溶出液中の有機物がppmオーダーとなる量、例えば、超純水を約5000L通水した場合、IPA100mlで溶出を実施することができる。また、溶出液は対象有機物に影響しない範囲でさらに公知の濃縮を行ってもよい。 The amount of the solvent used is such that the organic matter in the obtained eluate is on the order of ppm, for example, when about 5000 L of ultrapure water is passed, elution can be carried out with 100 ml of IPA. Further, the eluate may be further concentrated as known as long as it does not affect the target organic matter.

続いて、得られた溶出液を蛍光光度法により測定する工程Dを実施する。蛍光光度法は、セルに対象液をいれ、3次元蛍光スペクトルを取得することにより有機物の同定を行う手法である。有機物の同定方法として公知のLC−OCD(溶存有機体炭素分離測定装置)は、有機溶剤を導入すると有機溶剤の影響で対象有機物の測定ができない。またFT−IRでは、感度が低く、さらに濃縮率を高める必要があり、実用的ではない。一方、蛍光光度法では、ppmオーダーで、溶媒の影響を排除して対象有機物の同定が可能である。特に、蛍光光度法では蛍光ピークの位置により有機物の特定が可能である(参考文献:Environ.sci.Technol.2003,37,5701-5710 Chenら)。例えば、微生物による副産物は励起波長250nm〜340nm、蛍光波長300nm〜380nm、芳香族タンパク質は励起波長200nm〜250nm、蛍光波長280nm〜380nmに蛍光が強く検出されると言われている。蛍光光度法は、二重結合やベンゼン環などπ結合を有する有機物は蛍光を発するが、無機化合物や、IPAのようなπ結合を有さない有機物では蛍光が発生しない。したがって、溶媒の影響を受けずに、対象有機物の同定が可能となる。最後に、上記のような工程Dの測定結果に基づき超純水中の有機物を評価する評価工程Eを実施する。以上、超純水を加熱せず濃縮するため、有機物を変性させることなく、安価に有機物を評価できる。 Subsequently, step D of measuring the obtained eluate by the fluorescence intensity method is carried out. The fluorometric method is a method for identifying an organic substance by putting a target liquid in a cell and acquiring a three-dimensional fluorescence spectrum. LC-OCD (Dissolved Organic Carbon Separation Measuring Device), which is known as a method for identifying organic substances, cannot measure a target organic substance due to the influence of the organic solvent when an organic solvent is introduced. Further, FT-IR has low sensitivity, and it is necessary to further increase the concentration rate, which is not practical. On the other hand, in the fluorometric method, it is possible to identify the target organic substance by eliminating the influence of the solvent on the order of ppm. In particular, in the fluorescence intensity method, organic substances can be identified by the position of the fluorescence peak (Reference: Environment.sci.Technol.2003,37,5701-5710 Chen et al.). For example, it is said that by-products of microorganisms are strongly detected at excitation wavelengths of 250 nm to 340 nm and fluorescence wavelengths of 300 nm to 380 nm, and aromatic proteins are strongly detected at excitation wavelengths of 200 nm to 250 nm and fluorescence wavelengths of 280 nm to 380 nm. In the fluorometric method, an organic substance having a π bond such as a double bond or a benzene ring emits fluorescence, but an inorganic compound or an organic substance having no π bond such as IPA does not generate fluorescence. Therefore, the target organic matter can be identified without being affected by the solvent. Finally, the evaluation step E for evaluating the organic matter in the ultrapure water is carried out based on the measurement result of the step D as described above. As described above, since the ultrapure water is concentrated without heating, the organic substance can be evaluated inexpensively without denaturing the organic substance.

