JPS6218509A - Fiber for optical transmission - Google Patents

Fiber for optical transmission

Info

Publication number
JPS6218509A
JPS6218509A JP60157348A JP15734885A JPS6218509A JP S6218509 A JPS6218509 A JP S6218509A JP 60157348 A JP60157348 A JP 60157348A JP 15734885 A JP15734885 A JP 15734885A JP S6218509 A JPS6218509 A JP S6218509A
Authority
JP
Japan
Prior art keywords
resin
optical transmission
layer
fiber
moisture absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60157348A
Other languages
Japanese (ja)
Inventor
Tetsuharu Aoki
徹治 青木
Masaaki Nakasuji
中筋 正章
Hiroaki Sano
裕昭 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60157348A priority Critical patent/JPS6218509A/en
Publication of JPS6218509A publication Critical patent/JPS6218509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To suppress the foaming from UV resin coating layers of a fiber for optical transmission by forming the UV resin coating layers into multi- layered structure and setting the moisture absorption rate of the outermost layer at <=0.6%. CONSTITUTION:The soft UV resin layer (about 90mum film thickness) 2 and the hard UV resin layer (50mum film thickness) 3 on the outermost layer are coated on the optical fiber 1 consisting of quartz and the moisture absorption rate (measured after resting for 24hr in 23 deg.C and 50% RH as standard measuring conditions) of the UV resin constituting the hard UV resin layer 3 of the outermost layer is set at <=0.6%. The generation of the foam from the coating layers and the remaining of the foam in the juncture are thereby obviated and the low-temp. characteristic assisted by the protective covering is maintained. The reliability is thus improved.

Description

【発明の詳細な説明】 〔発明の概要〕 本発明は、紫外線硬化形樹脂被覆光ファイバの被覆層か
ら気泡の発生するのを除き、かつ低温特性を保持した保
護被覆として紫外線硬化形樹脂層を多層構造とし、最外
層の保護被覆用の紫外線硬化形樹脂の吸湿量を0.6%
以下、ヤング率を30〜100Ky/m−の範囲とした
紫外線硬化形樹脂被覆光ファイバである。
DETAILED DESCRIPTION OF THE INVENTION [Summary of the Invention] The present invention eliminates the generation of bubbles from the coating layer of an ultraviolet curable resin-coated optical fiber and uses an ultraviolet curable resin layer as a protective coating that maintains low-temperature properties. It has a multi-layer structure, and the moisture absorption of the ultraviolet curable resin for the outermost protective coating is 0.6%.
The following is an ultraviolet curable resin-coated optical fiber having a Young's modulus in the range of 30 to 100 Ky/m.

〔産業上の利用分野〕[Industrial application field]

本発明はコアおよびクラッドが石英系ガラスからなる石
英系光ファイバの保護被覆材として紫外線硬化形樹脂(
以下UV樹脂と称す。)な用いた光伝送用ファイバ電;
関するものである。
The present invention uses an ultraviolet curable resin (
Hereinafter, it will be referred to as UV resin. ) fiber optics for optical transmission;
It is related to

〔従来の技術〕[Conventional technology]

近年、コア・クラッドが石英系ガラスからなる。 In recent years, the core and cladding are made of silica glass.

いわゆる石英系光ファイバの保護被覆材としてUV樹脂
を用いた光伝送用ファイバが開発され、既蚤ユ実用にも
供されている。UV樹脂は従来用いられてきた熱硬化形
シリコン樹脂に比べて硬化速度が速く、元伝送用ファイ
バの製造速度の上昇が期待でき、また、将来、低価格化
も見込めることから、UV樹脂を用いた光伝送用ファイ
バは経済性の観点から実用上有望視されている。
Optical transmission fibers using UV resin as a protective coating material for so-called silica-based optical fibers have been developed and are already in practical use. UV resin has a faster curing speed than the conventionally used thermosetting silicone resin, and is expected to increase the manufacturing speed of original transmission fibers.It is also expected to be cheaper in the future, so it is recommended to use UV resin. Optical transmission fibers have been shown to be promising in practical use from an economic standpoint.

