JPS63319276A - Joined body of metal and ceramics - Google Patents

Joined body of metal and ceramics

Info

Publication number
JPS63319276A
JPS63319276A JP15324087A JP15324087A JPS63319276A JP S63319276 A JPS63319276 A JP S63319276A JP 15324087 A JP15324087 A JP 15324087A JP 15324087 A JP15324087 A JP 15324087A JP S63319276 A JPS63319276 A JP S63319276A
Authority
JP
Japan
Prior art keywords
ceramics
metal
furnace
thermal expansion
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15324087A
Other languages
Japanese (ja)
Other versions
JPH0725598B2 (en
Inventor
Shozo Saito
斉藤 昭三
Shuji Ochiai
落合 修二
Shigeru Sugioka
杉岡 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIZUOKA PREF GOV
Shizuoka Prefecture
Asahi Tec Corp
Original Assignee
SHIZUOKA PREF GOV
Shizuoka Prefecture
Asahi Malleable Iron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIZUOKA PREF GOV, Shizuoka Prefecture, Asahi Malleable Iron Co Ltd filed Critical SHIZUOKA PREF GOV
Priority to JP62153240A priority Critical patent/JPH0725598B2/en
Publication of JPS63319276A publication Critical patent/JPS63319276A/en
Publication of JPH0725598B2 publication Critical patent/JPH0725598B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/123Metallic interlayers based on iron group metals, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • C04B2237/406Iron, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/72Forming laminates or joined articles comprising at least two interlayers directly next to each other

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve joint strength and to decrease the fluctuation in the joint strength by interposing copper between a metal and ceramics and heating the materials in an nonoxidation furnace at the time of joining the metal and the ceramics by interposing a metal or oxide therebetween. CONSTITUTION:Ti foil 2 is placed on the ceramics 1 and Ni-contg. silver solder 3 is superposed thereon, on which a copper plate 4 is placed and further, for example, a spheroidal graphite cast iron 8 is imposed as a joining metal via silver solder 5 thereon. The assembly is held at about 800-1,000 deg.C in the nonoxidation furnace (electric furnace of a gaseous Ar atmosphere) and is then taken out of the furnace. Since this method executes the heat treatment once in the nonoxidation furnace, the generation of voids at the joint surface decreases extremely. The joint strength is, therefore, enhanced and the fluctuation in the joint strength is decreased. The stable quality is thus obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金属とセラミックスとの接合方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for joining metal and ceramics.

(従来の技術) この種の従来技術としては、本出願人等が先に出願した
特願昭61−160864号(特開昭     )に示
したものがある。
(Prior Art) This type of prior art is disclosed in Japanese Patent Application No. 160864/1986 (Japanese Patent Application Laid-open No. 1983-1990), which was previously filed by the present applicant.

すなわちここに示されている金属とセラミックスとの間
に、銅を介在させる金属とセラミックスとの接合方法は
、まずそのセラミックスの接合面に厚さ2mm程度の銅
板をチタン酸銅を介して載置し、大気に開放された電気
炉内において、1110 ’Cで10分間加熱した後、
炉冷して500°Cで保持してから炉外に取り出し、次
にその銅板の表面を1〜3μmに研磨した後、銀ろうを
介して他の金属を重合し、同じく大気に開放された電気
炉内において、700″Cで10分間加熱することによ
り、行なわれていた。(特願昭61−160864号の
第2図参照)(発明が解決しようとする問題点) しかしながら上述した従来の金−とセラミックスとの接
合方法は、熱処理を2回行うため、それぞれの接合面に
ボイド(空所)が発生しやすい。
In other words, the method of joining metal and ceramics shown here in which copper is interposed between the metal and ceramics is to first place a copper plate with a thickness of about 2 mm on the joining surface of the ceramic with copper titanate interposed therebetween. After heating at 1110'C for 10 minutes in an electric furnace open to the atmosphere,
The copper plate was cooled in the furnace and held at 500°C, then taken out of the furnace, and then the surface of the copper plate was polished to 1 to 3 μm, other metals were polymerized through silver solder, and it was also exposed to the atmosphere. This was done by heating at 700"C for 10 minutes in an electric furnace. (See Figure 2 of Japanese Patent Application No. 160864/1986.) In the method of bonding gold and ceramics, heat treatment is performed twice, so voids are likely to occur on each bonding surface.

その結果接合強度が低い上に、接合強度のばらつきも大
きく、品質が一定しないという問題点があった。
As a result, there was a problem in that the bonding strength was low and the bonding strength also varied widely, resulting in inconsistent quality.