次に、超純水製造システムの出口に設けられたろ過膜の膜ファウリング等の汚染の原因を特定するための方法について説明する。
図2は、本発明が適用される超純水製造システムの配置例を示すものであり、主に二次超純水製造システムを示している。一次純水製造システムで得られた純水が貯留された純水タンク11から超純水製造システムの出口のUF膜15の間に、必要な装置が配置される。この例では、ポンプ12、UV装置13、樹脂塔14が配置される例を示しているが、これに限定されるものではない。又、図3は本実施形態の特定方法を説明するフロー図を示す。以下、図2及び図3を参照して、本実施形態の方法について説明する。
Next, a method for identifying the cause of contamination such as membrane fouling of the filtration membrane provided at the outlet of the ultrapure water production system will be described.
FIG. 2 shows an arrangement example of an ultrapure water production system to which the present invention is applied, and mainly shows a secondary ultrapure water production system. The necessary equipment is arranged between the pure water tank 11 in which the pure water obtained in the primary pure water production system is stored and the UF membrane 15 at the outlet of the ultrapure water production system. In this example, the pump 12, the UV device 13, and the resin tower 14 are arranged, but the present invention is not limited to this. Further, FIG. 3 shows a flow chart illustrating a method for specifying the present embodiment. Hereinafter, the method of the present embodiment will be described with reference to FIGS. 2 and 3.

UF膜15での閉塞の原因物質の発生源を特定するため、UF膜15の前段であって、各装置の後段に超純水中の有機物を多孔質体上に付着させるために濃縮キット21A〜21Dを設置する。濃縮キット21A〜21Dにより、ろ過膜の前段にある複数の装置のそれぞれの出口の超純水をサンプリングするサンプリング工程A’と、該サンプリングされた超純水をそれぞれ多孔質体に通過させて、該超純水中の有機物を該多孔質体上に付着させる付着工程B’とが実施される。各濃縮キットから付着させた有機物を溶出して溶出液A〜Dを得る溶出工程C’を実施する。また、UF膜15にも膜ファウリングの原因となる有機物が吸着しているため、UF膜15からも溶出を行い、溶出液E(対照溶出液)を得る溶出工程C’’を実施する。溶出液Eと溶出液A〜Dをそれぞれ蛍光光度法により測定する測定工程D’を実施する。測定工程D’での溶出液Eに現れる蛍光ピークと、溶出液A〜Dに現れる蛍光ピークとを比較して、溶出液Eに現れる蛍光ピークで同定される有機物を含む装置の出口の超純水を特定する比較・特定工程E’を実施する。すなわち、比較・特定工程E’は、蛍光ピークの比較により、溶出液Eに現れる蛍光ピークにて同定される有機物が、どの装置が原因で発生しているかを特定する。以上により、膜ファウリングの原因(原因物質とその発生箇所)の特定が可能となる。 Concentration kit 21A for adhering organic substances in ultrapure water to the porous body in the front stage of the UF membrane 15 and in the rear stage of each device in order to identify the source of the causative substance of the clogging in the UF membrane 15. ~ 21D is installed. Using the concentration kits 21A to 21D, the sampling step A'for sampling the ultrapure water at the outlets of the plurality of devices in front of the filtration membrane and the sampled ultrapure water are passed through the porous body, respectively. The adhesion step B'for adhering the organic matter in the ultrapure water onto the porous body is carried out. The elution step C'is carried out by eluting the attached organic substances from each concentration kit to obtain eluates A to D. Further, since the organic substance causing the membrane fouling is also adsorbed on the UF membrane 15, the elution step C ″ is carried out to obtain the eluate E (control eluate) by eluting from the UF membrane 15 as well. A measurement step D'for measuring the eluate E and the eluates A to D by the fluorescence intensity method is carried out. The fluorescence peak appearing in the eluate E in the measurement step D'is compared with the fluorescence peak appearing in the eluates A to D, and the ultrapure water at the outlet of the apparatus containing the organic substance identified by the fluorescence peak appearing in the eluate E is compared. Perform comparison / identification step E'to identify water. That is, the comparison / identification step E'identifies which device causes the organic substance identified by the fluorescence peak appearing in the eluate E by comparing the fluorescence peaks. From the above, it is possible to identify the cause of membrane fouling (causative substance and its occurrence location).

なお、サンプリング工程A’および付着工程B’は各濃縮キットにて現場にて実施され、溶出工程C’およびC’’、並びに測定工程D’は、濃縮キットを水処理システムから取り外した後、濃縮キットの逆洗や、現場あるいは実験室等で多孔質体を回収して溶媒中に浸漬して溶出液を得て、その溶出液を実験室等に設置された蛍光光度計にて分析すればよい。 The sampling step A'and the adhesion step B'are carried out on-site in each concentration kit, and the elution steps C'and C'and the measurement step D'are performed after the concentration kit is removed from the water treatment system. Backwash the concentration kit, collect the porous body in the field or in a laboratory, immerse it in a solvent to obtain an eluate, and analyze the eluate with a fluorometer installed in the laboratory. Just do it.