このUV樹脂被覆光ファイバは、その使用形態から種々
の寸法が考えられるが、必要とする伝送特性を維持する
ためI畷よ、基本的には、内側にに軟らρムいUV樹脂
ソフト層、外側には硬いUV樹脂ハード層を配した多層
構造乞とることが一般的である。また用途によっては、
更にその上に保護被覆層として、たとえばMl−12な
どの熱可塑性樹脂を被覆する場合もある。
This UV resin-coated optical fiber can have various dimensions depending on its usage, but in order to maintain the required transmission characteristics, it basically has a soft UV resin layer on the inside. It is common to have a multilayer structure with a hard UV resin hard layer on the outside. Also, depending on the application,
Furthermore, a thermoplastic resin such as Ml-12 may be coated thereon as a protective coating layer.

〔発明が解決しようとする問題点」 UV樹脂被覆光伝送用ファイバを種々検討した結果、製
造時1作業時(二大きな問題のあることが判明した。T
Lわら、UV樹脂被覆光伝送用ファイバの外周面に、#
y−12などの熱可塑性樹脂な押出し被覆する場合に、
溶融樹脂の熱によりUV樹脂光伝送用ファイバの被覆層
から気泡が発生し、熱可塑性樹脂被覆層を均一にコーテ
ィングできないことがわかった。
[Problems to be Solved by the Invention] As a result of various studies on UV resin-coated optical transmission fibers, it was found that there were two major problems during production.T
L straw, # on the outer peripheral surface of the UV resin coated optical transmission fiber.
When coating with thermoplastic resin extrusion such as Y-12,
It was found that bubbles were generated from the coating layer of the UV resin light transmission fiber due to the heat of the molten resin, making it impossible to uniformly coat the thermoplastic resin coating layer.

またUV樹脂被覆光伝送用ファイバを相互に接続すると
き、ホットメルト接着剤を用いた燕収縮スリーブを適用
した場合にも、UV樹脂被覆光伝送用ファイバの被覆層
から気泡が発生し、接続部に気泡が残留することに;な
り、信頼性のうえで不安を残すことになる。
Furthermore, when connecting UV resin-coated optical transmission fibers to each other, if a swallow shrink sleeve using hot-melt adhesive is applied, air bubbles may be generated from the coating layer of the UV resin-coated optical transmission fibers, causing This results in air bubbles remaining in the film, resulting in concerns about reliability.

上述の現象ン検討した結果、発生する気泡の原因は、U
V樹脂被覆層C二含まれる水分C二よるものであること
がわかった。しかもこれらの水分は、UV樹脂被覆光伝
送用ファイバの製造時のUV樹脂原料にはほとんど含ま
れていなかったものであり、主としてUV樹脂被覆光伝
送用ファイバ製造後に、空気中の湿気を吸湿することに
よるものである。
As a result of examining the above-mentioned phenomenon, the cause of the bubbles that occur is U.
It was found that this was due to the moisture C2 contained in the V resin coating layer C2. Moreover, this water was hardly contained in the UV resin raw material during the production of the UV resin-coated optical transmission fiber, and the UV resin-coated optical transmission fiber is mainly absorbed by absorbing moisture in the air after the production of the UV resin-coated optical transmission fiber. This is due to a number of things.

この吸湿性の原因となるUV樹脂は、組成分として、カ
ルボニル基、エステル基、エーテル基、ウレタン基など
の極性基を多く含んだフレタンアクリレート、エポキシ
アクリレート、ブタジェンアクリレート、ポリエステル
アクリレート、シリコンアクリレートなどを主成分とす
るものであり、これらUV樹脂のeCC湿性−か鑑二抑
えるかが、上述の発泡現象を抑えることに関連する問題
と考えられる。
The UV resins that cause this hygroscopicity include phrethane acrylate, epoxy acrylate, butadiene acrylate, polyester acrylate, and silicone acrylate, which contain many polar groups such as carbonyl groups, ester groups, ether groups, and urethane groups. The main component of these UV resins is whether to suppress the eCC wettability of these UV resins or not, which is considered to be a problem related to suppressing the foaming phenomenon described above.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は、UV樹脂被覆層刀1らの発泡現象を抑えるた
めのUV樹脂の吸湿性を抑えるUV樹脂被覆光伝送用フ
ァイバのUV樹脂被覆層を多層構造とし、最外層の吸湿
量が0.6%以下とすることン特徴としている1、さら
に保護被覆として、かつ低温特性を満たすうえで最外r
mのヤング率Y50〜100Ky/mm2の範囲として
いる。以下図面により説明する。
In the present invention, the UV resin coating layer of the UV resin coated optical transmission fiber is made to have a multilayer structure, and the moisture absorption amount of the outermost layer is 0. 6% or less, and the outermost r
The Young's modulus Y of m is in the range of 50 to 100 Ky/mm2. This will be explained below with reference to the drawings.

