JPH03107904A - Manufacture of optical fiber - Google Patents

Manufacture of optical fiber

Info

Publication number
JPH03107904A
JPH03107904A JP1247653A JP24765389A JPH03107904A JP H03107904 A JPH03107904 A JP H03107904A JP 1247653 A JP1247653 A JP 1247653A JP 24765389 A JP24765389 A JP 24765389A JP H03107904 A JPH03107904 A JP H03107904A
Authority
JP
Japan
Prior art keywords
optical fiber
core material
core
liquid
cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1247653A
Other languages
Japanese (ja)
Inventor
Yoshiki Mine
美根 孝樹
Seiji Nakagome
誠治 中込
Yasuyori Sasaki
康順 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP1247653A priority Critical patent/JPH03107904A/en
Publication of JPH03107904A publication Critical patent/JPH03107904A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/34Cross-head annular extrusion nozzles, i.e. for simultaneously receiving moulding material and the preform to be coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To obtain constant outside dimension by eliminating a fear for the sticking of foreign matters on the surface of a core material and preventing the running of an optical fiber due to its dead weight by co-extruding the core material and a clad material from a double concentric circular nozzle and soaking them in a solution, and applying a bridging processing while they are being soaked. CONSTITUTION:Both the core material 2 and the clad material 3 which covers the core material 2 are co-extruded from the double concentric circular nozzle 4, and also, they are soaked in the solution not giving an adverse effect on the core material 2 and the clad material 3, and the bridging processing is applied while they are being soaked in the solution. Therefore, the optical fiber 1 can be extruded at a state where the core material 2 is covered with the clad material 3. In such a manner, no foreign matters are stuck on the surface of a core, and the running of the optical fiber 1 due to its dead weight due to the reception of the floating force of the solution by the optical fiber 1 before bridging can be surely prevented from occurring, and the optical fiber with constant outside dimension and constant rubber shape elasticity can be stably manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光ファイバの製造方法に関し、特に、コアおよ
びそのコアを被覆するクラッドが架橋によりゴム状弾性
を付与された光ファイバの製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an optical fiber, and in particular to a method for manufacturing an optical fiber in which a core and a cladding covering the core are imparted with rubber-like elasticity by crosslinking. It is something.

〔従来技術および解決しようとする課題〕従来、ゴム状
弾性を有する光ファイバを製造する技術に関しては、(
1)特開昭61−259202号、(2)特開昭64−
503号に記載されている方法が知られている。
[Prior art and problems to be solved] Conventionally, regarding the technology for manufacturing optical fibers having rubber-like elasticity, (
1) JP-A-61-259202, (2) JP-A-64-
The method described in No. 503 is known.

前記(1)に記載の方法においては、同心円ノズルを用
いてコア材を内層とし、クラッド材を外層として共押出
しして、この共押出ししたものを、電子線や紫外線など
の放射線照射、または加熱によって架橋させ、ゴム状弾
性を存する光ファイバを得ている。
In the method described in (1) above, a concentric nozzle is used to coextrude the core material as an inner layer and the cladding material as an outer layer, and the coextruded material is irradiated with radiation such as an electron beam or ultraviolet rays, or heated. By crosslinking the fibers, an optical fiber with rubber-like elasticity was obtained.

しかしながら、一般に、ゴム状弾性を有する光ファイバ
の製造過程では、架橋前の光ファイバがその自重により
流延する現象があるため、その外径寸法を一定にするの
が困難である。
However, in general, in the manufacturing process of optical fibers having rubber-like elasticity, there is a phenomenon in which the optical fiber before crosslinking is cast due to its own weight, so it is difficult to make the outer diameter dimension constant.

そして、前記(1)の方法にあっては、架橋前の光ファ
イバの自重による流延の問題については何ら言及されて
おらず、得られるゴム状弾性を有する光ファイバの外径
寸法の制御についてはその記載はない。
In the method (1) above, there is no mention of the problem of casting due to the weight of the optical fiber before crosslinking, and there is no mention of the problem of casting due to the weight of the optical fiber before crosslinking, and there is no mention of the problem of controlling the outer diameter dimension of the resulting optical fiber having rubber-like elasticity. There is no mention of that.

