JPS63319275A - Joined body of metal and ceramics - Google Patents

Joined body of metal and ceramics

Info

Publication number
JPS63319275A
JPS63319275A JP15323987A JP15323987A JPS63319275A JP S63319275 A JPS63319275 A JP S63319275A JP 15323987 A JP15323987 A JP 15323987A JP 15323987 A JP15323987 A JP 15323987A JP S63319275 A JPS63319275 A JP S63319275A
Authority
JP
Japan
Prior art keywords
ceramics
cast iron
copper plate
thermal expansion
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15323987A
Other languages
Japanese (ja)
Other versions
JPH0725597B2 (en
Inventor
Shozo Saito
斉藤 昭三
Shuji Ochiai
落合 修二
Shigeru Sugioka
杉岡 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIZUOKA PREF GOV
Shizuoka Prefecture
Asahi Tec Corp
Original Assignee
SHIZUOKA PREF GOV
Shizuoka Prefecture
Asahi Malleable Iron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIZUOKA PREF GOV, Shizuoka Prefecture, Asahi Malleable Iron Co Ltd filed Critical SHIZUOKA PREF GOV
Priority to JP62153239A priority Critical patent/JPH0725597B2/en
Publication of JPS63319275A publication Critical patent/JPS63319275A/en
Publication of JPH0725597B2 publication Critical patent/JPH0725597B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/123Metallic interlayers based on iron group metals, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • C04B2237/406Iron, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/72Forming laminates or joined articles comprising at least two interlayers directly next to each other

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To relieve the residual stress of the joined part of a joined body of a cast iron contg. Ni at a specific ratio and ceramics by interposing a copper plate between the cast iron of said body and the ceramics. CONSTITUTION:Ti foil 2 is placed on the ceramics 1 and the Ni-contg. silver solder 3 is superposed thereon, on which the copper plate 4 is placed and further, the cast iron 8 contg. 5-50wt.% Ni is placed via silver solder thereon. The assembly is heated and held in an oxygen free furnace (electric furnace of a gaseous Ar atmosphere) and is then taken out of the furnace, by which the joined body joined with the ceramics 1 and the cast iron 8 via the copper plate 4 is obtd. The copper plate 4 exhibits the effect (plastic effect) to absorb the residual stress arising from the difference in the coefft. of thermal expansion between the cast iron 8 and the ceramics 1. The thickness of the copper plate 4 is preferably 0.5-5.0mm.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、新規な金属とセラミックスとの接合体に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a novel metal-ceramic bonded body.

(従来の技術) この種の従来技術としては、例えば特開昭55−904
78号公報、特開昭56−59682号公報、および特
開昭58−2276号公報に公開されたものがある。
(Prior art) This type of prior art includes, for example, Japanese Patent Application Laid-Open No. 55-904.
There are some disclosed in Japanese Patent Application Laid-open No. 78, Japanese Patent Application Laid-Open No. 56-59682, and Japanese Patent Application Laid-Open No. 58-2276.

この他現在、よく用いられている代表的な接合方法とし
ては、モリブデンをセラミックス表面に焼きつけ、メタ
ライズして金属接合するいわゆるモリブデン法とチタン
のような活性金属を用いてメタライズする活性金属法の
二つがある。
Other typical bonding methods commonly used at present include the so-called molybdenum method, in which molybdenum is baked onto the ceramic surface and metallized for metal bonding, and the active metal method, in which metallization is performed using an active metal such as titanium. There is one.

(発明が解決しようとする問題点) セラミックスは、耐摩耗性、耐熱性、耐食性にすぐれて
いるため、最近、軽量化及び省エネルギーを目的として
、耐熱性セラミックスがエンジン部品を中心に研究され
てきている。しかし、構造部材を何もかもセラミックス
で作ることは、不適当であり、コストが高くなる。又、
セラミックスは先に述べた優れた性質がある反面、破壊
しやすい欠点がある。したがって、必要な部分はセラミ
ックスでそれ以外のところは金属で構成し、各々の特徴
を生かす事が合理的であり、経済的である。
(Problem to be Solved by the Invention) Ceramics have excellent wear resistance, heat resistance, and corrosion resistance.Recently, heat-resistant ceramics have been researched mainly for engine parts with the aim of reducing weight and saving energy. There is. However, it is inappropriate and expensive to make all structural members from ceramics. or,
Although ceramics have the excellent properties mentioned above, they also have the disadvantage of being easily broken. Therefore, it is reasonable and economical to construct the necessary parts with ceramics and the rest with metals, making the best use of the characteristics of each.