(問題点を解決するための手段) 上述の問題点を解決するため本発明においては、金属と
セラミックスとの間に、金属または酸化物を介在させる
金属とセラミックスとの接合方法において、その金属と
セラミックスとの間に、銅を介在させた後、無酸化炉内
において加熱接合するようにする。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a method for joining metals and ceramics in which a metal or an oxide is interposed between the metal and the ceramics. After copper is interposed between the ceramic and the ceramic, they are heated and bonded in a non-oxidizing furnace.

(作 用) 上述のように本発明の接合方法は、熱処理を1回だけと
したから、2回の熱処理を必要とした従来の方法と比較
した場合、接合面におけるボイド(空所)の発生が著し
く少なくなる。そのため接合強度が高くなると共に、接
合強度のばらつきも小さくなり、品質も安定する。
(Function) As mentioned above, since the bonding method of the present invention requires only one heat treatment, when compared with the conventional method that requires two heat treatments, voids are less likely to occur on the bonding surface. becomes significantly less. Therefore, the bonding strength is increased, the variation in bonding strength is reduced, and the quality is stable.

さらに熱処理が1回ですむため、作業が簡単になると共
に、能率も向上する。
Furthermore, since only one heat treatment is required, the work becomes simpler and efficiency is improved.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

金属とセラミックスとが、効果的に接合されるためには
、セラミックスと接合材及び金属とに無理な残留応力が
かからないような接合材料を選択することが必要である
In order to effectively bond metals and ceramics, it is necessary to select a bonding material that does not impose undue residual stress on the ceramics, bonding material, and metal.

又、金属とセラミックスとの接合強度は、それぞれの熱
膨張率に大きく左右される。一般には、セラミックスで
はその圧縮強度は、引張強度の約10倍である。したが
って、接合後セラミックスにわずかの圧縮応力が加わっ
ている状態にすることがよいので、セラミックスの熱膨
張よりも、被接合材料のそれが僅か大きい方が好ましい
Furthermore, the bonding strength between metal and ceramics is largely influenced by their respective coefficients of thermal expansion. Generally, the compressive strength of ceramics is about 10 times the tensile strength. Therefore, it is preferable that a slight compressive stress is applied to the ceramics after joining, so it is preferable that the thermal expansion of the materials to be joined be slightly larger than the thermal expansion of the ceramics.

このため、金属の組成を変えて熱膨張率の異なるものを
作ると共に、セラミックスの熱膨張率を調査した。
For this reason, we created metals with different coefficients of thermal expansion by changing the composition of the metals, and investigated the coefficients of thermal expansion of ceramics.

その熱膨張率試験には、静岡県工業技術センターの熱膨
張計を使用した。試験片5φX20mmとし、両端は約
1μに研摩した。又、試験温度は常温がら1 、000
°Cまでを測定し、昇温速度は5°C/minで行った
。第1表はそのセラミックス試験片の熱膨張率(10−
6/”C)と温度との関係を示すものである。
A thermal dilatometer from the Shizuoka Prefectural Industrial Technology Center was used for the thermal expansion coefficient test. The test piece was 5φ x 20mm, and both ends were polished to about 1μ. In addition, the test temperature was 1,000 yen from room temperature.
The temperature was measured up to °C, and the temperature increase rate was 5 °C/min. Table 1 shows the coefficient of thermal expansion (10-
6/''C) and temperature.

一3= 第1表 また第2表は金属材料のNi成分と熱膨張率(10−b
/°C)との関係を示す表である。
-3= Tables 1 and 2 show the Ni content and thermal expansion coefficient (10-b) of metal materials.
/°C).

第2表 一4= 試験結果として、低温においては、Ni 38%OCT
が最も熱膨張率は低かった。次にNi41%DCIであ
った。さらにNi 35%DCI 、 Ni 44%D
CI、およびNi O%DCIの順であった。
Table 2-4= As a test result, at low temperature, Ni 38% OCT
had the lowest coefficient of thermal expansion. Next was Ni41% DCI. Furthermore, Ni 35%DCI, Ni 44%D
CI, and NiO%DCI.