また、前記(2)に記載の方法においては、コア材をノ
ズルから押出して架橋を施した後に、クラッド材を被覆
させるので、光ファイバの外径寸法はある程度一定のも
のが得られるが、製造工程が煩雑になるとともに、製造
過程でコア材の表面に異物が付着する心配があるという
ものであった。
In addition, in the method described in (2) above, the core material is extruded from a nozzle and cross-linked, and then covered with the cladding material, so the outer diameter of the optical fiber can be kept constant to some extent, but the manufacturing process The process becomes complicated, and there is a concern that foreign matter may adhere to the surface of the core material during the manufacturing process.

本発明は前記のような従来のもののもつ問題点を解決し
たものであって、簡単で、かつ、コア材の表面に異物の
付着の心配がなく、光ファイバの自重による流延を防止
して一定の外径寸法を有するとともにゴム状弾性を有す
る光ファイバの製造方法を提供することを目的としてい
る。
The present invention solves the problems of the conventional ones as described above, and is simple, eliminates the fear of foreign matter adhering to the surface of the core material, and prevents the optical fiber from being cast due to its own weight. It is an object of the present invention to provide a method for manufacturing an optical fiber having a constant outer diameter and rubber-like elasticity.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために本発明は、コアおよびその
コアを被覆するクラッドが架橋によりゴム状弾性を付与
された光ファイバの製造方法であって、前記コアを形成
するためのコア材と、前記クラッドを形成するためのク
ラッド材とを二重同心円ノズルから共押出しするととも
に、この共押出ししたものを、前記コア剤とクランド材
とに悪影響を与えない液に浸漬し、この浸漬時に前記コ
ア材およびクラッド材を架橋する手段を有しており、前
記二重同心円ノズルから共押出ししたものを前記液に浸
漬するのが、前記共押出しと同時であることが好ましく
、前記液が、脂肪族炭化水素系有機溶媒であり、前記脂
肪族炭化水素系有機溶媒が、n−ヘキサンであることが
できる。
In order to achieve the above object, the present invention provides a method for manufacturing an optical fiber in which a core and a cladding covering the core are imparted with rubber-like elasticity by crosslinking, comprising: a core material for forming the core; The cladding material for forming the cladding is coextruded from a double concentric nozzle, and the coextruded material is immersed in a liquid that does not have a negative effect on the core material and the cladding material, and during this immersion, the core material is It is preferable that the material coextruded from the double concentric nozzle is immersed in the liquid at the same time as the coextrusion, and the liquid is aliphatic The aliphatic hydrocarbon organic solvent may be n-hexane.

〔作用〕[Effect]

本発明は上記の手段を採用したことにより、コア材およ
びクラッド材が二重同心円ノズルから共押出しされると
ともに、液中に浸漬され、その浸漬中に架橋処理が施さ
れるので、コア材はあらかじめその表面をクラッド材で
覆われた状態で押し出され、コア材の表面に異物が付着
することなく、また、架橋前の光ファイバは液の浮力を
受け、自重により流延することが確実に防止され、一定
の外径寸法を有する光ファイバが得られることとなる。
By adopting the above-mentioned means, the present invention allows the core material and the cladding material to be co-extruded from a double concentric nozzle, and is immersed in a liquid, and cross-linked during the immersion. The core material is extruded with its surface covered with a cladding material in advance, ensuring that no foreign matter adheres to the surface of the core material, and that the optical fiber before crosslinking receives the buoyancy of the liquid and is cast under its own weight. This results in an optical fiber having a constant outer diameter.

〔発明の具体的構成] 以下、本発明を具体的に説明する。[Specific structure of the invention] The present invention will be explained in detail below.

図面は本発明の一実施例を示し、第1図には本発明によ
る光ファイバの製造方法を実施する装置の概略図が示さ
れている。
The drawings show an embodiment of the present invention, and FIG. 1 shows a schematic diagram of an apparatus for carrying out the method of manufacturing an optical fiber according to the present invention.

すなわち、本発明の光ファイバの製造方法に用いられる
装置においては、二重同心円ノズル4を具えた押出しダ
イ5と、コア材2およびクラッド材3に悪影響を与えな
い液6を入れた液槽7と、その液槽7の外側に設けられ
る架橋部材8とを具えている。
That is, the apparatus used in the optical fiber manufacturing method of the present invention includes an extrusion die 5 equipped with a double concentric nozzle 4 and a liquid tank 7 containing a liquid 6 that does not adversely affect the core material 2 and the cladding material 3. and a bridging member 8 provided outside the liquid tank 7.