このため、セラミックスと金属との接合が必要となって
くる。
For this reason, it becomes necessary to bond ceramics and metals.

しかしながら前述した従来の接合方法であるモリブデン
法および活性金属法はいずれも真空中又は、水素気流中
で被接合物を加熱処理する必要があるため、作業に困難
な点が多く、しかも高温の技術が必要であるという問題
点があった。
However, the conventional bonding methods mentioned above, the molybdenum method and the active metal method, both require heat treatment of the objects to be joined in a vacuum or in a hydrogen stream, making the work difficult and requiring high-temperature technology. The problem was that it required

ところで大気中における接合方法として、第7図に示す
ようにセラミックスaとダクタイル鋳鉄すとの間に銅板
を接合材Cとして挿入し、これを、第8図に示すように
、接合温度1,110°C以上で接合処理すると、引張
強さは約210 kgf/c++12が得られた。そし
てこの場合、セラミックスと銅および銅と銀ろうを介す
るダクタイル鋳鉄との密着性は非常に良好であった。し
かしながらこれを第7図に示すような試験片(寸法単位
= mm )として引張試験を行ったところ、その破断
個所dは第7図に示すように大部分がセラミックスaの
接合近傍部に発生した。これはセラミックスaと接合材
C及び相手金属すとの熱膨張の差により、冷却過程でセ
ラミックス接合近傍部に大きな応力が働き、この為にセ
ラミックスa内で破断が発生したものと思われる。した
がってこの残留応力を緩和することができれば、さらに
接合強度が向上するものと思われる。
By the way, as a bonding method in the atmosphere, as shown in FIG. 7, a copper plate is inserted between ceramic A and ductile cast iron as bonding material C, and as shown in FIG. A tensile strength of about 210 kgf/c++12 was obtained when bonding was performed at temperatures above °C. In this case, the adhesion between the ceramic and the copper and between the copper and the ductile cast iron via the silver solder was very good. However, when we conducted a tensile test using this as a test piece (dimension unit = mm) as shown in Figure 7, we found that most of the fracture points d occurred near the joints of ceramics a, as shown in Figure 7. . This is thought to be due to the difference in thermal expansion between the ceramic a, the bonding material C, and the mating metal, which caused a large stress to act in the vicinity of the ceramic bond during the cooling process, which caused the fracture to occur within the ceramic a. Therefore, it is believed that if this residual stress can be alleviated, the bonding strength will be further improved.

本発明は上述の観点からなされたもので、金属とセラミ
ックスを接合する接合体において、その金属を選定する
ことによって、接合部の残留応力を緩和し、それに基い
て接合強度の大きな金属とセラミックスとの接合体を得
ることを目的とするものである。
The present invention was made from the above-mentioned viewpoint, and by selecting the metal in a joined body that joins a metal and a ceramic, residual stress at the joint is alleviated, and based on this, the metal and the ceramic have a high joint strength. The purpose is to obtain a zygote.

(問題点を解決するための手段) 上述の目的を達成するため本発明においては、ニッケル
を5〜50重量%含む鋳鉄とセラミックスとの接合体に
おいて、その鋳鉄とそのセラミックスとの間に、銅板を
介挿して金属とセラミックスとの接合体を構成する。
(Means for Solving the Problems) In order to achieve the above-mentioned object, in the present invention, in a joined body of cast iron and ceramics containing 5 to 50% by weight of nickel, a copper plate is placed between the cast iron and the ceramics. is inserted to form a joined body of metal and ceramics.

(作 用) 上述のように鋳鉄にニッケルを5〜50重量%含有させ
ると共に、その鋳鉄とセラミックスとの間に銅板を介挿
すると、その鋳鉄の熱膨張率がセラミックスの熱膨張率
と近くなる結果、これらを接合した接合体の残留応力が
減少すると共に、その接合強度が著しく増大する。
(Function) As mentioned above, when cast iron contains 5 to 50% by weight of nickel and a copper plate is inserted between the cast iron and ceramics, the coefficient of thermal expansion of the cast iron becomes close to that of the ceramics. As a result, the residual stress in the joined body of these parts is reduced, and the joint strength thereof is significantly increased.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

金属とセラミックスとが、効果的に接合されるためには
、セラミックスと接合材及び金属とに無理な残留応力が
かからないような接合材料を選択することが必要である
In order to effectively bond metals and ceramics, it is necessary to select a bonding material that does not impose undue residual stress on the ceramics, bonding material, and metal.