また、膜ファウリングが発生している場合、UF膜の設置タンクの底部にファウリング物質が堆積していることがある。したがって、タンク底部の水を採取して、濃縮せずにそのまま蛍光光度法による分析に供してもよい。 In addition, when membrane fouling occurs, the fouling substance may be deposited on the bottom of the UF membrane installation tank. Therefore, the water at the bottom of the tank may be sampled and used as it is for analysis by the fluorescence intensity method without being concentrated.

このように、膜ファウリングの原因物質の同定とともに発生か所を突き止めることで、その装置の構成部品を膜ファウリングが発生しにくい材料に変更する、あるいは、別途洗浄や殺菌により、原因物質の除去や微生物等の除去を行うことができる。結果として、膜ファウリングの発生を抑制することができる。 In this way, by identifying the causative substance of membrane fouling and identifying the location of occurrence, the components of the device can be changed to a material that does not easily cause membrane fouling, or the causative substance can be separately washed or sterilized. It can be removed and microorganisms can be removed. As a result, the occurrence of membrane fouling can be suppressed.

以下、実施例により本発明を具体的に説明する。
図4は、閉塞UF膜(A)と新品UF膜(B)からIPAにより溶出した溶出液の蛍光3次元スペクトルを示す。
閉塞UF膜としては、新品UF膜に対し4m/hrで約120日通水したものを用いた。閉塞UF膜に付着した有機物をIPA約10Lで溶出させて溶出液を得て、さらに溶出液をIPAで5倍に希釈して蛍光光度法にて測定した。新品UF膜についても同様の操作により溶出液を得た。
図5は、図4(A)から図4(B)を差し引いた差スペクトルを示す。つまり、この図5に示すスペクトルに膜ファウリングの原因物質が示されていることになる。図5によると励起波長250nm〜340nm、蛍光波長300nm〜380nmに溶解性微生物副産物、励起波長200nm〜250nm,蛍光波長280nm〜380nmに芳香族タンパク質の強い蛍光ピークが検出されている。
Hereinafter, the present invention will be specifically described with reference to Examples.
FIG. 4 shows a three-dimensional fluorescence spectrum of the eluate eluted by IPA from the closed UF membrane (A) and the new UF membrane (B).
As the occluded UF membrane, a new UF membrane in which water was passed at 4 m 3 / hr for about 120 days was used. The organic matter adhering to the occluded UF membrane was eluted with about 10 L of IPA to obtain an eluate, and the eluate was further diluted 5-fold with IPA and measured by the fluorescence fluorescence method. An eluate was obtained for the new UF membrane by the same operation.
FIG. 5 shows a difference spectrum obtained by subtracting FIG. 4 (B) from FIG. 4 (A). That is, the causative substance of the membrane fouling is shown in the spectrum shown in FIG. According to FIG. 5, soluble microbial by-products are detected at an excitation wavelength of 250 nm to 340 nm and a fluorescence wavelength of 300 nm to 380 nm, and a strong fluorescence peak of an aromatic protein is detected at an excitation wavelength of 200 nm to 250 nm and a fluorescence wavelength of 280 nm to 380 nm.

図6に純水タンクの出口水(ここでは、純水タンクの底部の水を採取)の蛍光3次元スペクトルを示す。図6において励起波長250nm〜340nm、蛍光波長300nm〜380nmに溶解性微生物副産物、励起波長200nm〜250nm,蛍光波長280nm〜380nmに芳香族タンパク質の強い蛍光ピークが検出されている。 FIG. 6 shows a three-dimensional fluorescence spectrum of the outlet water of the pure water tank (here, the water at the bottom of the pure water tank is collected). In FIG. 6, soluble microbial by-products are detected at excitation wavelengths of 250 nm to 340 nm and fluorescence wavelengths of 300 nm to 380 nm, and strong fluorescence peaks of aromatic proteins are detected at excitation wavelengths of 200 nm to 250 nm and fluorescence wavelengths of 280 nm to 380 nm.