さらに、架橋された光ファイバ1の外周を被覆するコー
ティング剤9を入れたコーティング剤槽lOと、コーテ
ィング剤を乾燥する加熱炉11と、得られる光ファイバ
1を巻き取る巻き取りローラ12と、光ファイバlがそ
れらの間を移動する際のガイドとなる補助ローラ13と
を具えている。
Further, a coating agent tank 1O containing a coating agent 9 for coating the outer periphery of the crosslinked optical fiber 1, a heating furnace 11 for drying the coating agent, a winding roller 12 for winding the obtained optical fiber 1, and a It is provided with auxiliary rollers 13 that serve as guides when the fiber I moves between them.

ここで、前記押出しダイ5は、その二重同心円ノズル4
の先端部が、前記液槽7の液6内に浸漬した状態に配設
されている。
Here, the extrusion die 5 has its double concentric nozzle 4
The distal end portion thereof is placed in a state of being immersed in the liquid 6 of the liquid tank 7.

そして、上記の装置を用いて光ファイバlを製造するに
は、まず、押出しダイ5の二重同心円ノズル4の内側ノ
ズルに前記コア材2を、外側ノズルにクラッド材3をそ
れぞれ装填する。
To manufacture the optical fiber 1 using the above-mentioned apparatus, first, the core material 2 is loaded into the inner nozzle of the double concentric nozzle 4 of the extrusion die 5, and the cladding material 3 is loaded into the outer nozzle.

そして、あらかじめ、上記押出しダイ5を作動し、前記
コア材2をクラッド材3で被覆したものを液槽7、コー
ティング剤槽1o、加熱炉11を介して巻き取りローラ
12で巻き取るように設定する。
Then, in advance, the extrusion die 5 is activated and the core material 2 coated with the cladding material 3 is set to be wound up by the winding roller 12 through the liquid tank 7, the coating agent tank 1o, and the heating furnace 11. do.

次いで、上記の押出しダイ5の押出し速度または巻き取
りローラの巻き取り速度を所定の条件に設定し、連続的
に光ファイバ1の製造を行う。
Next, the extrusion speed of the extrusion die 5 or the winding speed of the winding roller is set to predetermined conditions, and the optical fiber 1 is continuously manufactured.

すなわち、上記押出しダイ5から前記コア材2をクラッ
ド材3で被覆したものを液槽7内に共押出しして、液6
に浸漬する。
That is, the core material 2 coated with the clad material 3 is coextruded from the extrusion die 5 into the liquid tank 7, and the liquid 6 is
Soak in.

そして、その共押出しされた架橋前の光ファイバ1を液
6に浸漬した状態で、液槽7の外側の架橋部材8により
、架橋処゛理を施す。
Then, while the coextruded optical fiber 1 before crosslinking is immersed in the liquid 6, a crosslinking process is performed using the crosslinking member 8 outside the liquid tank 7.

そして、前記液槽7内で架橋処理が施された光ファイバ
1を、液槽7中の補助ローラ13を介して液槽7の外へ
送り、補助ローラ13.13を介して、コーティング剤
9を入れたコーティング剤槽10に送り、外周をコーテ
ィング剤9で被覆した後、次の乾燥用の加熱炉11によ
って乾燥し、巻き取りローラ12で巻き取って、連続的
にゴム状弾性を有する光ファイバ1を製造することがで
きる。
Then, the optical fiber 1 that has been crosslinked in the liquid tank 7 is sent to the outside of the liquid tank 7 via the auxiliary roller 13 in the liquid tank 7, and the coating agent 9 is passed through the auxiliary roller 13.13. After coating the outer periphery with coating agent 9, it is dried in a heating furnace 11 for drying, and is wound up with a winding roller 12 to continuously form a layer of light having rubber-like elasticity. A fiber 1 can be manufactured.

ここで、前記光ファイバ1を浸漬する液6としては、前
記コア材2およびクラッド材3を溶解するような悪影響
を与えないものであればいずれのものでもよいが、揮発
性がよく、比重が光ファイバlより小さいものであるこ
とが好ましく、また、架橋部材8として放射線照射装置
を用いる場合には、その放射線の透過性がよいものであ
ることが好ましく、たとえば、n−ヘキサン、シクロヘ
キサン、イソオクタンなどの脂肪族炭化水素系有機溶媒
が代表的なものとして挙げられる。
Here, the liquid 6 in which the optical fiber 1 is immersed may be any liquid as long as it does not have an adverse effect of dissolving the core material 2 and the cladding material 3, but it has good volatility and a specific gravity. It is preferably smaller than the optical fiber 1, and when a radiation irradiation device is used as the crosslinking member 8, it is preferably a material with good radiation transmittance; for example, n-hexane, cyclohexane, isooctane, etc. Typical examples include aliphatic hydrocarbon organic solvents such as

