JPH01193623A - Interference measuring apparatus - Google Patents

Interference measuring apparatus

Info

Publication number
JPH01193623A
JPH01193623A JP1820088A JP1820088A JPH01193623A JP H01193623 A JPH01193623 A JP H01193623A JP 1820088 A JP1820088 A JP 1820088A JP 1820088 A JP1820088 A JP 1820088A JP H01193623 A JPH01193623 A JP H01193623A
Authority
JP
Japan
Prior art keywords
lens
image
imaging
pupil
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1820088A
Other languages
Japanese (ja)
Inventor
Kenjiro Hamanaka
賢二郎 浜中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP1820088A priority Critical patent/JPH01193623A/en
Publication of JPH01193623A publication Critical patent/JPH01193623A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To enable highly accurate measurement of interference by a compact and low-cost optical system and a high quality interference pattern, by a method wherein an image of a pupil of lens surface to be inspected is taken out of an optical path of an interferometer and further, an expanded image thereof is formed. CONSTITUTION:An imaging lens 9A is arranged after a beam splitter 11 for converging a luminous flux to form a real image of the pupil of a lens 8 to be tested at a position P. An imaging lens 9B is arranged behind the lens to expand real image of the pupil of the lens 8 obtained with the lens 9A to form an image on an imaging surface 10. A cubic prism type beam splitter 11 is arranged as luminous flux converging element and in this case, a lens 9 is designed in abberation considering the refractive index and thickness of the splitter 11. Thus, an image is taken with the lens system 9A once outside an interferometer and formed to remove a larger size of the apparatus. A commercial high magnifying power lens with a short operation range can be used as lens B thereby realizing a reduction in the length of the optical path and a lower cost.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、レンズ等の光学部品の光学性能をその透過波
面の歪みから測定するための干渉測定装置、いわゆる干
渉計に関するものであり、特に径が1讃璽以下の微小な
レンズの光学特性測定に有用な干渉測定装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an interference measuring device, a so-called interferometer, for measuring the optical performance of an optical component such as a lens from the distortion of its transmitted wavefront. The present invention relates to an interference measuring device useful for measuring the optical characteristics of a minute lens having a diameter of one square inch or less.

[従来の技術] レンズ、ミラー等の光学部品の光学性能の評価のため、
古くから干渉計測技術が開発され、種々の干渉測定装置
、干渉計が市販され広く利用されている。
[Prior art] For evaluating the optical performance of optical components such as lenses and mirrors,
Interference measurement technology has been developed for a long time, and various interference measurement devices and interferometers are commercially available and widely used.

第2図は、このような従来の干渉測定装置の一例である
。図中、1はHeNeレーザ光源、2はビームエキスパ
ンダであり、ビームエキスパンダ2で平行光束になった
レーザビームがビームスプリッタ3,4とミラー5,6
とで構成されるマツハ・ツエンダ−干渉計に入射する。
FIG. 2 shows an example of such a conventional interference measurement device. In the figure, 1 is a HeNe laser light source, 2 is a beam expander, and the laser beam that has become a parallel beam from the beam expander 2 is sent to beam splitters 3, 4 and mirrors 5, 6.
The beam enters a Matsuha-Zehnder interferometer consisting of

一方の光路には対物レンズ7と被験レンズ8が置かれ、
両レンズは被験レンズ8を透過した後の光束が再び略平
行光束になるように配置される。ビームスプリッタ4の
後に、結像レンズ9が置かれ、結像面10に被験レンズ
8の瞳面の像を結像させる。このとき、他方の光路を通
った光束の方向と、前記被験レンズ8を透過後の光束の
方向を合せる事によって、結像面10に、被験レンズ8
の透過波面の干渉パターンが得られる。
An objective lens 7 and a test lens 8 are placed in one optical path,
Both lenses are arranged so that the light beam after passing through the test lens 8 becomes a substantially parallel light beam again. An imaging lens 9 is placed after the beam splitter 4, and forms an image of the pupil plane of the test lens 8 on an imaging plane 10. At this time, by aligning the direction of the light flux passing through the other optical path with the direction of the light flux after passing through the test lens 8, the test lens 8
The interference pattern of the transmitted wavefront is obtained.

