JPS63318509A - Quartz glass optical fiber and its production - Google Patents

Quartz glass optical fiber and its production

Info

Publication number
JPS63318509A
JPS63318509A JP62155113A JP15511387A JPS63318509A JP S63318509 A JPS63318509 A JP S63318509A JP 62155113 A JP62155113 A JP 62155113A JP 15511387 A JP15511387 A JP 15511387A JP S63318509 A JPS63318509 A JP S63318509A
Authority
JP
Japan
Prior art keywords
air bubbles
coating layer
optical fiber
primary coating
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62155113A
Other languages
Japanese (ja)
Inventor
Yukio Morita
森田 幸男
Hirokazu Kuzushita
葛下 弘和
Masaharu Kamauchi
鎌内 正治
Hideki Maruyama
英樹 丸山
Toshihiro Zushi
敏博 厨子
Tamishige Watabe
渡部 民重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP62155113A priority Critical patent/JPS63318509A/en
Publication of JPS63318509A publication Critical patent/JPS63318509A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent crack by confining the diameter of the air bubbles remaining in a cured primary coating layer to <=20mum. CONSTITUTION:The presence of the air bubbles in the primary coating layer consisting of an uncured UV curing type org. high-polymer material is substantially forbidden. Namely, the air bubbles in the compsn. for forming the primary coating layer are removed until the size of the air bubbles in the primary coating layer decreases to about <=20mum. Means for removing the air bubbles are exemplified by deaeration under a low pressure condition such as vacuum evacuation, heating and standing still. Since the air bubbles in the cured primary coating layer are thereby diminished as far as possible, the generation of the crack is prevented.