前記光ファイバlのコア材2としては、透明性にすぐれ
、加熱により架橋してゴム状弾性体となるものであれば
いずれのゴム材料でもよく、たとえば、アクリルゴム、
シリコンゴムなどに適宜量の架橋剤などを添加した高分
子材料が挙げられる。
The core material 2 of the optical fiber 1 may be any rubber material as long as it has excellent transparency and becomes a rubber-like elastic body when crosslinked by heating, such as acrylic rubber,
Examples include polymeric materials such as silicone rubber to which an appropriate amount of a crosslinking agent is added.

前記光ファイバ1のクラッド材3としては、透明性にす
ぐれ、前記コア材2より屈折率が小さく、加熱または放
射線(紫外線、電子線など)により容易(短時間)に架
橋してゴム状弾性体になるものであればいずれの材料で
もよく、た・とえば、オクタフルオロペンチルアクリレ
ート(以下0FPAと略称する)とジシクロペンテニル
アクリレート(以下DCPAと略称する)との共重合体
、テトラフルオロプロピルアクリレート(以下TF P
Aと略称する)と2−ヒドロキシエチルアクリレート(
以下HEAと略称する)との共重合体、ジメチルシリコ
ンなどに適宜量の光重合開始剤、架橋助剤などを添加し
た高分子材料が挙げられる。
The cladding material 3 of the optical fiber 1 has excellent transparency, has a lower refractive index than the core material 2, and can be easily crosslinked (in a short time) by heating or radiation (ultraviolet rays, electron beams, etc.) to form a rubber-like elastic material. For example, a copolymer of octafluoropentyl acrylate (hereinafter referred to as 0FPA) and dicyclopentenyl acrylate (hereinafter referred to as DCPA), tetrafluoropropyl acrylate. (Hereinafter referred to as TFP
A) and 2-hydroxyethyl acrylate (abbreviated as A) and 2-hydroxyethyl acrylate (abbreviated as A)
Examples include copolymers with HEA (hereinafter abbreviated as HEA), dimethyl silicone, and polymeric materials in which appropriate amounts of photopolymerization initiators, crosslinking aids, and the like are added.

前記架橋部材8としては、紫外線、電子綿などの放射線
照射装置、または加熱炉などを用いることができる。
As the bridging member 8, a radiation irradiation device such as ultraviolet rays or electronic cotton, a heating furnace, or the like can be used.

前記液槽7内に共押出しされた光ファイバ1が液6に浸
漬されている時間は、前記コア材2およびクラッド材3
が、それぞれ架橋完了する時間であり、コア材2および
クラッド材3の材質、架橋部材8による架橋条件などに
よって適宜の時間が選択される。
The time that the optical fiber 1 coextruded into the liquid tank 7 is immersed in the liquid 6 is the same as that of the core material 2 and the cladding material 3.
are the times at which the crosslinking is completed, and appropriate times are selected depending on the materials of the core material 2 and the cladding material 3, the conditions for crosslinking by the crosslinking member 8, and the like.

また、前記実施例では、二重同心円ノズル4から共押出
しされるコア材2およびクラッド材3を、押出しと同時
に液6内に浸漬した例で説明したが、二重同心円ノズル
4の先端と液槽7の液6との間に間隙を有し、この間隙
が、通常の押出し速度で架橋前の光ファイバ1の通過に
際して自重による流延をほとんど無視できる距離(たと
えば10cm以下)であれば、前記の実施例とほぼ同様
な効果が達成でき、本発明の範囲内である。
In the above embodiment, the core material 2 and cladding material 3 co-extruded from the double concentric nozzle 4 were immersed in the liquid 6 at the same time as extrusion, but the tip of the double concentric nozzle 4 and the liquid If there is a gap between the liquid 6 in the tank 7 and this gap is a distance (for example, 10 cm or less) that allows almost negligible casting due to its own weight when the optical fiber 1 before crosslinking passes through it at a normal extrusion speed, Almost the same effect as the previous embodiment can be achieved and is within the scope of the present invention.