図5によりUF膜の閉塞の原因となっている有機物は、溶解性微生物副産物や芳香族タンパク質であり、図6により純水タンクで発生していることが解析できる。また超純水中の極微量の有機物として、溶解性微生物副産物や芳香族有機物が同定できることが確認された。 It can be analyzed from FIG. 5 that the organic substances causing the blockage of the UF membrane are soluble microbial by-products and aromatic proteins, and that they are generated in the pure water tank according to FIG. It was also confirmed that soluble microbial by-products and aromatic organic substances can be identified as trace amounts of organic substances in ultrapure water.

11 純水タンク
12 ポンプ
13 UV装置
14 樹脂塔
15 出口ろ過膜(UF膜)
21A〜21D 濃縮キット
11 Pure water tank 12 Pump 13 UV device 14 Resin tower 15 Outlet filtration membrane (UF membrane)
21A-21D Concentration Kit

Claims (8)

超純水製造システムの超純水をサンプリングする第1工程と、
該サンプリングされた超純水を多孔質体に通過させて、該超純水中の有機物を該多孔質体上に付着させる第2工程と、
前記多孔質体に付着した有機物を溶出させて溶出液を得る第3工程と、
該溶出液を蛍光光度法により測定する第4工程と、
前記第4工程における測定に基づき前記超純水中の有機物を評価する第5工程と
を有することを特徴とする超純水中の有機物評価方法。
The first process of sampling ultrapure water in an ultrapure water production system,
The second step of passing the sampled ultrapure water through the porous body and adhering the organic matter in the ultrapure water onto the porous body.
The third step of eluting the organic substance adhering to the porous body to obtain an eluate, and
The fourth step of measuring the eluate by the fluorescence intensity method, and
A method for evaluating an organic substance in ultrapure water, which comprises a fifth step of evaluating the organic substance in the ultrapure water based on the measurement in the fourth step.
前記第1工程は超純水製造システムの出口に設けられたろ過膜前の超純水をサンプリングするものであり、
前記多孔質体は、前記ろ過膜と同等以下の分画分子量を有するろ過膜、モノリス樹脂、合成吸着剤から選択される1種である、請求項1に記載の超純水中の有機物評価方法。
The first step is to sample the ultrapure water in front of the filtration membrane provided at the outlet of the ultrapure water production system.
The method for evaluating an organic substance in ultrapure water according to claim 1, wherein the porous body is one selected from a filtration membrane having a molecular weight cut-off equal to or less than that of the filtration membrane, a monolith resin, and a synthetic adsorbent. ..
前記第3工程で有機物を溶出させる溶媒が、アルコール類、酸水溶液、アルカリ水溶液から選択される1種であることを特徴とする請求項1又は2に記載の超純水中の有機物評価方法。 The method for evaluating an organic substance in ultrapure water according to claim 1 or 2, wherein the solvent for eluting the organic substance in the third step is one selected from alcohols, an acid aqueous solution, and an alkaline aqueous solution. 前記有機物が、励起波長200nm〜340nm、蛍光波長280nm〜380nmの蛍光強度を有するものである請求項1乃至3のいずれか1項に記載の超純水中の有機物評価方法。 The method for evaluating an organic substance in ultrapure water according to any one of claims 1 to 3, wherein the organic substance has a fluorescence intensity of an excitation wavelength of 200 nm to 340 nm and a fluorescence wavelength of 280 nm to 380 nm. 超純水製造システムの出口に設けられたろ過膜の前段にある複数の装置のそれぞれの出口の超純水をサンプリングする第1工程と、
該サンプリングされた超純水をそれぞれ多孔質体に通過させて、該超純水中の有機物を該多孔質体上に付着させる第2工程と、
それぞれの多孔質体に付着した有機物を溶出させて溶出液を得る第3工程と、
前記ろ過膜に付着した有機物を溶出させて対照溶出液を得る第4工程と、
前記第3工程で得た各溶出液と、前記第4工程で得た対照溶出液を蛍光光度法により測定する第5工程と、