Description

【発明の詳細な説明】 【産業上の利用分野】 本発明は光ファイバ及びその製造方法に関し、更に詳し
くは主に通信用に使用される石英ガラス系光ファイバで
あって、紫外線硬化有機高分子物質の一次及び二次被覆
層を有する光ファイバ及びその製造方法に関する。 〔従来の技術とその問題点〕 石英ガラス系光ファイバは、その可撓性を改善する目的
で有機高分子から成る一次被覆層を光フアイバ上に直接
形成し、更に光ファイバを外力から保護するために一次
被覆層の上に二次被覆層を介してジャケット層が設けら
れている。 従来、一次被覆層は、熱可塑性有機高分子物質または熱
硬化性有機高分子物質にて形成されていたが、紫外線硬
化性塗料の使用が光ファイバの高能率生産上有利である
ことに着目して、最近ではそれらの層を紫外線硬化有機
高分子物質組成物を用いて形成する研究が鋭意進められ
ており一部実用化もなされている。そしてこの際の一次
被覆の形成に用いる紫外線硬化性の高分子物質としては
、たとえばウレタンアクリレート系、ポリブタジェンア
クリレート系、シリコーンアクリレート系、ポリエステ
ルアクリレート系、エポキシアクリレート系、ポリエー
テルアクリレート系等の紫外線硬化性高分子物質が挙げ
られる。この紫外線硬化物は、通常25℃に於いて5〜
100kg/cd程度のヤング率を有している。 一方二次被覆層の紫外線硬化物は、一次被覆層よりヤン
グ率が非常に太きく1.QOO〜20 、000 kg
 /d程度の値を有している。−次被覆、二次被覆の厚
さは光フアイバ芯線構造などにより異なるが、夫々10
〜2008口及び10〜500μmの範囲で通常選定さ
れる。 これ等−次並びに二次被覆層を形成する従来の手段とし
ては、いずれもオーブンダイスに紫外線硬化性有機高分
子物質組成物を供給し、線引きされた芯線をダイス内を
通過せしめた後、紫外線照射して硬化せしめる手段が通
常採用されている。 このような方法で製造される紫外線硬化有機高分子物質
被覆層を有する石英ガラス系光ファイバは、その可撓性
が著しく小さいという難点があった。 〔発明が解決しようとする問題点〕 本発明者は、従来の製法により得られる光ファイバの上
記難点を解決するために、この難点の生ずる原因を探究
すべく研究を続けてきたが、このオープンダイスを用い
た方法に於いては、−次並びに二次被覆形成時いずれに
於いても紫外線硬化性高分子物l!を組成物中に残存す
る気泡、あるいはコーティング時の気泡の巻き込みによ
り形成される未硬化被覆層中に気泡が存在することを見
出した。 特に未硬化一次被覆層中に気泡が形成される
と、二次被覆層硬化時の照射熱により一次被覆層中の気
泡は熱膨張し、一方二次被覆層の硬化収縮により一次被
覆層中の熱膨張している気泡が破裂し、一次被覆層中に
クランクが形成されることを本発明者は発見した。かか
るクランクが形成されると石英ガラス系光ファイバを保
護するという一次被覆層の機能が失われてしまい、光フ
ァイバとして極めて望ましくないものとなる。 従って本発明の解決すべき問題点は、一次被覆層中の気
泡を除去せしめ、クランクのない正常な光ファイバを提
供しようとすることである。 〔問題点を解決するための手段〕 この問題点は、未硬化の紫外線硬化性有機高分子物質か
らなる一次被覆層中に気泡を実質的に存在せしめないよ
うにすることにより解決される。 ここで「実質的に」とは、得られる硬化一次被覆層中の
気泡の大きさが20μm以下となる程度まで一次被覆層
形成用組成物中の気泡を除去することを意味し、好まし
くは気泡を出来るだけ除去することであり、必ずしもす
べての気泡を除去する必要はなく、上記組成物中の気泡
を積極的に可及的少量とすることも包含される。 〔発明の構成並びに作用〕 このように本発明に於いては、未硬化一次被覆層中に実
質的に気泡が存在しないようにすること、更に詳しくは
一次被覆用紫外線硬化性有機高分子物質組成物中に残存
する気泡を実質的に除去するか、及び/又はコーティン
グ時の気泡の巻き込みを出来るだけ防止することをその
特徴としている。 このような手段を施すことにより、形成される硬化した
一次被覆層中の気泡を出来るだけ小さくすることが出来
、クランクの発生を防止することが出来る。 本角明に於いては、硬化一次被覆層中の気泡を20μm
以下、好ましくはlOμm以下とする。 このように気泡を小さくすることによりクランクを防止
出来る。従って気泡を上記のような特定の値となすこと
が出来る程度に一次被覆用組成物中の気泡を除去すれば
良く、この際の除去手段は特に限定されず各種の手段が
適宜に適用され、たとえば真空引き等による低圧条件で
の脱気、加温及び静置することによる脱気を例示出来る
。 また上記組成物をコーティングする際に、気泡を出来る
だけ巻き込まないようにする手段としても特に限定され
るものではなく、要は気泡を出来るだけ巻き込まないよ
うに出来る手段であれば良い。その−例としてダイス構
造を加圧ダイスとする手段を例示出来る。この加圧ダイ
スの構造はたとえばニップルとダイスが一体化されたも
のであり、コーテイング材の流入部は、外気と接触しな
い構造となっており、加圧タンクよりコーテイング材が
流入部に導かれる。 本発明に於いて使用される一次並びに二次被覆層を形成
すべき紫外線硬化性有機高分子物ljf&ll成物とし
ては、従来からこの種分野に於いて使用されて来たもの
がいずれも使用出来る。該高分子物質としては、たとえ
ばウレタンアクリレート系、ポリブタジェンアクリレー
ト系、シリコーンアクリレート系、ポリエステルアクリ
レート系、エポキシアクリレート系、ポリエーテルアク
リレート系等の紫外線硬化性オリゴマーが挙げられる。 これ等高分子物質を適宜なモノマー並びに必要に応じ各
種のその他の添加剤と共に混練して組成物を調整すれば
よい、この際使用される溶剤や添加剤としても従来から
使用されて来たものが使用出来、モノマーとしてはたと
えば単官能及び多官能アクリレート等を、また添加剤と
してはたとえば顔料、充填剤、粘度調整剤、老化防止剤
、可塑剤、光重合開始剤等を例示出来る。 これ等組成物をコーティングする手段も特に限定されな
いが、泡を巻き込まないような手段が特に好ましい。 〔実施例〕 以下に実施例を示して本発明の詳細な説明する。 実施例1 ポリテトラメチレングリコール、トリレンジイソシアネ
ート、2−ヒドロキシエチルアクリレート、セバシン酸
ジオクチル、2−ヒドロキシ−2−メチルプロピオフェ
ノンベンゾフェノンから成る未脱泡処理の紫外線硬化性
有機高分子物質組成物を加圧ダイスを用いて石英ガラス
系光フアイバ芯材°(径125μm)に線速60m/分
で一次(外径300μ纏)並びに二次被覆層(外径50
0μ請)を形成し、紫外線照射ランプを用いて200℃
で3秒間照らして硬化せしめた。 実施例2 実施例1で用いた紫外線硬化性有機高分子物質組成物を
予め脱泡処理し、ついで実施例1と同様にして加圧ダイ
スを用いて紫外線硬化した一次並びに二次被覆層を有す
る石英ガラス系光ファイバを製造した。 比較例1 実施例1で用いた未脱泡処理の紫外線硬化性有機高分子
物質組成物並びにダイスとしてオープンダイスを用いた
以外は実施例1と同様にして紫外線硬化した一次並びに
二次被覆層を有する石英ガラス系光ファイバを製造した
。 実施例1、実施例2、及び比較例1で得られた光ファイ
バの一次被覆層中の最大気泡径及びクラックの有無を調
査し、この結果を第1表に示した。 〔以下、余白〕 第1表
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an optical fiber and a method for manufacturing the same, and more specifically to a silica glass optical fiber mainly used for communication, which is made of ultraviolet curing organic polymer. The present invention relates to optical fibers having primary and secondary coating layers of materials and methods of manufacturing the same. [Prior art and its problems] In order to improve the flexibility of silica glass-based optical fibers, a primary coating layer made of organic polymer is directly formed on the optical fiber, and it also protects the optical fiber from external forces. Therefore, a jacket layer is provided on the primary coating layer via a secondary coating layer. Conventionally, the primary coating layer was formed of a thermoplastic organic polymer material or a thermosetting organic polymer material, but we focused on the fact that the use of ultraviolet curable paint is advantageous for high-efficiency production of optical fibers. Recently, research into forming these layers using UV-curable organic polymer material compositions has been actively carried out, and some of them have even been put into practical use. The UV-curable polymeric substances used to form the primary coating include, for example, urethane acrylate, polybutadiene acrylate, silicone acrylate, polyester acrylate, epoxy acrylate, and polyether acrylate. Examples include curable polymeric substances. This ultraviolet cured product is usually 5 to 5
It has a Young's modulus of about 100 kg/cd. On the other hand, the UV-cured product of the secondary coating layer has a Young's modulus much larger than that of the primary coating layer. QOO~20,000 kg
/d. - The thickness of the secondary coating and secondary coating varies depending on the optical fiber core structure, etc., but each
