JPS63318016A - Superconductive oxide ceramics material - Google Patents

Superconductive oxide ceramics material

Info

Publication number
JPS63318016A
JPS63318016A JP62153029A JP15302987A JPS63318016A JP S63318016 A JPS63318016 A JP S63318016A JP 62153029 A JP62153029 A JP 62153029A JP 15302987 A JP15302987 A JP 15302987A JP S63318016 A JPS63318016 A JP S63318016A
Authority
JP
Japan
Prior art keywords
glass
protective layer
water
superconducting
oxide ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62153029A
Other languages
Japanese (ja)
Inventor
Terufumi Kamijo
上條 輝文
Tooru Kineri
透 木練
Osamu Kawamoto
修 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP62153029A priority Critical patent/JPS63318016A/en
Publication of JPS63318016A publication Critical patent/JPS63318016A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0661Processes performed after copper oxide formation, e.g. patterning
    • H10N60/0716Passivating

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide superconductive ceramics of oxide type, which is excellent in anti-water and anti-moisture characteristics and stable when used in contact with water or under high humidity condition, by furnishing a glass type protec tion layer. CONSTITUTION:Glass type protection layer is furnished on superconductive ceramics of oxide type either directly or with any necessary layer interposed. The glass used is out of restriction, and the thickness of the protection layer preferably lies within the extent 0.01-100mum, but in general between 5 and 20mum. Accordingly the material excels in anti-water and anti-moisture characteristics, and the superconductive ceramics of oxide type will never be dissolved even under the environment of contacting water or under high humid ity condition. Thus stable sintered body, wire, different types of elements are obtained, whose superconductive characteristics will never be deteriorated.

Description

【発明の詳細な説明】 工 発明の背景 技術分野 本発明は、超伝導酸化物セラミクス材料に関する。[Detailed description of the invention] Background of the invention Technical field The present invention relates to superconducting oxide ceramic materials.

先行技術とその問題点 臨界温度以下での超伝導現象が着目され、超伝導磁石、
電力貯蔵システム、ジョセフソン素子、超高速コンピュ
ーター、医療断層診断、大型粒子加速器、磁気浮上列車
などへの実用化が試みられている。
Prior art and its problems Superconducting phenomena below the critical temperature have attracted attention, and superconducting magnets,
Attempts are being made to put it to practical use in power storage systems, Josephson devices, ultra-high-speed computers, medical tomography, large particle accelerators, magnetic levitation trains, etc.

従来、超伝導現象を示す超伝導物質としては、Nb等の
合金が一般的であった。 し かし、これら合金、例え
ばNb3Geでは23にと超伝導性を示す臨界温度が低
すぎ実用的ではない。 これに対しセラミクスの超伝導
物質も知られているが、例えばLjTi04では超伝導
性を示す臨界温度がやはり15にと低い。 ところが、
近年になり、後者のセラミクスに超伝導性を示す臨界温
度が高いものが続々開発されてきており、実用化に大き
な道が開かれてきた。
Conventionally, alloys such as Nb have been commonly used as superconducting materials exhibiting superconducting phenomena. However, these alloys, such as Nb3Ge, have a critical temperature of 23 which exhibits superconductivity, which is too low to be practical. On the other hand, ceramic superconducting materials are also known, but for example, LjTi04 has a critical temperature at which it exhibits superconductivity as low as 15. However,
In recent years, ceramics with high critical temperatures that exhibit superconductivity have been developed one after another, paving the way for practical application.

例えば、La2−x  Bax(:u04  では40
に1Bao、 Byo、 400103では100Kを
こえる(Z。
For example, La2-x Bax (: 40 for u04
1Bao, Byo, 400103 exceeds 100K (Z.

Phys、B−Condensed Matter 6
4189−193(1986)、化学工業日報 昭和6
2年3月11日 第10面等〕。
Phys, B-Condensed Matter 6
4189-193 (1986), Chemical Industry Daily, Showa 6
March 11, 2015, page 10, etc.].

しかし、これらの超伝導酸化物セラミクスは水によって
分解することがあるため、これらを材料とする焼結体、
線材、各種素子等は、例えば水と接触する環境、あるい
は高湿条件下等で使用される場合、超伝導特性等、各種
特性が劣化する恐れがある。
However, these superconducting oxide ceramics can be decomposed by water, so sintered bodies made of them,
When wires, various elements, etc. are used in environments where they come into contact with water or under high humidity conditions, for example, there is a risk that various properties such as superconductivity may deteriorate.