前記第5工程の測定結果より得られる、前記対照溶出液に現れる蛍光ピークとそれぞれの前記溶出液に現れる蛍光ピークとを比較して、前記対照溶出液に現れる蛍光ピークで同定される有機物を含む前記超純水を特定する第6工程と、を有することを特徴とする超純水製造システムにおける有機物特定方法。
The first step of sampling the ultrapure water at each outlet of a plurality of devices in front of the filtration membrane provided at the outlet of the ultrapure water production system, and
The second step of passing the sampled ultrapure water through the porous body and adhering the organic matter in the ultrapure water onto the porous body.
The third step of eluting the organic matter adhering to each porous body to obtain an eluate, and
The fourth step of eluting the organic matter adhering to the filtration membrane to obtain a control eluate, and
Each eluate obtained in the third step and a control eluate obtained in the fourth step are measured by a fluorescence intensity method in a fifth step.
The fluorescence peak appearing in the control eluate and the fluorescence peak appearing in each of the eluents obtained from the measurement result of the fifth step are compared, and the organic substance identified by the fluorescence peak appearing in the control eluate is contained. A method for identifying an organic substance in an ultrapure water production system, which comprises a sixth step of identifying the ultrapure water.
前記多孔質体は、前記ろ過膜と同等以下の分画分子量を有するろ過膜、モノリス樹脂、合成吸着剤から選択される1種である、請求項5に記載の超純水製造システムにおける有機物特定方法。 The organic substance identification in the ultrapure water production system according to claim 5, wherein the porous body is one selected from a filtration membrane having a molecular weight cut-off equal to or less than that of the filtration membrane, a monolith resin, and a synthetic adsorbent. Method. 前記第3工程及び第4工程で有機物を溶出させる溶媒が、アルコール類、酸水溶液、アルカリ水溶液から選択される1種であることを特徴とする請求項5又は6に記載の有超純水製造システムにおける有機物特定方法。 The ultrapure water production according to claim 5 or 6, wherein the solvent for eluting the organic substance in the third step and the fourth step is one selected from alcohols, an acid aqueous solution, and an alkaline aqueous solution. How to identify organic matter in the system. 前記有機物が、励起波長200nm〜340nm、蛍光波長280nm〜380nmの蛍光強度を有するものである請求項5乃至7のいずれか1項に記載の超純水製造システムにおける有機物特定方法。 The method for identifying an organic substance in an ultrapure water production system according to any one of claims 5 to 7, wherein the organic substance has a fluorescence intensity of an excitation wavelength of 200 nm to 340 nm and a fluorescence wavelength of 280 nm to 380 nm.
JP2019031452A 2019-02-25 2019-02-25 Method for evaluating organic matter in ultrapure water and method for identifying organic matter in ultrapure water production system Active JP7195177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019031452A JP7195177B2 (en) 2019-02-25 2019-02-25 Method for evaluating organic matter in ultrapure water and method for identifying organic matter in ultrapure water production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019031452A JP7195177B2 (en) 2019-02-25 2019-02-25 Method for evaluating organic matter in ultrapure water and method for identifying organic matter in ultrapure water production system