第3図は、得られる干渉パターンの一例を示している。FIG. 3 shows an example of the resulting interference pattern.

良好な光学特性を持つ被験レンズであれば(a)のよう
な等間隔でまっすぐな干渉パターンが得られ、レンズに
収差が存在すれば、(b)のように、その収差量に応じ
て歪んだ干渉パターンが得られる。従って、このように
して得た干渉パターンを例えばCCDカメラで入力し、
画像をA/I)変換して適当な計算機処理をする事によ
り、被験レンズの収差レベルを定量化する事が出来る。
If the test lens has good optical properties, a straight interference pattern with equal intervals as shown in (a) will be obtained, but if the lens has aberrations, it will be distorted according to the amount of aberration, as shown in (b). An interference pattern is obtained. Therefore, by inputting the interference pattern obtained in this way using, for example, a CCD camera,
By converting the image (A/I) and performing appropriate computer processing, it is possible to quantify the aberration level of the lens under test.

[発明が解決しようとする問題点コ しかしながら、従来の干渉計/!11装置は、被験レン
ズ8の瞳面を1つのレンズ系9で直接結像面に結像させ
るように構成されているため、極めて微小なレンズ(数
十μm〜数百μm程度のレンズ径のレンズ)を適当な大
きさに拡大して結像面に結像させようとすると、結像光
学系が長大なものになってしまうという欠点があった。
[Problems to be solved by the invention However, conventional interferometers/! 11 is configured so that the pupil plane of the test lens 8 is directly imaged onto the imaging plane by one lens system 9. If an attempt was made to enlarge the lens (lens) to an appropriate size and form an image on the imaging plane, the disadvantage was that the imaging optical system would become long.

例えば、被験レンズ8の瞳径が50μカであり、この像
をCCDカメラの撮像素子上に5IIIlφの大きさで
結像させようとすると、結像レンズの倍率は100倍と
なる。被験レンズ8と結像レンズ9の間にはビームスプ
リッタ4が存在するため、あまり近接して置(事が出来
ず、例えば両レンズ間の距離を20.、とすると、結像
レンズ9と結像面の距離はおよそ20smxlOO=2
mとなり、結像距離が極めて長(なり、装置が大型化し
てしまうという欠点がある。
For example, if the pupil diameter of the test lens 8 is 50μ and an attempt is made to form this image on the imaging element of a CCD camera with a size of 5IIIlφ, the magnification of the imaging lens will be 100 times. Since the beam splitter 4 exists between the test lens 8 and the imaging lens 9, it is impossible to place them too close together.For example, if the distance between both lenses is 20 mm, the imaging lens 9 and the imaging lens The distance of the image plane is approximately 20smxlOO=2
m, resulting in an extremely long imaging distance, which has the drawback of increasing the size of the device.

また、高倍率の結像レンズとして現在最も入手しやすい
ものは顕微鏡用の対物レンズであるが、これらの作動距
離は数ミ’)程度と短かく、被験レンズとの間にビーム
スプリッタを入れるスペースがないため使用できず、こ
のため、作動距離の極めて長い高倍率の結像レンズを特
に設計し用意しなければならないという欠点もあった。
Furthermore, the most readily available high-magnification imaging lenses are objective lenses for microscopes, but these have short working distances of only a few millimeters, and require space to insert a beam splitter between them and the test lens. Therefore, there was a drawback in that a high-magnification imaging lens with an extremely long working distance had to be specially designed and prepared.

一方では、このような微小なレンズを干渉測定i■能な
ものとして、微分干渉顕微鏡があるが、この装置で得ら
れる干渉パターンは、レンズ等の透過波面の微分位相を
表わすものであり、この干渉パターンかみ実際の透過波
面収差を求めるためには、波面位相を微分方向に従って
積分していかなければならす、計算か複雑になる、積分
で誤差が累積しやす(精度が上げにくい、干渉縞の曲り
から収差量が直観的にわかりにくい等の欠点があった。
On the other hand, there is a differential interference microscope that can perform interference measurements on such tiny lenses, but the interference pattern obtained with this device represents the differential phase of the wavefront transmitted through the lens, etc. In order to obtain the actual transmitted wavefront aberration from the interference pattern, the wavefront phase must be integrated according to the differential direction.The calculation becomes complicated.Errors tend to accumulate during integration (hard to improve accuracy, interference fringes There were drawbacks such as it was difficult to intuitively understand the amount of aberration from the bending.