-2008 holes and is usually selected in the range of 10-500 μm. Conventional means for forming these and secondary coating layers include supplying an ultraviolet curable organic polymer material composition to an oven die, passing a drawn core wire through the die, and then applying ultraviolet rays. A means of curing by irradiation is usually employed. A silica glass optical fiber having an ultraviolet-curable organic polymer coating layer produced by such a method has a disadvantage in that its flexibility is extremely low. [Problems to be Solved by the Invention] In order to solve the above-mentioned difficulties of optical fibers obtained by conventional manufacturing methods, the present inventor has continued research to explore the causes of these difficulties, but this open method In the method using a die, the ultraviolet curable polymer l! It was discovered that air bubbles were present in the uncured coating layer formed by air bubbles remaining in the composition or entrainment of air bubbles during coating. In particular, when air bubbles are formed in the uncured primary coating layer, the air bubbles in the primary coating layer expand thermally due to the irradiation heat during curing of the secondary coating layer, and on the other hand, due to curing contraction of the secondary coating layer, the air bubbles in the primary coating layer expand. The inventors have discovered that thermally expanding bubbles burst and form cranks in the primary coating layer. When such a crank is formed, the primary coating layer loses its function of protecting the silica glass optical fiber, making it extremely undesirable as an optical fiber. Therefore, the problem to be solved by the present invention is to eliminate air bubbles in the primary coating layer and provide a normal optical fiber without cranks. [Means for Solving the Problem] This problem can be solved by substantially eliminating the presence of air bubbles in the primary coating layer made of an uncured ultraviolet curable organic polymer material. Here, "substantially" means that air bubbles in the composition for forming the primary coating layer are removed to the extent that the size of air bubbles in the resulting cured primary coating layer is 20 μm or less, and preferably air bubbles are removed from the composition for forming the primary coating layer. It is not necessarily necessary to remove all air bubbles, but it also includes actively reducing the air bubbles in the composition as much as possible. [Structure and operation of the invention] As described above, in the present invention, it is important to ensure that substantially no air bubbles exist in the uncured primary coating layer, and more specifically, to prevent the presence of air bubbles in the uncured primary coating layer. It is characterized by substantially removing air bubbles remaining in the product and/or preventing air bubbles from being entrained during coating as much as possible. By taking such measures, the air bubbles in the cured primary coating layer that is formed can be made as small as possible, and the occurrence of cranks can be prevented. In this method, the air bubbles in the cured primary coating layer were reduced to 20 μm.
Hereinafter, it is preferably 10 μm or less. By reducing the size of the bubbles in this way, cranks can be prevented. Therefore, it is only necessary to remove the air bubbles in the primary coating composition to the extent that the air bubbles can have the above-mentioned specific value, and the removal means at this time is not particularly limited, and various means can be applied as appropriate. Examples include degassing under low pressure conditions such as by evacuation, and degassing by heating and standing. Furthermore, when coating the composition, there are no particular limitations on the means for preventing air bubbles from being involved as much as possible, and any means that can prevent air bubbles from being involved as much as possible may be used. An example of this is a method in which the die structure is a pressure die. The structure of this pressure die is, for example, one in which a nipple and a die are integrated, and the inflow portion of the coating material has a structure that does not come into contact with the outside air, and the coating material is guided to the inflow portion from the pressurization tank. As the ultraviolet curable organic polymer ljf&ll composition to form the primary and secondary coating layers used in the present invention, any of those conventionally used in this field can be used. . Examples of the polymeric substance include ultraviolet curable oligomers such as urethane acrylate, polybutadiene acrylate, silicone acrylate, polyester acrylate, epoxy acrylate, and polyether acrylate. The composition can be prepared by kneading these polymeric substances with appropriate monomers and various other additives as necessary.Solvents and additives used in this case may also be conventionally used. Examples of monomers that can be used include monofunctional and polyfunctional acrylates, and examples of additives include pigments, fillers, viscosity modifiers, anti-aging agents, plasticizers, and photopolymerization initiators. The means for coating these compositions is not particularly limited, but means that do not involve bubbles are particularly preferred. [Example] The present invention will be explained in detail by showing examples below. Example 1 An undefoamed UV-curable organic polymer material composition consisting of polytetramethylene glycol, tolylene diisocyanate, 2-hydroxyethyl acrylate, dioctyl sebacate, 2-hydroxy-2-methylpropiophenone benzophenone was prepared. Using a pressure die, the primary (outer diameter 300 um) and secondary coating layers (outer diameter 50
0 μm) and heated to 200°C using an ultraviolet irradiation lamp.
Illuminated it for 3 seconds to harden it. Example 2 The UV-curable organic polymer material composition used in Example 1 was degassed in advance and then UV-cured using a pressure die in the same manner as in Example 1 to have primary and secondary coating layers. A silica glass optical fiber was manufactured. Comparative Example 1 The undefoamed UV-curable organic polymer material composition used in Example 1 and the primary and secondary coating layers UV-cured in the same manner as in Example 1 except that an open die was used as the die. A silica glass-based optical fiber was manufactured. The maximum bubble diameter and the presence or absence of cracks in the primary coating layers of the optical fibers obtained in Example 1, Example 2, and Comparative Example 1 were investigated, and the results are shown in Table 1. [Margin below] Table 1