〔実施例〕〔Example〕

第1図は、本発明による光伝送用ファイバの第1の実施
例の断面構造である。石英系の光フアイバ11’ニーU
V樹脂ソフトII (膜厚約90 prn ) 2 N
よび最外層にUV樹脂ハード層(膜厚50μm)5によ
り被覆を施し、最外層のUV樹脂ハード層3のUV樹脂
の吸湿量(標準測定条件として、23℃、 50%RH
中に24時間放置した後測定)を種々の水準振ったもの
を試作し、外周にN9−12被覆を施して、外周のN/
−12被覆の気泡発生状況を観測した。
FIG. 1 shows a cross-sectional structure of a first embodiment of an optical transmission fiber according to the present invention. Quartz-based optical fiber 11' knee U
V Resin Soft II (film thickness approx. 90 prn) 2 N
The outermost layer is coated with a UV resin hard layer (film thickness 50 μm) 5, and the moisture absorption amount of the UV resin in the outermost UV resin hard layer 3 is measured (standard measurement conditions: 23°C, 50% RH).
We made prototypes with various levels of N9-12 coating (measured after being left for 24 hours inside), and applied N9-12 coating to the outer periphery.
The occurrence of bubbles in the -12 coating was observed.

その結果を第1表に示す。The results are shown in Table 1.

第  1  表 第1表におけるヤング率は、シート厚250μm、引張
り速度11/分における2、5%伸長時の割線ヤング率
を示す。
Table 1 The Young's modulus in Table 1 indicates the secant Young's modulus at 2.5% elongation at a sheet thickness of 250 μm and a tensile speed of 11/min.

第1表の結果から、前述のUV樹脂の吸湿量の標準測定
条件における吸湿量が0.6%以下の物性のものであれ
ば、被覆の外観および内観ともに悪影響を与えることな
く、またNy−12押出し後の伝送損失にも悪影響を与
えることなくN、y−12被覆の元伝送用ファイバを得
ることが出来ることを確認した。なお、#y−12被覆
の外径は、薄肉から厚肉まで種々考えられるが、熱容量
の観点から厚肉になればなる程、吸湿量の影響を受は易
い。
From the results in Table 1, it is clear that if the UV resin has physical properties with a moisture absorption of 0.6% or less under the standard measurement conditions, there will be no adverse effect on both the exterior and interior appearance of the coating, and the Ny- It was confirmed that an original transmission fiber coated with N, Y-12 could be obtained without adversely affecting the transmission loss after extrusion. Note that the outer diameter of the #y-12 coating can vary from thin to thick, but from the viewpoint of heat capacity, the thicker the wall, the more susceptible it is to the amount of moisture absorption.

第2図は、本発明1:よる光伝送用ファイバの第2の実
施例の断面構造である。石英系の光ファイ2次被覆ハー
ド層4を膜厚250μm にて被覆を施した。最外層の
UV樹脂2次被覆ハード層のUV樹脂の吸湿量を、実施
例1と同様の標準測定条件で種々の水準振ったUV樹脂
を最外層に施したUV樹脂被覆光伝送用ファイバを試作
し、これらの光伝送用ファイバ心線相互を熱収縮チュー
ブを用いた接続工法にて濱続し、接続部の状態を観測し
た。その結果を第2表に示す。
FIG. 2 is a cross-sectional structure of a second embodiment of the optical transmission fiber according to the present invention 1. A quartz-based optical fiber secondary coating hard layer 4 was coated with a film thickness of 250 μm. We prototyped a UV resin-coated optical transmission fiber in which the outermost layer was coated with UV resin with varying moisture absorption amounts of the UV resin in the outermost UV resin secondary coating hard layer under the same standard measurement conditions as in Example 1. Then, these optical transmission fiber cores were connected to each other using a connection method using heat-shrinkable tubes, and the state of the connections was observed. The results are shown in Table 2.