Publications (2)

Publication Number Publication Date
JP2020134434A true JP2020134434A (en) 2020-08-31
JP7195177B2 JP7195177B2 (en) 2022-12-23

Family

ID=72262890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019031452A Active JP7195177B2 (en) 2019-02-25 2019-02-25 Method for evaluating organic matter in ultrapure water and method for identifying organic matter in ultrapure water production system

Country Status (1)

Country Link
JP (1) JP7195177B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332342A (en) * 1986-07-25 1988-02-12 Nec Corp Apparatus for extracting and thickening organic matter in water
JP2001153854A (en) * 1999-11-29 2001-06-08 Japan Organo Co Ltd Monitoring method and system for impurity concentration
JP2003275760A (en) * 2002-03-19 2003-09-30 Kurita Water Ind Ltd Method and apparatus for treating water and method for analyzing contaminant of reverse osmosis membrane
JP2009156657A (en) * 2007-12-26 2009-07-16 Japan Organo Co Ltd Automatic solid-phase pretreatment apparatus and solid-phase pretreatment method of sample water
US20120001094A1 (en) * 2006-10-27 2012-01-05 University Of South Florida Deep-uv led and laser induced fluorescence detection and monitoring of trace organics in potable liquids
JP2012192315A (en) * 2011-03-15 2012-10-11 Toshiba Corp Fouling prediction method, and membrane filtration system
JP2016107235A (en) * 2014-12-10 2016-06-20 水ing株式会社 Analysis method for contaminated condition of separation membrane, evaluation method for water quality of filtration object water using the same, and filtration system for performing analysis method for contaminated condition of separation membrane
JP2017227577A (en) * 2016-06-24 2017-12-28 オルガノ株式会社 Evaluation method for organic matter in water in water treatment system and water treatment system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332342A (en) * 1986-07-25 1988-02-12 Nec Corp Apparatus for extracting and thickening organic matter in water
JP2001153854A (en) * 1999-11-29 2001-06-08 Japan Organo Co Ltd Monitoring method and system for impurity concentration
JP2003275760A (en) * 2002-03-19 2003-09-30 Kurita Water Ind Ltd Method and apparatus for treating water and method for analyzing contaminant of reverse osmosis membrane
US20120001094A1 (en) * 2006-10-27 2012-01-05 University Of South Florida Deep-uv led and laser induced fluorescence detection and monitoring of trace organics in potable liquids
JP2009156657A (en) * 2007-12-26 2009-07-16 Japan Organo Co Ltd Automatic solid-phase pretreatment apparatus and solid-phase pretreatment method of sample water
JP2012192315A (en) * 2011-03-15 2012-10-11 Toshiba Corp Fouling prediction method, and membrane filtration system
JP2016107235A (en) * 2014-12-10 2016-06-20 水ing株式会社 Analysis method for contaminated condition of separation membrane, evaluation method for water quality of filtration object water using the same, and filtration system for performing analysis method for contaminated condition of separation membrane
JP2017227577A (en) * 2016-06-24 2017-12-28 オルガノ株式会社 Evaluation method for organic matter in water in water treatment system and water treatment system

Also Published As

Publication number Publication date
JP7195177B2 (en) 2022-12-23

Similar Documents

Publication Publication Date Title
Fernández-Amado et al. Strengths and weaknesses of in-tube solid-phase microextraction: a scoping review
JP4518799B2 (en) Solid phase extraction apparatus and method for purifying a sample before analysis
Oliferova et al. On-line solid-phase extraction and HPLC determination of polycyclic aromatic hydrocarbons in water using fluorocarbon polymer sorbents
JP6800144B2 (en) Nucleic acid purification cartridge
JP2009540274A5 (en)
Anthemidis et al. An automated flow injection system for metal determination by flame atomic absorption spectrometry involving on-line fabric disk sorptive extraction technique
KR100811199B1 (en) A method for prediction/evaluation of membrane fouling, using flow-field flow fractionation technique
US5393673A (en) Method for particulate reagent sample treatment
KR20090094269A (en) Method for quantitative determination of nickel and/or copper and equipment to be used in the method
US6296685B1 (en) Device and method for sampling in liquid phases using a diffusion body and an analyte-binding phase
CN114127552B (en) Improving recovery of organic compounds in liquid samples using pervaporation vacuum extraction, thermal desorption and GCMS analysis
Chen et al. Advances in the on-line solid-phase extraction-liquid chromatography-mass spectrometry analysis of emerging organic contaminants
EP2158480B1 (en) Method for screening mobile phases in chromatography systems
JP7195177B2 (en) Method for evaluating organic matter in ultrapure water and method for identifying organic matter in ultrapure water production system
CN106323689B (en) Trace polar organic pollutant trap with water quality monitoring as guide
US4267056A (en) Sample preparation apparatus and process for the use thereof
SHAHTAHERI et al. Monitoring of mandelic acid as a biomarker of environmental and occupational exposures to styrene
JP4641242B2 (en) Sample analysis pretreatment method, sample analysis pretreatment pH indicator, and sample analysis pretreatment kit
US20230296578A1 (en) Method for analysing water
Kraleva et al. Determination of PAH in the black sea water by GC/MS following preconcentration with solid-phase extraction
JP2002205053A (en) System for monitoring raw water and method for controlling operation of concentrating/separating apparatus using the same
JP2003275760A (en) Method and apparatus for treating water and method for analyzing contaminant of reverse osmosis membrane
Wei et al. Analysis of herbicides on a single C30 bead via a microfluidic device combined with electrospray ionization quadrupole time-of-flight mass spectrometer
Li et al. Multilayer and multichannel membrane filtration for separation and preconcentration of trace analytes and its application in spectral analysis
JP2007155465A (en) Analyzing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221213

R150 Certificate of patent or registration of utility model

Ref document number: 7195177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150