Claims (3)

【特許請求の範囲】[Claims] (1)紫外線硬化有機高分子物の一次及び二次被覆層を
有する石英ガラス系光ファイバに於いて、該一次層中に
残存する気泡の直径が20μm以下であることを特徴と
する光ファイバ。
(1) A silica glass optical fiber having primary and secondary coating layers of ultraviolet curable organic polymer, characterized in that the diameter of bubbles remaining in the primary layer is 20 μm or less.
(2)紫外線硬化有機高分子物の一次及び二次被覆層を
有する石英ガラス系光ファイバに於いて、該一次層中に
残存する気泡の直径が20μm以下である光ファイバを
製造するに際し、該一次被覆層の形成に用いる紫外線硬
化性有機高分子物組成物中の気泡を除去した後、これを
線引きされた光ファイバの上にコーティングし、次いで
紫外線硬化することを特徴とする光ファイバの製造方法
(2) When manufacturing a silica glass optical fiber having primary and secondary coating layers of an ultraviolet-curable organic polymer, in which the diameter of bubbles remaining in the primary layer is 20 μm or less, Production of an optical fiber characterized by removing air bubbles in the ultraviolet curable organic polymer composition used for forming the primary coating layer, coating the same on a drawn optical fiber, and then curing with ultraviolet rays. Method.
(3)紫外線硬化性有機高分子物組成物を用いて一次被
覆層を形成する際に、未硬化の一次被覆層中に気泡が混
入しないようなダイスを用いることを特徴とする特許請
求の範囲第2項の光ファイバの製造方法。
(3) Claims characterized in that when forming the primary coating layer using the ultraviolet curable organic polymer composition, a die is used that prevents air bubbles from being mixed into the uncured primary coating layer. 2. The method for manufacturing an optical fiber according to Section 2.
JP62155113A 1987-06-22 1987-06-22 Quartz glass optical fiber and its production Pending JPS63318509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62155113A JPS63318509A (en) 1987-06-22 1987-06-22 Quartz glass optical fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62155113A JPS63318509A (en) 1987-06-22 1987-06-22 Quartz glass optical fiber and its production