したがって、本発明の光ファイバの製造方法においては
、コア材2およびクラッド材3とを二重同心円ノズル4
から共押出しするとともに、液6に浸漬し、その液中で
架橋処理を施すので、コア材2がクラッド3に被覆され
た状態で架橋前の光ファイバ1が押し出され、コアの表
面に異物が付着することはない。
Therefore, in the optical fiber manufacturing method of the present invention, the core material 2 and the cladding material 3 are inserted into the double concentric nozzle 4.
Since the core material 2 is coextruded from the cladding 3 and the crosslinking treatment is performed in the liquid 6, the optical fiber 1 before crosslinking is extruded while the core material 2 is covered with the cladding 3, thereby preventing foreign matter from forming on the surface of the core. It will not stick.

また、架橋前の光ファイバ1が液6内で液6の浮力を受
けて、光ファイバ1の自重による流延を確実に防止して
、外径寸法が一定な光ファイバ1を得ることができるも
のである。
Furthermore, the optical fiber 1 before crosslinking is subjected to the buoyancy of the liquid 6 in the liquid 6, thereby reliably preventing the optical fiber 1 from being cast due to its own weight, thereby making it possible to obtain the optical fiber 1 with a constant outer diameter dimension. It is something.

また、架橋部材8として紫外線照射装置を用いる場合に
は、−111Qに、酸素がその架橋反応を阻害するため
、窒素ガス、アルゴンなどの不活性ガス雰囲気下でその
架橋処理を施すが、本発明においては、その必要もない
Furthermore, when an ultraviolet irradiation device is used as the crosslinking member 8, the crosslinking treatment is performed on -111Q in an inert gas atmosphere such as nitrogen gas or argon because oxygen inhibits the crosslinking reaction. In this case, there is no need for that.

なお、前記の実施例では、押出しダイ5によりコア材2
およびクラッド材3を共押出ししたが、コア材2および
クラッド材3の自重により流下させてもよ(、また、所
定の加圧下で二重同心円ノズル4の押出し方向を重力方
向と異なる方向に押出してもよい。
In addition, in the above embodiment, the core material 2 is
Although the core material 2 and the cladding material 3 are co-extruded, they may be allowed to flow down due to their own weight (also, the extrusion direction of the double concentric nozzle 4 may be extruded in a direction different from the direction of gravity under a predetermined pressure). You can.

以下、本発明を実験例によりさらに具体的に説明する。Hereinafter, the present invention will be explained in more detail using experimental examples.

実験例−1 第1図に示した装置を用いて以下の実験を行った。Experimental example-1 The following experiment was conducted using the apparatus shown in FIG.

コア材2として、エチルアクリレート(以下EAと略称
する)とHEAとの共重合体(モル比96 : 4)に
、架橋材を添加したものを用い、クラッド材3として、
0FPAとDCPAとの共重合体(モル比90:10)
に、重合開始剤と架橋助剤とを加えたものを用いた。
As the core material 2, a copolymer of ethyl acrylate (hereinafter abbreviated as EA) and HEA (mole ratio 96:4) to which a crosslinking material was added was used, and as the cladding material 3,
Copolymer of 0FPA and DCPA (molar ratio 90:10)
A polymerization initiator and a crosslinking aid were added to the above.

上記のコア材2およびクラッド材3をそれぞれ二重同心
円ノズル4を具えた押出しダイ5に装填し、50C11
/分の押出し速度で、液6としてn−ヘキサン(比重−
0,68、沸点=69”C)を入れた液槽7内に共押出
しした。
The above core material 2 and cladding material 3 were each loaded into an extrusion die 5 equipped with a double concentric nozzle 4, and 50C11
n-hexane (specific gravity -
0.68, boiling point = 69''C) into a liquid bath 7.

また、架橋部材8として、紫外線照射装置を用い、その
架橋部材8により、液槽7中の液6であるn−ヘキサン
が約60°Cになるように設定し、この液槽7に浸漬さ
れる光ファイバlの架橋時間を約1分とした。
Further, an ultraviolet irradiation device is used as the bridging member 8, and the temperature of n-hexane, which is the liquid 6 in the liquid tank 7, is set to about 60°C by the bridging member 8, and the temperature is set to about 60°C. The crosslinking time of the optical fiber 1 was about 1 minute.

前記二重同心円ノズル4の内側の径は、0.6閣、外側
の径が1.1511mのものを用いた。
The double concentric nozzle 4 used had an inner diameter of 0.6 m and an outer diameter of 1.1511 m.

得られた光ファイバ1の比重は1.37であった。The specific gravity of the obtained optical fiber 1 was 1.37.

そして、前記液槽7から取り出した段階で光ファイバl
の外径寸法を測定したところ、1mの長さにおける外系
寸法の変動は、先端部分に対して根元の部分で0.05
腫だけ細くなっていた。
Then, at the stage when the liquid tank 7 is taken out, the optical fiber l
When we measured the outer diameter of
Only the tumor had become thinner.