[問題点を解決するための手段コ 光束合流素子の後に、少(とも2つ以上のレンズ系を設
け、第1のレンズ系は被験物体の実像を第2のレンズ系
の前方位置に結像し、第2のレンズ系は前記実像の拡大
像を第2のレンズ系の後方に結像するように構成した。
[Means for solving the problem] At least two or more lens systems are provided after the beam merging element, and the first lens system forms a real image of the test object at a position in front of the second lens system. However, the second lens system is configured to form an enlarged image of the real image behind the second lens system.

[作 用コ 被験体の像を、第1の結像レンズ系で干渉計光路の外部
に取り出して形成し、第2の結像レンズで拡大像を形成
しているので、第2レンズとして顕微鏡対物レンズのキ
うな作動距離の短かい高倍率レンズを使用でき、光路長
の短縮及び装置の低価格化を図ることができる。
[Operation] The first imaging lens system takes out the image of the object outside the interferometer optical path and forms it, and the second imaging lens forms an enlarged image, so the second lens can be used as a microscope. A high magnification lens with a short working distance can be used as the key objective lens, and the optical path length can be shortened and the cost of the device can be reduced.

[実 施 例コ 以下、本発明の一実施例を第1図に基づいて説明する。[Implementation example] An embodiment of the present invention will be described below with reference to FIG.

第1図もマツハ・ツエンダ−タイプの干渉計をベースに
しており、図中1.2,3,5,8.7゜8の光学部品
の配置及び機能は、第2図の従来例のそれと同じであっ
てよい。
Figure 1 is also based on a Matsuha-Zehnder type interferometer, and the arrangement and functions of the optical components at 1.2, 3, 5, and 8.7°8 in the figure are the same as those of the conventional example in Figure 2. It can be the same.

第1図の第2図との違いは結像光学系にある。The difference between FIG. 1 and FIG. 2 lies in the imaging optical system.

光束を合流させるビームスプリッタ11の後に第1の結
像レンズ9Aが配置されている。この第1の結像レンズ
9Aは被験レンズ8の瞳の実像を第1の結像レンズ9A
の後方のPで示す位置につくる。第1の結像レンズ9A
の倍率は微小なレンズを測定する場合でも特に高倍率な
ものにする必要がない。さらに、この後方に第2の結像
レンズ9Bを配し、第1の結像レンズ9Aによって得た
被験レンズ8の瞳の実像を拡大して、結像面10上に結
像させる。また、光束合流素子11として、キューブプ
リズム型のビームスプリ、夕が配され、第1の結像レン
ズ9Aは、このビームスプリッタの屈折率と厚みを考慮
に入れて収差設計され、瞳の像を極めて低収差でPの位
置に得る事が出来るように設計されている。
A first imaging lens 9A is arranged after the beam splitter 11 that merges the light beams. This first imaging lens 9A converts the real image of the pupil of the test lens 8 into the first imaging lens 9A.
Make it at the position indicated by P behind the. First imaging lens 9A
The magnification does not need to be particularly high even when measuring a minute lens. Furthermore, a second imaging lens 9B is arranged behind this, and the real image of the pupil of the test lens 8 obtained by the first imaging lens 9A is magnified and formed on the imaging plane 10. In addition, a cube prism type beam splitter is arranged as the beam merging element 11, and the first imaging lens 9A is designed to have aberrations taking into account the refractive index and thickness of the beam splitter, and the pupil image is It is designed to be able to obtain the P position with extremely low aberrations.

