JPS633205A - Optical thickness measuring instrument - Google Patents

Optical thickness measuring instrument

Info

Publication number
JPS633205A
JPS633205A JP14644586A JP14644586A JPS633205A JP S633205 A JPS633205 A JP S633205A JP 14644586 A JP14644586 A JP 14644586A JP 14644586 A JP14644586 A JP 14644586A JP S633205 A JPS633205 A JP S633205A
Authority
JP
Japan
Prior art keywords
numerical aperture
objective lens
condensed
optical thickness
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14644586A
Other languages
Japanese (ja)
Inventor
Masahiro Ono
大野 政博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP14644586A priority Critical patent/JPS633205A/en
Publication of JPS633205A publication Critical patent/JPS633205A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To select measurement resolution and a measurement range optionally by adding a member which varies the numerical aperture of the convergent luminous flux of an objective. CONSTITUTION:A variable diameter stop 20 which varies the numerical aperture NA0 is provided in the objective 4, and consequently even if the distance between the maximum points of on-axis center intensity on the top surface and reverse surface of a body 5 to be inspected becomes less than distance (a), the resolution is improved by increasing the numerical aperture NA0, thereby taking a measurement. Therefore, even when the thickness (t) of the body 5 to be inspect varies variously, it is measured by varying the numerical aperture NA0.

Description

【発明の詳細な説明】 a、技術分野 本発明は薄板ガラスの光学式肉厚測定装置の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION a. Technical Field The present invention relates to an improvement in an optical thickness measuring device for thin glass.

b、従来技術及びその問題点 薄板ガラスを光学的に測定する方法として、本出願人が
昭和61年6月20日に特許出願した発明がある。この
方法は、第5図に示すように、十分小さな光源1からの
光を透明ないしは半透明の被検物5に開口数NA0を持
つ対物レンズ4で集光光束を投射し、集光光束による集
光点もしくは被検物を対物レンズの光軸方向に移動し、
被検物のの表面及び裏面でのそれぞれの集光光束の軸上
中心強度最大の位置を測定し、演算により肉厚を求めて
いた(第5図の詳細は後述する第1図の実施例より明ら
かとなるので省略する。)が、集光光束の開口数NA、
が固定だったため、開口数NA、で決る測定分解能及び
測定範囲しか得られなかった。従って、任意の測定分解
能及び範囲を可能とするためには改良の余地があった。
b. Prior art and its problems There is an invention for which the present applicant filed a patent application on June 20, 1986, as a method for optically measuring thin glass. As shown in FIG. 5, in this method, light from a sufficiently small light source 1 is projected onto a transparent or semi-transparent object 5 using an objective lens 4 having a numerical aperture of NA0, and the condensed light beam is Move the condensing point or the object to be measured in the direction of the optical axis of the objective lens,
The position of the maximum axial central intensity of the condensed light beam on the front and back surfaces of the test object was measured, and the wall thickness was determined by calculation (the details of Figure 5 are explained later in the example of Figure 1). ) is the numerical aperture NA of the condensed light beam,
Since it was fixed, only the measurement resolution and measurement range determined by the numerical aperture NA could be obtained. Therefore, there is room for improvement in order to enable arbitrary measurement resolution and range.

C0目的 本発明は上述の点に鑑みなされたもので、対物レンズの
集光光束の開口数NA、を可変とする様な部材を付加す
る事により、任意の測定分解能や測定範囲を選択可能な
光学式厚み測定装置を提供する事を目的とする。
C0 Purpose The present invention was developed in view of the above points, and by adding a member that makes the numerical aperture NA of the condensed light beam of the objective lens variable, it is possible to select any measurement resolution or measurement range. The purpose is to provide an optical thickness measuring device.

d、実施例の効果及び作用 上記目的を達成させるために本発明の肉厚測定装置で光
源にレーザーを用いた一実施例を第1図に基づいて説明
する。
d. Effects and Functions of the Embodiment In order to achieve the above objects, an embodiment in which a laser is used as a light source in the wall thickness measuring device of the present invention will be described with reference to FIG.