この第2表かられかるように、300°CまではNi3
8%DCIは6.5 、Ni 35%DCIは7.4で
あり、Ni29%DCIは14.2であった。温度が3
00°C以上になると熱膨張率は大きく増加した。しか
し、700°Cまででは、Ni 41%DCIは12.
1で最も低く、Ni 44%DCIOものは、次に低か
った。Ni 29%DCIのものは、18゜Oで最も高
かった。
As shown in Table 2, up to 300°C, Ni3
The 8% DCI was 6.5, the Ni 35% DCI was 7.4, and the Ni 29% DCI was 14.2. temperature is 3
At temperatures above 00°C, the coefficient of thermal expansion increased significantly. However, up to 700°C, the Ni 41% DCI is 12.
1 was the lowest, and Ni 44% DCIO was the next lowest. The Ni 29% DCI one was the highest at 18°O.

第1表かられかるように、セラミックスの場合は、低温
から高温における熱膨張率が余り変化していない。熱膨
張率の最も小さいのは、SiCであり、次にA1□03
そしてZr0zの順である。すなわち、ZrO2は30
0°Cまででは、熱膨張率が10.0と金属材料のNi
 35〜44%octより、大きく、700°Cまでで
は13.5でNi 44%DCI  の14.4の熱膨
張率より僅か小さい。
As can be seen from Table 1, in the case of ceramics, the coefficient of thermal expansion from low to high temperatures does not change much. SiC has the smallest coefficient of thermal expansion, followed by A1□03.
And then Zr0z. That is, ZrO2 is 30
At temperatures up to 0°C, the coefficient of thermal expansion is 10.0 and the metal material Ni
The coefficient of thermal expansion is 13.5 up to 700°C, which is slightly smaller than the 14.4 coefficient of thermal expansion of Ni 44%DCI.

以上のことから金属としてNi 35%DCI−Ni 
44%DCIが比較的熱膨張率が小さく、セラミックス
の熱膨張率の高いZrO□との間の熱膨張率の差が小さ
いことから、熱膨張率から見た接合条件としては適して
いると思われる。次にAl2O3とNi 35〜44%
DCIとの熱膨張率が比較的近い。SiCの場合は、熱
膨張率が小さく、先に述べた金属との熱膨張率との差が
大きく接合には適していないと思われる。
From the above, Ni 35%DCI-Ni is used as a metal.
44%DCI has a relatively small coefficient of thermal expansion, and the difference in thermal expansion coefficient between it and ZrO□, which has a high coefficient of thermal expansion in ceramics, is small, so it seems to be suitable as a bonding condition from the perspective of the coefficient of thermal expansion. It will be done. Next, Al2O3 and Ni 35-44%
The coefficient of thermal expansion is relatively similar to that of DCI. In the case of SiC, the coefficient of thermal expansion is small, and there is a large difference in the coefficient of thermal expansion from that of the metal mentioned above, so it is considered that it is not suitable for bonding.

以下、本発明による一実施例を第1図について説明する
。図中1はセラミックス(八1□03)で、このセラミ
ックス1の上に厚さ35μ印のチタン(Ti)箔2を載
せ、その上に厚さ150μmのニッケル入り銀ろう (
Ag50重景%重量n15重量%、Cd15重量%、C
u15重量%、Ni5重量%)3を重ね、またその上に
軟金属である厚さ1 mmの銅板4を載せ、さらに銀ろ
う5を介して、厚さ6 mmの緩和材にッケルを41重
量%含有する球状黒鉛鋳鉄)6を載せ、その上に銀ろう
7を介して接合金属として例えば球状黒鉛鋳鉄8を載せ
、これを無酸化炉(アルゴンガス雰囲気の電気炉)内に
おいて、800〜1000″Cに保持した後取り出した
An embodiment according to the present invention will be described below with reference to FIG. In the figure, 1 is a ceramic (81□03). On top of this ceramic 1 is placed a titanium (Ti) foil 2 with a thickness of 35 μm, and on top of that is a nickel-containing silver solder with a thickness of 150 μm (
Ag 50 weight% weight n 15 weight%, Cd 15 weight%, C
15% by weight of U, 5% by weight of Ni) 3, and a 1 mm thick copper plate 4 made of soft metal was placed on top of it, and then 41 weights of nickel was placed on a 6 mm thick relaxation material via silver solder 5. % spheroidal graphite cast iron) 6 is placed thereon, for example, spheroidal graphite cast iron 8 is placed as a bonding metal through a silver solder 7, and this is placed in a non-oxidizing furnace (an electric furnace in an argon gas atmosphere) at a temperature of 800 to 1000 After holding at "C", it was taken out.