なお、特定の厚みのプリズム、即ち平行平面板か光路中
に挿入されている場合の収差低減設計(この場合、正弦
条件を満足させるように第1の結像レンズ系の面構成、
非球面係数等を最適化する)は容易であり、ここでは言
及しない。
In addition, aberration reduction design when a prism of a specific thickness, that is, a plane parallel plate, is inserted into the optical path (in this case, the surface configuration of the first imaging lens system is adjusted so as to satisfy the sine condition,
optimizing aspherical coefficients, etc.) is easy and will not be discussed here.

以下、上記装置の利点を述べる。The advantages of the above device will be described below.

本発明装置の特徴は、第1に、被験レンズ瞳面の像を、
まず、第1の結像レンズ9Aで干渉計光路の外部に取り
出し、さらに第2の結像レンズ9Bで拡大像を形成して
いる点と、光束合流素子11をプリズム型ビームスプリ
ッタにする事によって第1の結像レンズの低収差設計を
容易にしている点である。
The features of the device of the present invention are as follows: First, the image of the pupil plane of the test lens is
First, the first imaging lens 9A takes the light out of the interferometer optical path, and the second imaging lens 9B forms an enlarged image, and the light beam combining element 11 is made into a prism type beam splitter. This makes it easy to design the first imaging lens with low aberrations.

一般に、結像レンズの瞳位置に対する物体の距離をa1
像の距離をbとするとき倍率はb/aで表わされる。被
験レンズの径か小さい場合、結像倍率b / aを大き
くする必要があるが、干渉光学系では、被験レンズと結
像レンズの間に光束合流素rが挿入されているためaの
値が小さくできず、従って、倍率を大きくとると、bの
値が極めて太き(なり、装置のサイズが大型化してしま
う。この制約条件を、本発明装置では、第1のレンズ系
9Aで像を干渉計の外部に1度取り出して形成する事に
よって除去し、第2のレンズ9Bとして、一般に市販さ
れている顕微鏡対物レンズの様な作動距離の短かい高倍
率レンズを配置する事を可能にしている。従って、この
事により、光路長の短縮及び低価格化が実現できる。
Generally, the distance of the object to the pupil position of the imaging lens is a1
When the image distance is b, the magnification is expressed as b/a. If the diameter of the test lens is small, it is necessary to increase the imaging magnification b/a, but in the interference optical system, the value of a is small because the beam convergence element r is inserted between the test lens and the imaging lens. Therefore, if the magnification is increased, the value of b becomes extremely large (and the size of the device becomes large).In the device of the present invention, this constraint condition is met when the image is captured by the first lens system 9A. By taking it out and forming it once outside the interferometer, it can be removed and a high magnification lens with a short working distance, such as a commercially available microscope objective lens, can be placed as the second lens 9B. Therefore, this makes it possible to shorten the optical path length and lower the cost.

また、被験レンズが数十μ墓φ以下の極めて小さなレン
ズである場合、結像レンズの収差が干渉パターンの像を
劣化させる。光束合流素子が第2図に示される様な傾け
て配された平行平板ビームスプリッタ4で構成されてい
ると、被験レンズ8の瞳の結像に係わる光線(第2図中
点線で表わされている)に非点収差、コマ収差が付与さ
れるため、これら収差成分を低減させるための結像レン
ズの設計は極めて困難である。しかしながら、本発明で
は第1図に示される様に、光束合流素子としてプリズム
型ビームスプリッタ11を使用しているため、プリズム
の両面を光軸に対し共に垂直に配置する事が出来、従っ
て、瞳の結像に係わる光線(第1図中点線で表わされて
いる)には球面収差しか付与されない。
Furthermore, if the lens to be tested is an extremely small lens with a diameter of several tens of μm or less, the aberration of the imaging lens deteriorates the image of the interference pattern. When the beam merging element is composed of a parallel plate beam splitter 4 arranged at an angle as shown in FIG. 2, the light rays (represented by dotted lines in FIG. Since astigmatism and coma aberration are imparted to the aberration (which is caused by the aberration), it is extremely difficult to design an imaging lens to reduce these aberration components. However, in the present invention, as shown in FIG. 1, since a prism-type beam splitter 11 is used as a beam merging element, both surfaces of the prism can be arranged perpendicularly to the optical axis. Only spherical aberration is imparted to the light rays (represented by dotted lines in FIG. 1) involved in the imaging of .