Publications (1)

Publication Number Publication Date
JPS63318509A true JPS63318509A (en) 1988-12-27

Family

ID=15598873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62155113A Pending JPS63318509A (en) 1987-06-22 1987-06-22 Quartz glass optical fiber and its production

Country Status (1)

Country Link
JP (1) JPS63318509A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123222U (en) * 1991-02-13 1992-11-06 古河電気工業株式会社 Resin coating equipment for optical fibers or their aggregates
CN105439470A (en) * 2015-12-03 2016-03-30 中天科技光纤有限公司 Device for collecting optical fiber wire drawing coating discharging material and removing coating bubbles
JPWO2016088801A1 (en) * 2014-12-03 2017-09-14 住友電気工業株式会社 Optical fiber core and optical fiber ribbon

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57175752A (en) * 1981-03-12 1982-10-28 Western Electric Co Fiber coating method
JPS58131165A (en) * 1982-01-27 1983-08-04 ウエスタ−ン・エレクトリツク・カムパニ−・インコ−ポレ−テツド Method and apparatus for coating elongated material
JPS6218509A (en) * 1985-07-17 1987-01-27 Sumitomo Electric Ind Ltd Fiber for optical transmission
JPS6340745A (en) * 1986-08-04 1988-02-22 Sumitomo Electric Ind Ltd Production of optical fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57175752A (en) * 1981-03-12 1982-10-28 Western Electric Co Fiber coating method
JPS58131165A (en) * 1982-01-27 1983-08-04 ウエスタ−ン・エレクトリツク・カムパニ−・インコ−ポレ−テツド Method and apparatus for coating elongated material
JPS6218509A (en) * 1985-07-17 1987-01-27 Sumitomo Electric Ind Ltd Fiber for optical transmission
JPS6340745A (en) * 1986-08-04 1988-02-22 Sumitomo Electric Ind Ltd Production of optical fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123222U (en) * 1991-02-13 1992-11-06 古河電気工業株式会社 Resin coating equipment for optical fibers or their aggregates
JPWO2016088801A1 (en) * 2014-12-03 2017-09-14 住友電気工業株式会社 Optical fiber core and optical fiber ribbon
CN105439470A (en) * 2015-12-03 2016-03-30 中天科技光纤有限公司 Device for collecting optical fiber wire drawing coating discharging material and removing coating bubbles

Similar Documents

Publication Publication Date Title
KR100831457B1 (en) Adhesion enhancing coating composition, process for using and coated or laminated articles produced
JP3493606B2 (en) Insert molding products and colored inks for insert molding products
KR100460366B1 (en) Coated optical fiber and its manufacturing method
JP2007503120A (en) Submicron scale patterning method and system
CN110358020A (en) A kind of photosensitive resin and a kind of method of 3D printing polyureas
KR20070027292A (en) Method for the preparation of photochromic film or plate
EP0501339B1 (en) Method of manufacturing color-coated optical fibers
JPS6259911A (en) Optical fiber and method and apparatus for manufacturing thesame
KR100886689B1 (en) Method of manufacturing a replica as well as a replica obtained by carrying out a uv light-initiated cationic polymerization
JP2008129427A (en) Polarizing plate and its manufacturing method
JP4243925B2 (en) Method for forming coating layer on article, article on which coating layer is formed, and optical fiber
JPS63318509A (en) Quartz glass optical fiber and its production
US6181859B1 (en) Coated optical fiber and method of making the same
KR102165655B1 (en) Method of manufacturing patterned film and patterned film manufactured thereby
DE60233126D1 (en) PHOTOCHROMIC PLASTIC LENSES FOR GLASSES AND PROCESS FOR THEIR PRODUCTION
JP2007517253A (en) Production of polymer optical waveguides using molds
JP3952339B2 (en) Adhesive tape for plastic lens manufacturing cell
JP3084702B2 (en) Glass fiber for optical transmission
JP2003326591A (en) Formed product of decorative sheet
JP2000516270A (en) Method of mixing additives into ophthalmic products using supercritical fluid
JPH03107904A (en) Manufacture of optical fiber
KR940005963A (en) Glass fiber for optical transmission
JP2757897B2 (en) Optical element manufacturing method
JP3424848B2 (en) Plastic lens manufacturing method
JPH0629888B2 (en) Coated optical fiber