直線偏光レーザー1からの光は、ビームエキスパンダー
2により拡大され、1/4波長板3を経て円偏光となり
、対物レンズ4によって屈折率n。
The light from the linearly polarized laser 1 is expanded by a beam expander 2, passes through a quarter-wave plate 3, becomes circularly polarized light, and is turned into circularly polarized light by an objective lens 4 with a refractive index n.

肉厚tを持つ被検物5に開口数NA、の集光光束として
投射される。この対物レンズ4の中には開口数NA、を
可変可能とする径可変絞り20が設置されている。被検
物5からの反射光は、レーザー発振光とは偏光方向が直
交した光となり、偏光ビームスプリッッタ−6にて光電
変換素子7に導かれる。光電変換素子7の前には反射光
の軸上中心強度を選択するための絞り8が設置されてい
る。
The light beam is projected onto the object 5 having a wall thickness t as a condensed light beam having a numerical aperture NA. A variable-diameter diaphragm 20 is installed in the objective lens 4 so that the numerical aperture NA can be varied. The reflected light from the test object 5 becomes light whose polarization direction is perpendicular to that of the laser oscillation light, and is guided to the photoelectric conversion element 7 by the polarization beam splitter 6. A diaphragm 8 is installed in front of the photoelectric conversion element 7 for selecting the axial center intensity of the reflected light.

光電変換素子7からのアナログ信号は、サンプルホール
ド回路9、A/D変換回路1oを経てデジタル信号とな
り、マイコン11に入力される。−方、被検物5を対物
レンズ4の光軸方向に図示していない移動手段で動かす
と、被検物5の表面5−a及び裏面5−bでピントが合
い、光電変換素子7上の信号工は最大となる。この表面
5−a及び裏面5−bでのピント位置の差aを測長スケ
ール12で読み取り、その読み取り信号をマイコン11
に入力する。マイコン11は屈折率n2間開口数A0.
ピント位置の差aなどの値から被検物の肉厚tを計算す
る。
The analog signal from the photoelectric conversion element 7 becomes a digital signal through a sample hold circuit 9 and an A/D conversion circuit 1o, and is input to the microcomputer 11. - On the other hand, when the test object 5 is moved in the optical axis direction of the objective lens 4 using a moving means (not shown), the front surface 5-a and back surface 5-b of the test object 5 are brought into focus, and the photoelectric conversion element 7 is brought into focus. The number of signal engineers will be the maximum. The difference a between the focus positions on the front surface 5-a and the back surface 5-b is read by the length measuring scale 12, and the read signal is sent to the microcomputer 11.
Enter. The microcomputer 11 has a refractive index n2 and a numerical aperture A0.
The wall thickness t of the object to be inspected is calculated from values such as the difference a between the focus positions.

第2図にピントずれZに対する軸上中心強度■の開票を
説明する図を示す。2−1図の様に集光光束の開口数N
A0とすると、被検物5の表面5−aのピント面13及
び裏面5−bのピント面14で軸上中心強度工は最大と
なり、この間の距離(ピント位置の差)、aを測定する
事により被検物5の肉厚tはもとまる。
FIG. 2 is a diagram illustrating the calculation of the axial center strength (■) with respect to the out-of-focus Z. As shown in Figure 2-1, the numerical aperture N of the condensed beam is
Assuming A0, the axial center strength is maximum at the focus surface 13 of the front surface 5-a and the focus surface 14 of the back surface 5-b of the test object 5, and the distance between them (difference in focus position), a, is measured. Depending on the situation, the wall thickness t of the test object 5 may be reduced.