又、金属とセラミックスとの接合強度は、それぞれの熱
膨張率に大きく左右される。一般には、セラミックスで
はその圧縮強度は、引張強度の約10倍である。したが
って、接合後セラミックスにわずかの圧縮応力が加わっ
ている状態にすることがよいので、セラミックスの熱膨
張よりも、被接合材料のそれが僅か大きい方が好ましい
Furthermore, the bonding strength between metal and ceramics is largely influenced by their respective coefficients of thermal expansion. Generally, the compressive strength of ceramics is about 10 times the tensile strength. Therefore, it is preferable that a slight compressive stress is applied to the ceramics after joining, so it is preferable that the thermal expansion of the materials to be joined be slightly larger than the thermal expansion of the ceramics.

このため、金属の組成を変えて熱膨張率の異なるものを
作ると共に、セラミックスの熱膨張率を調査した。
For this reason, we created metals with different coefficients of thermal expansion by changing the composition of the metals, and investigated the coefficients of thermal expansion of ceramics.

その熱膨張率試験には、静岡県工業技術センターの熱膨
張計を使用した。試験片5φX20mmとし、両端は約
1μに研摩した。又、試験温度は常温から1 、000
°Cまでを測定し、昇温速度は5°C/minで行った
。第1表はそのセラミックス試験片の熱膨張率(10−
’/”c)と温度との関係を示すものである。
A thermal dilatometer from the Shizuoka Prefectural Industrial Technology Center was used for the thermal expansion coefficient test. The test piece was 5φ x 20mm, and both ends were polished to about 1μ. In addition, the test temperature ranges from room temperature to 1,000
The temperature was measured up to °C, and the temperature increase rate was 5 °C/min. Table 1 shows the coefficient of thermal expansion (10-
'/'c) and temperature.

第1表 また第2表は金属材料のNi成分と熱膨張率(10−6
/°C)との関係を示す表である。
Tables 1 and 2 show the Ni content and thermal expansion coefficient (10-6
/°C).

第2表 試験結果として、低温においては、Ni 38%DCI
が最も熱膨張率は低かった。次にNi41%DCIであ
った。さらにNi 35%DCI 、 Ni 44%D
CI、およびNi O%DCIの順であった。
Table 2 test results show that at low temperatures, Ni 38% DCI
had the lowest coefficient of thermal expansion. Next was Ni41% DCI. Furthermore, Ni 35%DCI, Ni 44%D
CI, and NiO%DCI.

この第2表かられかるように、300°CまではNi3
8%DCIは6.5 、Ni 35%DCIは7.4で
あり、Ni29%DCIは14.2であった。温度が3
00°C以上になると熱膨張率は大きく増加した。しか
し、700°Cまででは、Ni 41%DCIは12.
1で最も低く、Ni 44%DCIのものは、次に低か
った。Ni 29%DCIのものは、18.0で最も高
かった。
As shown in Table 2, up to 300°C, Ni3
The 8% DCI was 6.5, the Ni 35% DCI was 7.4, and the Ni 29% DCI was 14.2. temperature is 3
At temperatures above 00°C, the coefficient of thermal expansion increased significantly. However, up to 700°C, the Ni 41% DCI is 12.
1 was the lowest, and that of Ni 44% DCI was the next lowest. The Ni 29% DCI was the highest at 18.0.

第1表かられかるように、セラミックスの場合は、低温
から高温における熱膨張率が余り変化していない。熱膨
張率の最も小さいのは、SiCであり、次にAl2O3
そしてZrO2の順である。すなわち、ZrO□は30
0°Cまででは、熱膨張率が10.0と金属材料のNi
 35〜44%DCIより大きく、700″Cまででは
13.5でNi 44%DCI  の14.4の熱膨張
率より僅か小さい。
As can be seen from Table 1, in the case of ceramics, the coefficient of thermal expansion from low to high temperatures does not change much. SiC has the smallest coefficient of thermal expansion, followed by Al2O3.
And then ZrO2. That is, ZrO□ is 30
At temperatures up to 0°C, the coefficient of thermal expansion is 10.0 and the metal material Ni
35-44% DCI, and has a coefficient of thermal expansion of 13.5 up to 700″C, which is slightly lower than the 14.4 coefficient of thermal expansion of Ni 44% DCI.