第  2  表 第2表の結果から、最外層のUV樹脂2次被覆ハード層
4のUV樹脂の吸湿量が0.6%を越えると、接続時の
ホットメルト接着剤の熱で気泡が発生し、接続部に気泡
が残留することが確認される。
Table 2 From the results in Table 2, if the moisture absorption amount of the UV resin in the outermost UV resin secondary coating hard layer 4 exceeds 0.6%, air bubbles will be generated due to the heat of the hot melt adhesive during connection. , it is confirmed that air bubbles remain in the connection area.

第3図は本発明の第3の実施例で、第1および第2の実
施例は、UV樹脂被覆光伝送用ファイバの形態として光
フアイバ1心を収容した単心線の例であるが、第3因の
ような、たとえば光フアイバ5心を並列に収容したテー
プ心線の場合も、本発明(二よる吸湿量の物性のUV樹
脂を最外層のUV樹樹脂2被被覆ハードII51:適用
することにより、光フアイバ1心の場合と同様の効果が
得られる。
FIG. 3 shows a third embodiment of the present invention, and the first and second embodiments are examples of a single fiber wire containing one optical fiber in the form of a UV resin-coated optical transmission fiber. As for the third factor, for example, in the case of a tape core wire containing five optical fibers in parallel, the present invention (UV resin with physical properties of moisture absorption according to the outermost layer of UV resin 2 coated hard II51) By doing so, the same effect as in the case of a single optical fiber can be obtained.

なお本発明の光伝送用ファイバ(:おいて、最外層のU
V樹脂のヤング率としては、保護被覆の点からは大きい
方が望ましいが、五温特性の点からは、一定ヤング率以
下にするのが良い。第1および第2の実施例からも、本
発明の場合ヤング率の範囲としては30〜100に/’
71m”  の間とするのが望ましいことを確認した。
Note that the optical transmission fiber of the present invention (in which the outermost layer U
It is desirable that the Young's modulus of the V-resin be larger from the point of view of protective coating, but from the point of view of five-temperature characteristics, it is better to keep the Young's modulus below a certain level. From the first and second examples, it is clear that in the case of the present invention, the Young's modulus is in the range of 30 to 100/'
It was confirmed that a distance of 71 m” is desirable.

〔発明の効果〕〔Effect of the invention〕

以上述べたように1本発明の光伝送用ファイバは、UV
樹脂の被覆層を多層構造とし、最外層のUV樹脂ハード
層のUV樹脂の吸湿量を0.6%以下とし、かつヤング
率を30〜100 Kg/mm”の範囲とすることによ
り、被覆層からの気泡の発生や。
As described above, the optical transmission fiber of the present invention has UV
The resin coating layer has a multilayer structure, and the moisture absorption amount of the UV resin in the outermost UV resin hard layer is 0.6% or less, and the Young's modulus is in the range of 30 to 100 Kg/mm''. The generation of air bubbles from

接続部(=おける気泡の残留を除去し、かつ保護被覆に
併せて低温特性を保持した信頼性の向上がはかれ、効果
が大きい。
It is highly effective because it removes residual air bubbles at the connection part (=) and improves reliability by maintaining low-temperature characteristics in conjunction with the protective coating.

本発明の実施例2の断面構造、第3図は本発明の実施例
乙の断面構造である。
Embodiment 2 of the present invention has a cross-sectional structure, and FIG. 3 shows a cross-sectional structure of Embodiment B of the present invention.

1・・・光ファイバ、2・・・UV樹脂ソフト層、3・
・・UV樹脂ハード層、4,5・・・UV樹脂2次被覆
)1−ド層
1... Optical fiber, 2... UV resin soft layer, 3...
...UV resin hard layer, 4, 5...UV resin secondary coating) 1-hard layer

Claims (2)