ところが、被検物の肉厚が薄くなり、前記距離aがだん
だん小さくなると(すなわち裏面のピント面14が表面
のピント面13に接近してくると)、被検物の表面及び
裏面の軸上中心強度のピークの位置(両ピント面13と
14の位置)が区別できなくなり、測定不能となる。こ
の事は、対物レンズ4の焦点深度、すなわちピントずれ
Z軸方向の分解能に大きく依存する。今、被検物5に投
射する光の波長をλとし軸上中心強度工が最大値の80
%になるピントずれZ方向での長さを焦点深度z0とす
ると、2Qは λ Zo:±□ 2NAo”で表せる。
However, as the thickness of the object becomes thinner and the distance a gradually decreases (that is, when the focus surface 14 on the back surface approaches the focus surface 13 on the front surface), the distance on the axis of the front and back surfaces of the object becomes smaller. The position of the peak of the center intensity (the position of both focus planes 13 and 14) becomes indistinguishable, and measurement becomes impossible. This greatly depends on the depth of focus of the objective lens 4, that is, the resolution of the focus shift in the Z-axis direction. Now, let us assume that the wavelength of the light projected onto the test object 5 is λ, and the axial center intensity is 80, which is the maximum value.
%, the length in the Z direction of the focus shift is defined as the depth of focus z0, then 2Q can be expressed as λ Zo:±□ 2NAo''.

例えばλ岬o、63μとし、NAo=0.4とするとZ
。幻±2μ、NA、=0.65とすると、Z0=±0.
8μと焦点深度は集光光束の開口数NA0によって大き
く変わる。
For example, if λo is 63μ and NAo=0.4, then Z
. If phantom ±2μ, NA = 0.65, then Z0 = ±0.
The depth of focus, which is 8μ, varies greatly depending on the numerical aperture NA0 of the condensed light beam.

従って2−2図に示すように、被検物の表面及び裏面で
の軸上中心強度の最大の点15,16間の距離が、2−
1図の距離aに比べて小さなa′になっても、開口数N
A、をNAa’ と大きくする事により分解能が向上す
るため測定可能となる。
Therefore, as shown in Figure 2-2, the distance between the points 15 and 16 of the maximum axial center intensity on the front and back surfaces of the test object is 2-2.
Even if the distance a′ is smaller than the distance a in Figure 1, the numerical aperture N
By increasing A to NAa', the resolution improves and measurement becomes possible.

−方、2−3図に示す様に、被検物の肉厚が厚くなると
、集光光束が被検物を透過する時発生する球面収差が大
きくなり、裏面での軸上中心強度のピントずれZに対す
る変化率はゆるやかとなり、軸上中心強度最大の点18
は決定しにくくなる。
On the other hand, as shown in Figure 2-3, as the thickness of the object becomes thicker, the spherical aberration that occurs when the condensed light beam passes through the object increases, and the axial central intensity on the back surface becomes more focused. The rate of change with respect to the deviation Z becomes gradual, and the point 18 of the maximum axial center strength
becomes difficult to determine.

従って表面及び裏面での軸上中心強度の最大点17.1
8の距離a ”の測定再現性は悪くなり、肉厚測定精度
は落ちる。今、集光光束が被検物を透過する事により発
生する球面収差による波面収差をWとすると、Wは と表わせ、第3図に示す様な値となる。波面収差の大き
さがλになると、無収差の時に比べ、軸上中心強度最大
の大きさが約80%となり、この時の肉厚を厚い方の肉
厚測定限界とすると、n≠1.5とし、NA、=0.6
5+で too、05nn+、N An ” 0 、4
でt無0.47mmとなり、開口数NAoにより大きく
変わる。従って被検物の厚さが種々に変化しても、開口
数N A、を変える事で測定可能となる。
Therefore, the maximum point of axial center strength on the front and back surfaces 17.1
8, the measurement reproducibility of the distance a'' deteriorates, and the accuracy of wall thickness measurement decreases.Now, let W be the wavefront aberration due to spherical aberration that occurs when the condensed light beam passes through the test object, then W can be expressed as , the value is as shown in Figure 3.When the magnitude of the wavefront aberration becomes λ, the maximum axial center intensity becomes about 80% of that when there is no aberration, and the wall thickness at this time is set to be thicker. If the wall thickness measurement limit is n≠1.5, NA = 0.6
5+ too, 05nn+, N An” 0, 4
t is 0.47 mm, which varies greatly depending on the numerical aperture NAo. Therefore, even if the thickness of the object to be tested varies, it can be measured by changing the numerical aperture NA.