従って、第1の結像レンズに対し、この球面収差を補正
するためのレンズ設計は容易であり、良好な干渉パター
ンを得る事が出来る。
Therefore, it is easy to design a lens for correcting this spherical aberration for the first imaging lens, and a good interference pattern can be obtained.

以上の様に、本発明によって、これまで測定が困難だっ
た数百μ層、数十μ■のレンズ径の微小レンズの干渉測
定が、コンパクトで低価格な光学系と高品位な干渉パタ
ーンで高精度に実現できる。
As described above, the present invention enables interference measurement of microlenses with lens diameters of several hundred microns and tens of microns, which was previously difficult to measure, using a compact, low-cost optical system and high-quality interference patterns. Can be achieved with high precision.

なお、上記実施例は、微小なレンズの測定について述べ
たが、被験物として導波路のスライスサンプルの透過波
面を計測する事によて、導波路断面の屈折率分布を測定
する等、多くの微小光学素子の評価に応用できる。この
ような場合、第1図中の対物レンズ7はな(でもよい。
Although the above example describes the measurement of a minute lens, it is possible to measure the refractive index distribution of a waveguide cross section by measuring the transmitted wavefront of a waveguide slice sample as a test object. It can be applied to the evaluation of micro optical elements. In such a case, the objective lens 7 in FIG.

また、光源としては、半導体レーザ等地の光源でもかま
わない。
Furthermore, the light source may be a semiconductor laser or other light source.

また、実施例の説明は、マツハ・ツエンダ−タイプの干
渉計をベースにして話を進めたが、他の干渉J!に転用
してもよい。
In addition, although the explanation of the embodiment was based on a Matsuha-Zehnder type interferometer, other interference J! It may be used for other purposes.

[発明の効果コ 本発明によれば、これまで測定が困難であったレンズ径
が数百μm、数十μ■といった極めて微小なレンズの干
渉測定が、コンパクトで低価格な光学系と高品位な干渉
パターンで高精度に実現できる。
[Effects of the invention] According to the present invention, interference measurement of extremely small lenses with lens diameters of several hundred μm or tens of μm, which has been difficult to measure up until now, can now be performed using a compact, low-cost optical system and high quality. High accuracy can be achieved with a unique interference pattern.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す平面図、第2図は従来
の干渉測定装置を示す平面図、第3図(a)、(b)は
、干渉パターンの例を示す正面図である。 1・・・・・・レーザ光源 2・・・・・・ビームエキ
スパンダー 3・・・・・・光束分割素子(ビームスプ
リッタ)4・・・・・・光束合流素子(ビームスプリッ
タ)5.6・・・・・・ミラー 7・・・・・・対物レ
ンズ8・・・・・・被験レンズ 9A・・・・・・第1
の結像レンズ9B・・・・・・第2の結像レンズ 10
・・・・・・結像面11・・・・・・プリズム型ビーム
スプリッタ1.1・:l1ri会、1 第1図
Fig. 1 is a plan view showing an embodiment of the present invention, Fig. 2 is a plan view showing a conventional interference measurement device, and Figs. 3 (a) and (b) are front views showing examples of interference patterns. be. 1... Laser light source 2... Beam expander 3... Luminous flux splitting element (beam splitter) 4... Luminous flux combining element (beam splitter) 5.6. ...Mirror 7...Objective lens 8...Test lens 9A...1st
Imaging lens 9B...Second imaging lens 10
...Imaging surface 11...Prism type beam splitter 1.1:l1ri, 1 Fig. 1

Claims (1)