また、得られた光ファイバ1の伝送損失は86%/mで
あった。
Moreover, the transmission loss of the obtained optical fiber 1 was 86%/m.

実験例−2 上記実験例−1において、前記クラッド材3を0FPA
とHEAとの共重合体に代え、前記架橋部材8を加熱炉
に代えた以外は実験例−1と同様の条件で行った。
Experimental Example-2 In the above Experimental Example-1, the cladding material 3 was 0FPA.
The experiment was carried out under the same conditions as in Experimental Example 1, except that the crosslinking member 8 was replaced with a heating furnace.

得られた光ファイバ1の外径寸法を測定したところ、1
mの長さにおける外径寸法の変動は、先端部分に対して
根元の部分で0.06m5だけ細くなっており、伝送損
失は86%/mであった。
When the outer diameter dimension of the obtained optical fiber 1 was measured, it was found that 1
The variation in the outer diameter dimension over the length of m was that the root portion was narrower by 0.06 m5 than the tip portion, and the transmission loss was 86%/m.

比較実験例−1 上記実験例−1において、前記液槽7を用いない以外は
実験例−1と同様にして行った。
Comparative Experimental Example-1 In the above-mentioned Experimental Example-1, the same procedure as Experimental Example-1 was carried out except that the liquid tank 7 was not used.

得られた光ファイバ1の外径寸法を測定したところ、1
mの長さにおいて外径寸法の変動は、先端部分に対して
根元の部分で0.16mm細くなっており、伝送損失は
70%/mであった。
When the outer diameter dimension of the obtained optical fiber 1 was measured, it was found that 1
With respect to the length of m, the variation in the outer diameter was 0.16 mm thinner at the root than at the tip, and the transmission loss was 70%/m.

上記の結果より明らかなように、本発明による方法にお
いては、比較の実験に対して、光ファイバlの自重によ
る流延が防止され、一定の外径寸法を有しており、また
、伝送損失の低下が小さい光ファイバlが得られること
がわかる。
As is clear from the above results, in the method according to the present invention, compared to the comparative experiment, the optical fiber l is prevented from being cast due to its own weight, has a constant outer diameter dimension, and has a lower transmission loss. It can be seen that an optical fiber l with a small decrease in .