【特許請求の範囲】[Claims] (1)コア・クラッドが石英系ガラスからなる石英系光
ファイバを紫外線硬化形樹脂層で保護被覆した光伝送用
ファイバにおいて、 前記紫外線硬化形樹脂層は多層構造からなり、前記多層
構造の紫外線硬化形樹脂層の最外層の保護被覆用の紫外
線硬化形樹脂の吸湿量が0.6%以下からなることを特
徴とする光伝送用ファイバ。
(1) In an optical transmission fiber in which a quartz-based optical fiber whose core and cladding are made of quartz-based glass is protectively coated with an ultraviolet curable resin layer, the ultraviolet curable resin layer has a multilayer structure, and the multilayer structure is ultraviolet curable. 1. An optical transmission fiber characterized in that an ultraviolet curable resin for a protective coating on the outermost layer of a shaped resin layer has a moisture absorption of 0.6% or less.
(2)前記最外層の保護被覆用の紫外線硬化形樹脂は、
ヤング率が30〜100Kg/mm^2の範囲からなる
ことを特徴とする特許請求の範囲第1項記載の光伝送用
ファイバ。
(2) The ultraviolet curable resin for the protective coating of the outermost layer is:
The optical transmission fiber according to claim 1, characterized in that the Young's modulus is in the range of 30 to 100 kg/mm^2.
JP60157348A 1985-07-17 1985-07-17 Fiber for optical transmission Pending JPS6218509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60157348A JPS6218509A (en) 1985-07-17 1985-07-17 Fiber for optical transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60157348A JPS6218509A (en) 1985-07-17 1985-07-17 Fiber for optical transmission

Publications (1)

Publication Number Publication Date
JPS6218509A true JPS6218509A (en) 1987-01-27

Family

ID=15647711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60157348A Pending JPS6218509A (en) 1985-07-17 1985-07-17 Fiber for optical transmission

Country Status (1)

Country Link
JP (1) JPS6218509A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318509A (en) * 1987-06-22 1988-12-27 Mitsubishi Cable Ind Ltd Quartz glass optical fiber and its production
JPS6487535A (en) * 1987-06-26 1989-03-31 Nippon Telegraph & Telephone Coated optical fiber and waterproof optical cable
EP0838703A2 (en) * 1996-10-24 1998-04-29 Corning Incorporated Strippable tight buffered optical waveguide fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138946A (en) * 1976-05-15 1977-11-19 Sumitomo Electric Ind Ltd Optical-transmission fibre and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138946A (en) * 1976-05-15 1977-11-19 Sumitomo Electric Ind Ltd Optical-transmission fibre and its production

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318509A (en) * 1987-06-22 1988-12-27 Mitsubishi Cable Ind Ltd Quartz glass optical fiber and its production
JPS6487535A (en) * 1987-06-26 1989-03-31 Nippon Telegraph & Telephone Coated optical fiber and waterproof optical cable
EP0838703A2 (en) * 1996-10-24 1998-04-29 Corning Incorporated Strippable tight buffered optical waveguide fiber
EP0838703A3 (en) * 1996-10-24 1999-05-26 Corning Incorporated Strippable tight buffered optical waveguide fiber
AU720160B2 (en) * 1996-10-24 2000-05-25 Corning Incorporated Strippable tight buffered optical waveguide fiber

Similar Documents

Publication Publication Date Title
JP5100125B2 (en) Optical fiber core and optical fiber ribbon
JPS6087308A (en) Optical glass fiber having primary and secondary covers
JPH085879A (en) Optical fiber ribbon
JPS6198305A (en) Manufacture of optical fiber having synthetic resin coating and optical fiber having synthetic resin coating produced thereby
US6004675A (en) Optical glass fiber
JPS6218509A (en) Fiber for optical transmission
JPH01280704A (en) Manufacture of optical fiber
JPH11116282A (en) Coated optical fiber
JP2005321645A (en) Coated optical fiber ribbon
JPH0425685Y2 (en)
JPH0629888B2 (en) Coated optical fiber
JPH0551545B2 (en)
JPH03163505A (en) Coated optical fiber
JPH0623807B2 (en) Optical fiber
JPH1123919A (en) Coated optical fiber and its manufacture
JPS6045210A (en) Optical fiber core wire
JPS5898704A (en) Optical fiber core
JPH11311726A (en) Coated optical fiber ribbon
JP2768671B2 (en) Optical fiber
JP3877643B2 (en) Optical fiber core
JPH11133277A (en) Extremely small diameter optical fiber cord and its manufacture
JPH04371906A (en) Coated optical fiber with colored layer
JPS61170711A (en) Optical fiber core
JPH026403Y2 (en)
JPS63315542A (en) Production of optical fiber