【特許請求の範囲】[Claims] 光源から発せられた光束を2つの光路に分割し、一方の
光路中に透光性被験体を配置するとともに、他方の光束
を、前記被験体透過光束に対し、光束合流素子を介して
同一方向に合流させて干渉を発生させるようにした干渉
測定装置において、前記光束合流素子の後方に少くとも
2つ以上の結像レンズ系を配置し、第1のレンズ系によ
って被験体の実像を第2のレンズ系の前方位置に結像さ
せ、第2のレンズ系によって前記実像の拡大像を該レン
ズ系後方に結像させ、且つ前記光束合流素子として、少
なくとも1対の略平行な面を持つプリズム型ビームスプ
リッタを用いたことを特徴とする干渉測定装置。
The light flux emitted from the light source is divided into two optical paths, a translucent subject is placed in one of the optical paths, and the other light flux is directed in the same direction as the light flux transmitted through the subject via a light flux merging element. In the interference measurement apparatus, at least two or more imaging lens systems are arranged behind the light beam merging element, and the first lens system converts the real image of the subject into a second image. a prism that forms an image at a position in front of a lens system, and forms an enlarged image of the real image behind the lens system by a second lens system, and has at least one pair of substantially parallel surfaces as the light beam merging element. An interference measurement device characterized by using a type beam splitter.
JP1820088A 1988-01-28 1988-01-28 Interference measuring apparatus Pending JPH01193623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1820088A JPH01193623A (en) 1988-01-28 1988-01-28 Interference measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1820088A JPH01193623A (en) 1988-01-28 1988-01-28 Interference measuring apparatus

Publications (1)

Publication Number Publication Date
JPH01193623A true JPH01193623A (en) 1989-08-03

Family

ID=11964994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1820088A Pending JPH01193623A (en) 1988-01-28 1988-01-28 Interference measuring apparatus

Country Status (1)

Country Link
JP (1) JPH01193623A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814331A2 (en) * 1995-04-07 1997-12-29 Discovision Associates Optical test system including interferometer with micromirror

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814331A2 (en) * 1995-04-07 1997-12-29 Discovision Associates Optical test system including interferometer with micromirror
EP0814331A3 (en) * 1995-04-07 1998-02-11 Discovision Associates Optical test system including interferometer with micromirror
US5771095A (en) * 1995-04-07 1998-06-23 Discovision Associates Optical test system including interferometer with micromirror and piezoelectric translator for controlling test path mirror
US6025912A (en) * 1995-04-07 2000-02-15 Discovision Associates Interferometer having a micromirror
US6204925B1 (en) 1995-04-07 2001-03-20 Discovision Associates Interferometer having a micromirror
US6493094B2 (en) 1995-04-07 2002-12-10 Discovision Associates Method and apparatus for beam directing

Similar Documents

Publication Publication Date Title
KR100225923B1 (en) Phase shifting diffraction interferometer
US3958884A (en) Interferometric apparatus
CN109975820A (en) Synchronization polarization phase-shifting focus detection system based on Linnik type interference microscope
US5309214A (en) Method for measuring distributed dispersion of gradient-index optical elements and optical system to be used for carrying out the method
US6909510B2 (en) Application of the phase shifting diffraction interferometer for measuring convex mirrors and negative lenses
KR20110065365A (en) Method and apparatus for measuring aspherical body
JP3140498B2 (en) How to measure the lens
JPH01193623A (en) Interference measuring apparatus
JP3911074B2 (en) Surface shape measuring device
Sure et al. Microscope objective production: on the way from the micrometer scale to the nanometer scale
JPH08233513A (en) Interference system
CN220323131U (en) Differential interference microscopic detection equipment
JPH11311600A (en) Method and apparatus for measuring refractive index distribution
JP2017198575A (en) Optical element characteristic measurement device
JPH0540025A (en) Shape measuring instrument
JP2890639B2 (en) Absolute sphericity measurement method and apparatus
Lindlein et al. Optical measurement methods for refractive microlenses and arrays
JP2013101054A (en) Aspherical shape measurement device
JP3740427B2 (en) Shape measuring method and apparatus using interferometer
JP2004077207A (en) Wavefront measuring apparatus and semiconductor exposure apparatus equipped with the same
JPS633207A (en) Optical thickness measuring instrument
JP3740424B2 (en) Shape measuring method and apparatus using interferometer
CN118089534A (en) High-precision error calibration device for Fizeau interferometer
Ottevaere et al. Benchmarking instrumentation tools for the characterization of microlenses within the EC Network of Excellence on Micro-Optics (NEMO)
Ottevaere et al. Optical characterization of spherical microlenses: a round robin experiment within the EC Network of Excellence on Micro-Optics (NEMO)