また第2図は他の実施例を示すもので、これは第1図の
緩和材6を使用しないで、銅板4上に銀ろう5を介して
接合金属8を直接接合したものである。
FIG. 2 shows another embodiment in which a bonding metal 8 is directly bonded onto a copper plate 4 via a silver solder 5 without using the relaxation material 6 shown in FIG.

第3図は第1図と同様の接合方法による引張試験片(寸
法単位−M)で、第4図はこの試験片の銅板4の厚さを
種々に変えて引張強さを測定した結果を示すものである
Figure 3 shows a tensile test piece (dimension unit - M) made using the same joining method as in Figure 1, and Figure 4 shows the results of measuring the tensile strength of this test piece with various thicknesses of the copper plate 4. It shows.

また第5図は第1図と同様の接合方法によって接合した
4点曲げ試験片(寸法単位−mm)を示すもので、Mは
中心に位置させた接合部であり、第6図はその接合部に
おける銅板の厚さをO〜5 mmまで変化させた場合の
4点曲げ試験による曲げ強さを示すものである。
Figure 5 shows a four-point bending test piece (dimension unit - mm) joined using the same joining method as in Figure 1, where M is the joint located at the center, and Figure 6 shows the joint. The figure shows the bending strength in a four-point bending test when the thickness of the copper plate at the section was varied from 0 to 5 mm.

(発明の効果) 上述のように本発明の接合方法は、熱処理を1回だけと
したから、2回の熱処理を必要とした従来の方法と比較
した場合、接合面におけるボイド(空所)の発生が著し
く少なくなる。そのため第4図および第6図に示すよう
に接合強度が高くなると共に、接合強度のばらつきも小
さくなり、品質も安定する。
(Effects of the Invention) As mentioned above, since the bonding method of the present invention requires only one heat treatment, when compared with the conventional method that requires two heat treatments, voids (vacancies) on the bonding surface are reduced. occurrence is significantly reduced. Therefore, as shown in FIGS. 4 and 6, the bonding strength is increased, the variation in the bonding strength is also reduced, and the quality is stable.

さらに熱処理が1回ですむため、作業が簡単になると共
に、能率も向上するというすぐれた効果が得られる。
Furthermore, since only one heat treatment is required, the work is simplified and efficiency is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明接合方法の第1実施例の説明図、第2図
は第2実施例の説明図、 第3図は引張試験片の説明図、 第4図はその引張試験片の結果を示す図表、第5図は4
点曲げ試験片の説明図、 第6図はその曲げ試験の結果を示す図表である。 1・・・セラミックス   2・・・チタン箔3・・・
ニッケル入り銀ろう 4・・・銅板       5・・・銀ろう6・・・緩
和材      7・・・銀ろう8・・・接合金属 手   続   補   正   書 1.事件の表示 昭和62年特許願第153240号 2、発明の名称 金属とセラミックスとの接合方法 3、補正をする者 事件との関係  特許出願人 静    岡    県 旭可鍛鉄株式会社 4、代理人 1、明細書第2頁第12行中の「接合方法は、熱処理」
を「接合方法は、大気炉で熱処理」に訂正する。 2、同第3頁第5行中の「接合方法は、熱処理Jを「接
合方法は、無酸化炉で熱処理」に訂正する。 3、同第4頁第9〜11行を次の通り訂正する。 「 その熱膨張率試験は、熱膨張計を使用した。 試験片は5φ×20肛とし、両端を約1μに研摩した。 又、試験温度は常温か」 4、同第6頁第2行中の「低かった。」を「小さい値を
示した。」と訂正する。 5、同頁第9行中の「最も低く、」を「最も小さく、」
と訂正する。 6、同頁第10行中の「次に低かった。」を「次に小さ
な値暮示した。」と訂正する。 7、同頁第11行中の「高かった。」を「大きな値を示
した。」と訂正する。 8、同第8頁第17〜18行を次の通りに訂正する。 「 上述のように本発明の接合方法は、無酸化炉で熱処
理を1回にしたため、無酸化炉で2回の熱処理を必要と
した従」
Fig. 1 is an explanatory diagram of the first embodiment of the joining method of the present invention, Fig. 2 is an explanatory diagram of the second embodiment, Fig. 3 is an explanatory diagram of a tensile test piece, and Fig. 4 is the result of the tensile test piece. Figure 5 shows 4
An explanatory diagram of the point bending test piece, and FIG. 6 is a chart showing the results of the bending test. 1...Ceramics 2...Titanium foil 3...
Nickel-containing silver solder 4...Copper plate 5...Silver solder 6...Relaxation material 7...Silver solder 8...Metal joining procedure amendment 1. Display of the case 1985 Patent Application No. 153240 2 Name of the invention Method for joining metal and ceramics 3 Person making the amendment Relationship to the case Patent applicant Shizuoka Prefecture Asahi Malleable Iron Co., Ltd. 4 Agent 1 “The bonding method is heat treatment” on page 2, line 12 of the specification.
amended to "The bonding method is heat treatment in an atmospheric furnace." 2. In the same page, page 3, line 5, ``The bonding method is heat treatment J'' is corrected to ``The bonding method is heat treatment in a non-oxidizing furnace.'' 3. Correct the following on page 4, lines 9-11. "A thermal dilatometer was used for the thermal expansion coefficient test. The test piece was 5φ x 20 holes, and both ends were polished to about 1μ. Also, the test temperature was room temperature." 4, page 6, line 2 of the same. Correct "It was low." to "It showed a small value." 5. In the 9th line of the same page, change "lowest," to "smallest,"
I am corrected. 6. In line 10 of the same page, correct "The price was the next lowest." to "The price was the next lowest." 7. In line 11 of the same page, correct "It was high." to "It showed a large value." 8, page 8, lines 17-18 are corrected as follows. ``As mentioned above, the bonding method of the present invention requires only one heat treatment in a non-oxidizing furnace, and therefore requires two heat treatments in a non-oxidizing furnace.''