〔発明の効果〕〔Effect of the invention〕

本発明は上記のように、コア材およびこのコア材を被覆
するクラッド材を二重同心円ノズルから共押出しすると
ともに、コア材およびクラッド材に悪影響を与えない液
に浸漬し、この浸漬中に架橋処理を施すので、コア材が
クラッド材に被覆された状態で光ファイバが押し出され
、コアの表面に異物が付着することがなく、また、架橋
前の光ファイバが液の浮力を受けて、光ファイバの自重
による流延が確実に防止され、外径寸法が一定なゴム状
弾性を有する光ファイバを安定して製造することができ
るなどのすぐれた効果を有するものである。
As described above, the present invention involves co-extruding a core material and a cladding material covering the core material through a double concentric nozzle, immersing the core material and the cladding material in a liquid that does not have a negative effect, and cross-linking them during this immersion. Because the treatment is applied, the optical fiber is extruded with the core material covered with the cladding material, preventing foreign matter from adhering to the surface of the core, and the optical fiber before crosslinking receives the buoyancy of the liquid, allowing light to flow out. This method has excellent effects such as reliably preventing the fiber from being cast due to its own weight and stably producing an optical fiber having rubber-like elasticity and a constant outer diameter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光ファイバの製造方法を説明する
概略説明図である。 ■・・・・・・光ファイバ 2・・・・・・コア材 3・・・・・・クラッド材 4・・・・・・二重同心円ノズル 5・・・・・・押出しダイ 6・・・・・・液 7・・・・・・液槽 8・・・・・・架橋部材 9・・・・・・コーティング剤 10・・・・・・コーティング剤槽 11・・・・・・加熱炉 12・・・・・・巻き取りローラ 13・・・・・・補助ローラ 手続補正書 (自発) 別紙 1.1H牛の思5六 2、発明の名称 3、補正をする者 明牛との関係 住所 氏名 (名称) 4、代理人 肋 5、補正命令の日付 6、補正の対象 平成 2年 3月 2日 平成 1年物犠第247653号 光ファイバの製造方法 を踵午汁■九入 東京都港区芝大門1丁目12番15号 (43B)  エヌオーケー株式会社 ■107 1a03 (5474)8801東京都港区
赤坂8丁目7番18号 自発 明細書の「特許請求の範囲Jおよび 特許請求の範囲 (1)  コアおよびそのコアを被覆するクラッドが架
橋によりゴム状弾性を付与された光ファイバの製造方法
であって、前記コアを形成するためのコア材(2)と、
前記クラッドを形成するためのクラッド材(3)とを二
重同心円ノズル(4)から共押出しするとともに、この
共押出ししたものを、前記ユヱ林(2)とクラッド材(
3)とに悪影響を与えない液(6)に浸漬し、この浸漬
時に前記コア材(2)およびクラッド材(3)を架橋す
ることを特徴とする光ファイバの製造方法。 (2)  前記二重同心円ノズル(4)から共押出しし
たものを前記液(6)に浸漬するのが、前記共押出しと
同時である請求項1記戦の光ファイバの製造方法。 (3)  前記液(6)が、脂肪族炭化水素系有機溶(
4) 媒である請求項1記載の光ファイバの製造方法。 前記脂肪族炭化水素系有機溶媒が、n−ヘキサンである
請求項2記載の光ファイバの製造方法。 −2(
FIG. 1 is a schematic diagram illustrating a method of manufacturing an optical fiber according to the present invention. ■... Optical fiber 2... Core material 3... Clad material 4... Double concentric nozzle 5... Extrusion die 6... ...Liquid 7...Liquid tank 8...Bridging member 9...Coating agent 10...Coating agent tank 11...Heating Furnace 12... Winding roller 13... Auxiliary roller procedural amendment (voluntary) Attachment 1.1 Relevant Address Name (Name) 4. Agent 5. Date of amendment order 6. Subject of amendment March 2, 1990. 1999 Sacrifice No. 247653 The manufacturing method of optical fiber is disclosed in Tokyo. NOK Co., Ltd. 1-12-15 Shiba Daimon 1-12-15 (43B), Minato-ku, Tokyo 8-7-18 Akasaka, Minato-ku, Tokyo 107 1a03 (5474) 8801 "Claims J and Scope of Claims in the Specification of Own Invention" (1) A method for manufacturing an optical fiber in which a core and a cladding covering the core are imparted with rubber-like elasticity by crosslinking, the method comprising: a core material (2) for forming the core;
The cladding material (3) for forming the cladding is coextruded from a double concentric nozzle (4), and the coextruded material is combined with the Yuerin (2) and the cladding material (
3) A method for manufacturing an optical fiber, characterized in that the core material (2) and the cladding material (3) are crosslinked during immersion in a liquid (6) that does not have an adverse effect on the fiber. (2) The method for manufacturing an optical fiber according to claim 1, wherein the coextrusion from the double concentric nozzle (4) is immersed in the liquid (6) at the same time as the coextrusion. (3) The liquid (6) is an aliphatic hydrocarbon organic solution (
4) The method for manufacturing an optical fiber according to claim 1, wherein the optical fiber is a medium. 3. The method for manufacturing an optical fiber according to claim 2, wherein the aliphatic hydrocarbon organic solvent is n-hexane. −2(

Claims (4)

【特許請求の範囲】[Claims] (1)コアおよびそのコアを被覆するクラッドが架橋に
よりゴム状弾性を付与された光ファイバの製造方法であ
って、前記コアを形成するためのコア材(2)と、前記
クラッドを形成するためのクラッド材(3)とを二重同
心円ノズル(4)から共押出しするとともに、この共押
出ししたものを、前記コア剤(2)とクラッド材(3)
とに悪影響を与えない液(6)に浸漬し、この浸漬時に
前記コア材(2)およびクラッド材(3)を架橋するこ
とを特徴とする光ファイバの製造方法。
(1) A method for manufacturing an optical fiber in which a core and a cladding covering the core are imparted with rubber-like elasticity by crosslinking, the method comprising: a core material (2) for forming the core; and a method for forming the cladding. The core material (2) and the cladding material (3) are co-extruded from a double concentric nozzle (4), and the co-extruded material is combined with the core material (2) and the cladding material (3).
A method for manufacturing an optical fiber, characterized in that the core material (2) and the cladding material (3) are crosslinked during immersion in a liquid (6) that does not have an adverse effect on the fiber.
(2)前記二重同心円ノズル(4)から共押出ししたも
のを前記液(6)に浸漬するのが、前記共押出しと同時
である請求項1記載の光ファイバの製造方法。
(2) The method for manufacturing an optical fiber according to claim 1, wherein the coextrusion from the double concentric nozzle (4) is immersed in the liquid (6) at the same time as the coextrusion.
(3)前記液(6)が、脂肪族炭化水素系有機溶媒であ
る請求項1記載の光ファイバの製造方法。
(3) The method for manufacturing an optical fiber according to claim 1, wherein the liquid (6) is an aliphatic hydrocarbon organic solvent.
(4)前記脂肪族炭化水素系有機溶媒が、n−ヘキサン
である請求項2記載の光ファイバの製造方法。
(4) The method for manufacturing an optical fiber according to claim 2, wherein the aliphatic hydrocarbon organic solvent is n-hexane.
JP1247653A 1989-09-22 1989-09-22 Manufacture of optical fiber Pending JPH03107904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1247653A JPH03107904A (en) 1989-09-22 1989-09-22 Manufacture of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1247653A JPH03107904A (en) 1989-09-22 1989-09-22 Manufacture of optical fiber