以上のことから金属としてNi 35%DCI”Ni 
44%DCIが比較的熱膨張率が小さく、セラミックス
の熱膨張率の高いZrO□との間の熱膨張率の差が小さ
いことから、熱膨張率から見た接合条件としては適して
いると思われる。次にΔ1□03 とNi 35〜44
%DCIとの熱膨張率が比較的近い。SiCの場合は、
熱膨張率が小さく、先に述べた金属との熱膨張率との差
が大きく接合には適していないと思われる。
From the above, Ni 35%DCI”Ni is used as a metal.
44%DCI has a relatively small coefficient of thermal expansion, and the difference in thermal expansion coefficient between it and ZrO□, which has a high coefficient of thermal expansion in ceramics, is small, so it seems to be suitable as a bonding condition from the perspective of the coefficient of thermal expansion. It will be done. Next, Δ1□03 and Ni 35~44
The coefficient of thermal expansion is relatively close to %DCI. In the case of SiC,
It has a small coefficient of thermal expansion, and the difference in coefficient of thermal expansion from that of the metal mentioned above is large, making it unsuitable for bonding.

上述の理由によって本発明においては、ニッケルを5〜
50重量%含む鋳鉄とセラミックスとを銅板を介して接
合するようにする。
For the reasons mentioned above, in the present invention, nickel is
Cast iron containing 50% by weight and ceramics are bonded via a copper plate.

以下、本発明による一実施例を第1図について説明する
。図中1はセラミックス(A1203)で、このセラミ
ックス1の上に厚さ35μmのチタン(Ti )箔2を
載せ、その上に厚さ150μmのニッケル入り銀ろう(
Ag50重景%重量n15重量%、Cd15重量%、C
u15重量%、Ni5重量%)3を重ね、またその上に
軟金属である厚さ1胴の銅板4を載せ、さらに銀ろう5
を介して、厚さ6 +nmの緩和材にッケルを41重量
%含有する球状黒鉛鋳鉄)6を載せ、その上に限ろう7
を介してニッケルを41重量%含有する球状黒鉛鋳鉄8
を載せ、これを無酸化炉(アルゴンガス雰囲気の電気炉
)内において800〜1000″Cに保持した後取り出
した。
An embodiment according to the present invention will be described below with reference to FIG. In the figure, 1 is a ceramic (A1203), and a titanium (Ti) foil 2 with a thickness of 35 μm is placed on top of this ceramic 1, and a silver solder containing nickel (150 μm thick) is placed on top of the titanium (Ti) foil 2 with a thickness of 150 μm.
Ag 50 weight% weight n 15 weight%, Cd 15 weight%, C
(15% by weight of U, 5% by weight of Ni) 3, and on top of that, a soft metal copper plate 4 with a thickness of 1 cylinder, and then silver solder 5.
Spheroidal graphite cast iron (containing 41% by weight of Kkel) is placed on the relaxation material with a thickness of 6 + nm through
Spheroidal graphite cast iron containing 41% by weight of nickel through 8
was placed in a non-oxidizing furnace (an electric furnace in an argon gas atmosphere) and maintained at 800 to 1000''C, and then taken out.

また第2図は他の実施例を示すもので、これは第1図の
緩和材6を使用しないで、銅板4上に銀ろう5を介して
球状黒鉛鋳鉄8を直接接合したものである。
FIG. 2 shows another embodiment, in which spheroidal graphite cast iron 8 is directly bonded onto a copper plate 4 via a silver solder 5 without using the relaxation material 6 shown in FIG.

第3図は第1図と同様の接合方法による引張試験片(寸
法単位= mm )で、第4図はこの試験片の銅板4の
厚さを種々に変えて引張強さを測定した結果を示すもの
である。
Figure 3 shows a tensile test piece (dimension unit = mm) made using the same joining method as in Figure 1, and Figure 4 shows the results of measuring the tensile strength of this test piece with various thicknesses of the copper plate 4. It shows.