Claims (1)

【特許請求の範囲】[Claims] 1、金属とセラミックスとの間に、金属または酸化物を
介在させる金属とセラミックスとの接合方法において、
その金属とセラミックスとの間に、銅を介在させた後、
無酸化炉内において加熱接合することを特徴とする金属
とセラミックスとの接合方法。
1. In a method for joining metals and ceramics in which a metal or oxide is interposed between the metals and ceramics,
After interposing copper between the metal and ceramics,
A method for joining metals and ceramics, characterized by heat joining in a non-oxidizing furnace.
JP62153240A 1987-06-22 1987-06-22 Method of joining metal and ceramics Expired - Lifetime JPH0725598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62153240A JPH0725598B2 (en) 1987-06-22 1987-06-22 Method of joining metal and ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62153240A JPH0725598B2 (en) 1987-06-22 1987-06-22 Method of joining metal and ceramics

Publications (2)

Publication Number Publication Date
JPS63319276A true JPS63319276A (en) 1988-12-27
JPH0725598B2 JPH0725598B2 (en) 1995-03-22

Family

ID=15558120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62153240A Expired - Lifetime JPH0725598B2 (en) 1987-06-22 1987-06-22 Method of joining metal and ceramics

Country Status (1)

Country Link
JP (1) JPH0725598B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287469A (en) * 1985-10-10 1987-04-21 トヨタ自動車株式会社 Method of bonding ceramic member to metal member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287469A (en) * 1985-10-10 1987-04-21 トヨタ自動車株式会社 Method of bonding ceramic member to metal member

Also Published As

Publication number Publication date
JPH0725598B2 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
JP2528718B2 (en) How to join ceramics and metal
JPS63319276A (en) Joined body of metal and ceramics
JPS6033269A (en) Metal ceramic bonding method
JPS5841774A (en) Manufacture of ceramic-metal composite body
JPH02108493A (en) Ceramics joining material
JPS63319275A (en) Joined body of metal and ceramics
JPH0492871A (en) Ceramic-metal binding body and production thereof
JP2568332B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
JPS63317257A (en) Joining method of metal and ceramic
JPH0337165A (en) Adhesion between ceramics and metal
JPH01205053A (en) Joining stress buffer alloy of ceramics and metal and joined body of ceramics and metal formed by using said buffer alloy
JP3041531B2 (en) Joining method of ceramics and metal
JPH01224280A (en) Ceramic-metal conjugate form
JPH0328391B2 (en)
JPS6278167A (en) Bonded body of ceramic tungsten or molybdenum
JPS63319274A (en) Jointed body of metal and ceramics
JPS6317270A (en) Joined body of metal and ceramic
JPS62235270A (en) Method and structure of joining sintered ceramic to metal
JPS62130843A (en) Metallic ceramics joining body
JP3041383B2 (en) Joining method of ceramics and metal
JPH0547514B2 (en)
JPH0571544B2 (en)
JPH0458431B2 (en)
JPH01228697A (en) Brazing filler metal for joining ceramics and joining method
JPH02147176A (en) Combined metallic material for dental purpose