Publications (1)

Publication Number Publication Date
JPH03107904A true JPH03107904A (en) 1991-05-08

Family

ID=17166683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1247653A Pending JPH03107904A (en) 1989-09-22 1989-09-22 Manufacture of optical fiber

Country Status (1)

Country Link
JP (1) JPH03107904A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747588A (en) * 1993-06-15 1995-02-21 Rohm & Haas Co Cured composite material and its production
US5406641A (en) * 1993-06-15 1995-04-11 Rohm And Haas Company Flexible light pipe, cured composite and processes for preparation thereof
US6106745A (en) * 1995-11-30 2000-08-22 Akzo Nobel Nv Method of making graded index polymeric optical fibers
JP2010534869A (en) * 2007-07-28 2010-11-11 レオニ ボルトネッツ‐ジステーメ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for the production of elastomeric optical fibers and optical fibers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747588A (en) * 1993-06-15 1995-02-21 Rohm & Haas Co Cured composite material and its production
US5406641A (en) * 1993-06-15 1995-04-11 Rohm And Haas Company Flexible light pipe, cured composite and processes for preparation thereof
US5485541A (en) * 1993-06-15 1996-01-16 Rohm And Haas Company Cured composite, processes and composition
US6106745A (en) * 1995-11-30 2000-08-22 Akzo Nobel Nv Method of making graded index polymeric optical fibers
JP2010534869A (en) * 2007-07-28 2010-11-11 レオニ ボルトネッツ‐ジステーメ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for the production of elastomeric optical fibers and optical fibers

Similar Documents

Publication Publication Date Title
US4708833A (en) Method for producing elastomeric optical fiber
EP2385027B1 (en) Method for making tight-buffered optical fiber having improved fiber access

JPWO2008012926A1 (en) Optical fiber
KR20000070290A (en) Coated optical fiber and its manufacturing method
US4741597A (en) Method of manufacturing an optical fibre having a synthetic resin coating and optical fibre having a synthetic resin coating manufactured according to the method
TW200831964A (en) Polarizing plate and production method thereof
JP2950264B2 (en) Manufacturing method of optical fiber ribbon
JPH03107904A (en) Manufacture of optical fiber
JPS58178302A (en) Optical fiber of heat resistant plastic
KR100460365B1 (en) Optical fiber equipped with cladding and method of manufacturing the same
EP4306494A1 (en) Colored optical fiber core wire, optical fiber ribbon, single-core fiber assembly cable, optical fiber ribbon cable, and method for producing same
JPH09105823A (en) Processing method for optical fiber dispenser using bonding agent which can be cured with ultraviolet ray
JP2000147251A (en) Production of polarizing film and polarizing plate
JP3084702B2 (en) Glass fiber for optical transmission
JPS5918124A (en) Light-transmitting fiber
JP2958139B2 (en) Plastic fiber circumference grinding method
JP3303460B2 (en) Glass fiber for optical transmission and method of manufacturing the same
JP2002196201A (en) Coated optical fiber tape
JPH1152184A (en) Method for connecting coated optical fiber
JPH06211545A (en) Method for coating optical fiber and device therefor
JPH04131804A (en) Production of optical fiber
JPS63318509A (en) Quartz glass optical fiber and its production
JPH02302341A (en) Production of covered optical fiber
CN104950380B (en) A kind of optical fiber
JP2002029785A (en) Coated optical fiber and method for manufacturing the same