また第5図は第1図と同様の接合方法によって接合した
4点曲げ試験片(寸法単位= mm )を示すもので、
Mは中心に位置させた接合部であり、第6図はその接合
部における銅板の厚さをO〜5 mmまで変化させた場
合の4点曲げ試験による曲げ強さを示すものである。
Furthermore, Fig. 5 shows a four-point bending test piece (dimension unit = mm) bonded using the same joining method as Fig. 1.
M is a joint located at the center, and FIG. 6 shows the bending strength in a four-point bending test when the thickness of the copper plate at the joint was varied from 0 to 5 mm.

そして上述した第1図および第2図の接合体においては
、その銅板の厚さが0.5mm以下の場合、および5 
mm以上の場合には、いずれもニッケルを含有した鋳鉄
とセラミックスとの熱膨張率の違いによる残留応力を吸
収する効果(塑性効果)が低下する。したがって本発明
の実施態様項である特許請求の範囲の第2項において銅
板の厚さを0.5〜5胴に限定した。
In the above-mentioned joined bodies shown in FIGS. 1 and 2, when the thickness of the copper plate is 0.5 mm or less, and
If it is more than mm, the effect of absorbing residual stress (plastic effect) due to the difference in coefficient of thermal expansion between nickel-containing cast iron and ceramics decreases. Therefore, in the second claim, which is an embodiment of the present invention, the thickness of the copper plate is limited to 0.5 to 5 cylinders.

(発明の効果) 上述のように鋳鉄にニッケルを5〜50重量%含有させ
ると共に、その鋳鉄とセラミックスとの間に銅板を介挿
すると、その鋳鉄の熱膨張率がセラミックスの熱膨張率
と近くなる結果、これらを接合した接合体の残留応力が
減少すると共に、その接合強度が著しく増大する。
(Effect of the invention) As described above, when cast iron contains 5 to 50% by weight of nickel and a copper plate is inserted between the cast iron and ceramics, the coefficient of thermal expansion of the cast iron is close to that of the ceramics. As a result, the residual stress in the joined body of these parts is reduced, and the joint strength thereof is significantly increased.

したがって本発明の金属とセラミックスとの接合体は、
その接合強度が大きいという長所がある。
Therefore, the joined body of metal and ceramics of the present invention is
It has the advantage of high bonding strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明接合体の第1実施例の説明図、第2図は
第2実施例の説明図、 第3図は引張試験片の説明図、 第4図はその引張試験の結果を示す図表、第5図は4点
曲げ試験片の説明図、 第6図はその曲げ試験の結果を示す図表、第7図は従来
の接合体の試験片の説明図、第8図はそのメタライズ温
度と引張強さとの関係を示す図表である。 1・・・セラミックス   2・・・チタン箔3・・・
ニッケル入り銀ろう 4・・・銅板       5・・・銀ろう6・・・緩
和材      7・・・銀ろう8・・・接合金属 手   続   補   正   書 特許庁長官  小  川  邦  夫  殿1、事件の
表示 昭和62年特許願第153239号 2、発明の名称 金属とセラミックスとの接合体 3、補正をする者 事件との関係  特許出願人 静    岡    県 旭可鍛鉄株式会社 4、代理人 1、明細書第4頁第16行中の「近くなる結果、」を「
近(なると共に銅板の塑性効果によって、」に訂正する
。 2、同第5頁第15〜17行を次の通りに訂正する。 「 その熱膨張率試験は、熱膨張計を使用した。 試験片は5φX20mmとし、両端を約1μに研摩した
。又、試験温度は常温か」 3、同第7.頁第12行中の「低かった。jを「小さい
値を示した。」に訂正する。 4、同頁第19行中の「最も低(、」を「最も小さく、
」に訂正する。 5、同頁第20行中の「次に低かった。」を「小さな値
を示した。」に訂正する。 6、同第8頁第1行中の「高かった。」を「大きな値を
示した。」に訂正する。
Fig. 1 is an explanatory diagram of the first embodiment of the joined body of the present invention, Fig. 2 is an explanatory diagram of the second embodiment, Fig. 3 is an explanatory diagram of the tensile test piece, and Fig. 4 is the result of the tensile test. Figure 5 is an explanatory diagram of a four-point bending test piece, Figure 6 is a diagram showing the results of the bending test, Figure 7 is an explanatory diagram of a conventional jointed specimen, and Figure 8 is an illustration of its metallization. It is a chart showing the relationship between temperature and tensile strength. 1...Ceramics 2...Titanium foil 3...
Nickel-containing silver solder 4...Copper plate 5...Silver solder 6...Relaxation material 7...Silver solder 8...Metal joining procedures Indication Patent Application No. 153239 of 1988 2, Name of the invention Joined body of metal and ceramics 3, Relationship with the amended party case Patent applicant Shizuoka Prefecture Asahi Malleable Iron Co., Ltd. 4, Agent 1, Specification In page 4, line 16, change “the result will be closer” to “
2. Correct page 5, lines 15 to 17 as follows: ``The thermal expansion coefficient test used a thermal dilatometer.'' The piece was 5φ x 20mm, and both ends were polished to about 1μ.The test temperature was room temperature.'' 3. In the same page 7., line 12, ``It was low.j'' was corrected to ``It showed a small value.'' 4. In line 19 of the same page, change "lowest (,") to "lowest,"
” is corrected. 5. In line 20 of the same page, ``It was the next lowest value.'' is corrected to ``It showed the smallest value.'' 6. Correct "It was high." in the first line of page 8 to "It showed a large value."