また第4図に示す様に、光源光学系内に光束の広がりを
可変とするズームエキスパンダー19を設置すると、対
物レンズの開口数NA、をいかに変えても、それに付随
して光源側の開口数NAもN Aoo、 N Aozと
変えられるため、光源のエネルギーを有効に使えるし、
光電検出側の受光エネルギーも調節できるため、信号処
理回路にも有利となる。
Furthermore, as shown in Fig. 4, if a zoom expander 19 is installed in the light source optical system to make the spread of the light flux variable, no matter how much the numerical aperture NA of the objective lens is changed, the numerical aperture of the light source side will change accordingly. Since the NA can be changed to NAoo or NAoz, the energy of the light source can be used effectively.
Since the received light energy on the photoelectric detection side can also be adjusted, it is also advantageous for signal processing circuits.

もちろん対物レンズ側開口数NA0と光源側開口数NA
とが連動して変化するとすれば、前記のメリットは、よ
り発生する事は言うまでもない。
Of course, the objective lens side numerical aperture NA0 and the light source side numerical aperture NA
It goes without saying that the above-mentioned benefits will be even more pronounced if these changes occur in conjunction with each other.

e、効果 以上説明したように、本発明を用いると、種々の肉厚を
持つ被検物を所要の分解能で測定する事が可能となり、
測定装置の適用範囲が広がる。
e. Effects As explained above, by using the present invention, it is possible to measure objects with various wall thicknesses with the required resolution,
The scope of application of measurement equipment is expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す説明図、第2図はピン
トずれに対する被検物の表面及び裏面における軸上中心
強度を示す図、第3図は肉厚tに対する透過波面収差W
が開口数NA、により変ることを示す図、第4図は光源
側にズームエキスパンダーを設置した図、第5図は従来
の設置の説明図である。 1:レーザー 2:ビームエキスパンダー3 : 1/
4波長板 4:対物レンズ 5:被検物6:偏光ビーム
スプリッタ−7:光電変換素子8:絞り 9:サンプル
ホールド回路 10:A/D変換回路 11:マイコン12:?III
I長スケール 19:ズームエキスパンダー20:径可
変絞り(集光光束のNAoを可変とする部材) 特許出願人   旭光学工業株式会社 代表者 松本 徹 第4図
FIG. 1 is an explanatory diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing the axial center intensity on the front and back surfaces of the test object with respect to defocus, and FIG. 3 is a diagram showing the transmitted wavefront aberration W with respect to the wall thickness t.
FIG. 4 is a diagram showing that the zoom expander is installed on the light source side, and FIG. 5 is an explanatory diagram of the conventional installation. 1: Laser 2: Beam expander 3: 1/
4 wavelength plate 4: Objective lens 5: Test object 6: Polarizing beam splitter 7: Photoelectric conversion element 8: Aperture 9: Sample hold circuit 10: A/D conversion circuit 11: Microcomputer 12: ? III
I length scale 19: Zoom expander 20: Variable diameter diaphragm (member that makes the NAo of the condensed light beam variable) Patent applicant Asahi Optical Co., Ltd. Representative Toru Matsumoto Figure 4

Claims (1)

【特許請求の範囲】 1 十分小さな光源からの光を透明ないしは半透明な被
検物に開口数NA_0を持つ対物レンズで集光光束を投
射し、集光光束による集光点もしくは被検物を対物レン
ズの光軸方向に移動し、被検物の表面及び裏面でのそれ
ぞれの集光光束の軸上中心強度最大位置を測定し演算す
る事により被検物の肉厚を求める光学式厚み測定装置に
おいて、前記対物レンズの集光光束の開口数NA_0の
大きさを可変とする部材を付加した事を特徴とする光学
式厚み測定装置。 2 対物レンズの集光光束の開口数NA_0の大きさを
可変とする部材は、対物レンズ内に設けた径可変絞りで
ある事を特徴とする特許請求の範囲第1項記載の光学式
厚み測定装置。 3 光源光学系内に光束の広がりを可変とするズームエ
キスパンダーを設置した事を特徴とする特許請求の範囲
第1項記載の光学式厚み測定装置。
[Claims] 1. Projecting a condensed beam of light from a sufficiently small light source onto a transparent or semi-transparent object using an objective lens with a numerical aperture NA_0, and determining the focal point or object of the condensed beam. Optical thickness measurement that moves in the optical axis direction of the objective lens and measures and calculates the maximum axial center intensity position of each condensed beam on the front and back surfaces of the object to determine the wall thickness of the object. An optical thickness measuring device characterized in that the device further includes a member that changes the size of the numerical aperture NA_0 of the condensed light beam of the objective lens. 2. Optical thickness measurement according to claim 1, wherein the member that changes the size of the numerical aperture NA_0 of the condensed light beam of the objective lens is a variable diameter diaphragm provided within the objective lens. Device. 3. The optical thickness measuring device according to claim 1, characterized in that a zoom expander that makes the spread of the light beam variable is installed in the light source optical system.
JP14644586A 1986-06-23 1986-06-23 Optical thickness measuring instrument Pending JPS633205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14644586A JPS633205A (en) 1986-06-23 1986-06-23 Optical thickness measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14644586A JPS633205A (en) 1986-06-23 1986-06-23 Optical thickness measuring instrument