Claims (1)

【特許請求の範囲】 1、ニッケルを5〜50重量%含む鋳鉄とセラミックス
との接合体において、その鋳鉄とそのセラミックスとの
間に、銅板を介挿したことを特徴とする金属とセラミッ
クスとの接合体。 2、その銅板の厚さが0.5〜5.0mmであることを
特徴とする特許請求の範囲第1項記載の金属とセラミッ
クスとの接合体。
[Claims] 1. A bonded body of cast iron and ceramics containing 5 to 50% by weight of nickel, characterized in that a copper plate is inserted between the cast iron and the ceramics. zygote. 2. The joined body of metal and ceramics according to claim 1, wherein the copper plate has a thickness of 0.5 to 5.0 mm.
JP62153239A 1987-06-22 1987-06-22 Bonded body of metal and ceramics Expired - Lifetime JPH0725597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62153239A JPH0725597B2 (en) 1987-06-22 1987-06-22 Bonded body of metal and ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62153239A JPH0725597B2 (en) 1987-06-22 1987-06-22 Bonded body of metal and ceramics

Publications (2)

Publication Number Publication Date
JPS63319275A true JPS63319275A (en) 1988-12-27
JPH0725597B2 JPH0725597B2 (en) 1995-03-22

Family

ID=15558098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62153239A Expired - Lifetime JPH0725597B2 (en) 1987-06-22 1987-06-22 Bonded body of metal and ceramics

Country Status (1)

Country Link
JP (1) JPH0725597B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215272A (en) * 1985-03-20 1986-09-25 株式会社東芝 Method of bonding ceramic member and metal member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215272A (en) * 1985-03-20 1986-09-25 株式会社東芝 Method of bonding ceramic member and metal member

Also Published As

Publication number Publication date
JPH0725597B2 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
JPS62182174A (en) Ceramics-metal composite body
JPH0438715B2 (en)
JPS60166165A (en) Joining method of metal and ceramics
JPS63319275A (en) Joined body of metal and ceramics
JPS6256380A (en) Ceramic-metal joined member
JPH02108493A (en) Ceramics joining material
JPH01205053A (en) Joining stress buffer alloy of ceramics and metal and joined body of ceramics and metal formed by using said buffer alloy
JPS63319274A (en) Jointed body of metal and ceramics
JP3501834B2 (en) Manufacturing method of joined body of ceramic material and metal material
JPS6317270A (en) Joined body of metal and ceramic
JPS61126992A (en) Brazing filler metal for joining zirconia and stainless steel
JPS63319276A (en) Joined body of metal and ceramics
JPH05194052A (en) Brazing filler material for joining nonoxide ceramic to metal and method for joining the same
JPS6278167A (en) Bonded body of ceramic tungsten or molybdenum
JP3041531B2 (en) Joining method of ceramics and metal
JPH01224280A (en) Ceramic-metal conjugate form
JPS6042283A (en) Method of bonding oxide ceramics and active metal
JPS62182165A (en) Metal for joining ceramic
JPS62130843A (en) Metallic ceramics joining body
JPH0547514B2 (en)
JPH01282164A (en) Joined body of ceramics and metal
JPS63317257A (en) Joining method of metal and ceramic
JPH01119571A (en) Joint structure of silicon nitride and metal
JPH04164837A (en) Stress-buffering structure for ceramic-metal bonded material
JPH02108494A (en) Ceramics joining material of si-cr system