Publications (1)

Publication Number Publication Date
JPS633205A true JPS633205A (en) 1988-01-08

Family

ID=15407806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14644586A Pending JPS633205A (en) 1986-06-23 1986-06-23 Optical thickness measuring instrument

Country Status (1)

Country Link
JP (1) JPS633205A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002176240A (en) * 2000-12-07 2002-06-21 Shibuya Kogyo Co Ltd Method and system for boring via hole
US7365618B2 (en) 2005-12-06 2008-04-29 Murata Manufacturing Co., Ltd. High-frequency circuit device, high-frequency module, and communication apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160914A (en) * 1982-03-18 1983-09-24 Nippon Kogaku Kk <Nikon> Mirror converging type optical illumination system
JPS60200108A (en) * 1984-03-23 1985-10-09 Daicel Chem Ind Ltd Optical type thickness measuring method and apparatus thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160914A (en) * 1982-03-18 1983-09-24 Nippon Kogaku Kk <Nikon> Mirror converging type optical illumination system
JPS60200108A (en) * 1984-03-23 1985-10-09 Daicel Chem Ind Ltd Optical type thickness measuring method and apparatus thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002176240A (en) * 2000-12-07 2002-06-21 Shibuya Kogyo Co Ltd Method and system for boring via hole
US7365618B2 (en) 2005-12-06 2008-04-29 Murata Manufacturing Co., Ltd. High-frequency circuit device, high-frequency module, and communication apparatus

Similar Documents

Publication Publication Date Title
KR100225923B1 (en) Phase shifting diffraction interferometer
CN109975820B (en) Linnik type interference microscope-based synchronous polarization phase shift focus detection system
JPH0712535A (en) Interferometer
US7106452B2 (en) Measuring device and measuring method
US5309214A (en) Method for measuring distributed dispersion of gradient-index optical elements and optical system to be used for carrying out the method
US6909510B2 (en) Application of the phase shifting diffraction interferometer for measuring convex mirrors and negative lenses
US5694217A (en) Interferometer for testing forms of surface and stress and strain
US4033696A (en) Lens meter
CN109458959B (en) Variable-inclination-angle phase-shift grazing incidence interferometer measuring device and method
JPS633205A (en) Optical thickness measuring instrument
JP2983673B2 (en) Method and apparatus for measuring radius of curvature
JPH05340869A (en) Thin film measuring instrument
JPS6242327Y2 (en)
JPH0718689B2 (en) Optical thickness measuring method and device
JPS6370110A (en) Distance measuring apparatus
JPS6255542A (en) Optical system inspecting device
JPS62106309A (en) Objective lens type micro-displacement meter
JPS63263412A (en) Noncontact displacement meter
JPS6236502A (en) Microcsope for measuring minute displacement
SU1267192A1 (en) Device for measuring focal lengths of optical components
JPH11325848A (en) Aspherical surface shape measurement device
JPS6117907A (en) Three-dimensional shape measuring instrument
JPH01193623A (en) Interference measuring apparatus
JPH04109136A (en) Refraction factor distribution measuring device
JPS62278422A (en) Light source performance measuring instrument