■ 発明の目的 本発明の目的は、耐水性、耐湿性に優れ、水と接触する
環境、あるいは高湿条件下等での使用においても安定な
超伝導酸化物セラミクス材料を提供することにある。
■Object of the Invention The object of the present invention is to provide a superconducting oxide ceramic material that has excellent water resistance and moisture resistance and is stable even when used in environments where it comes into contact with water or under high humidity conditions.

■ 発明の開示 このような目的は、以下の本発明によって達成される。■Disclosure of invention Such objects are achieved by the present invention as described below.

すなわち本発明は、ガラス質保護層を有することを特徴
とする超伝導酸化物セラミクス材料である。
That is, the present invention is a superconducting oxide ceramic material characterized by having a glassy protective layer.

■ 発明の具体的構成 以下、本発明の具体的構成を、詳細に説明する。■Specific structure of the invention Hereinafter, a specific configuration of the present invention will be explained in detail.

本発明の超伝導酸化物セラミクス材料に用いられる超伝
導性を有する酸化物セラミクスは、希土類金属元素、ア
ルカリ土類金属元素および銅の複合酸化物である。
The oxide ceramic having superconductivity used in the superconducting oxide ceramic material of the present invention is a composite oxide of a rare earth metal element, an alkaline earth metal element, and copper.

本発明によれば、このような複合酸化物を用いた焼結体
、線材、各種素子等の耐水性、耐湿性を向上することが
できるが、これらの用途に用いる場合、紐伝導酸化物セ
ラミクスの組成は、臨界温度の高さ等の点で下記のよう
な複合酸化物であることが好ましい。
According to the present invention, it is possible to improve the water resistance and moisture resistance of sintered bodies, wire rods, various elements, etc. using such composite oxides, but when used for these purposes, string conductive oxide ceramics It is preferable that the composition is a composite oxide as shown below in terms of high critical temperature and the like.

M、R,CuO2 この場合、Mはアルカリ土類金属元素の1種または2種
以上であり、これらのうちBa、SrおよびCaのうち
から選ばれる1種または2種以上、特にBaおよびSr
から選ばれる1種または2種であることが好ましい。 
なお、MがBaおよび/またはSrとCaとである場合
、Caに対し、Baおよび/またはSrが50%以上で
あることが好ましい。
M, R, CuO2 In this case, M is one or more alkaline earth metal elements, among which one or more selected from Ba, Sr and Ca, especially Ba and Sr.
Preferably, one or two selected from the following.
In addition, when M is Ba and/or Sr and Ca, it is preferable that Ba and/or Sr is 50% or more with respect to Ca.

Rは希土類金属元素(Sc、Y、ランタノイド元素およ
びアクチノイド元素)の1種または2種以上であり、こ
れらのうちYおよびランタノイド元素(L a ”−L
 u )から選ばれる1種または2種以上、特にY、L
a%Nd、Eu。
R is one or more rare earth metal elements (Sc, Y, lanthanide elements and actinide elements), and among these, Y and lanthanide elements (L a ”-L
one or more selected from u ), especially Y, L
a%Nd, Eu.

Er、Ho、DyおよびYbから選ばれる1種または2
種以上であることが好ましいが、これらが他のランタノ
イド元素(Ce、Pr。
One or two selected from Er, Ho, Dy and Yb
It is preferable that these are at least one species of other lanthanide elements (Ce, Pr, etc.).

Pm、5m%Gd、Tb、Tm、Lu)のうちの1種以
上で置換されていてもよい。 これらのうちでは、Ce
、Pr、Sm、Tbの1種以上が好ましい。
Pm, 5m% Gd, Tb, Tm, Lu). Among these, Ce
, Pr, Sm, and Tb are preferred.

このようなランタノイド元素の1種以上が置換される場
合、置換量はR中の80at%以下、特に50at%以
下であることが好ましい。
When one or more of such lanthanoid elements is substituted, the amount of substitution in R is preferably 80 at% or less, particularly 50 at% or less.

この他、Cuに対し、50at%以下の範囲で、Ag、
Hg、Ni、Zn等が置換されていてもよい。
In addition, Ag within a range of 50 at% or less with respect to Cu,
Hg, Ni, Zn, etc. may be substituted.

x+yは0.7〜3.0種度であることが好ましく、x
 / x + yは0.3〜0.9、より好ましくは0
.4〜0.8である。
It is preferable that x+y is 0.7 to 3.0 degree, and x
/ x + y is 0.3 to 0.9, more preferably 0
.. It is 4-0.8.

Zは、Rが3価(Ceにおいては4価)、Mが2価、C
uが2価として計算される値の近傍の値である。
In Z, R is trivalent (tetravalent in Ce), M is divalent, and C
u is a value near the value calculated as a bivalent value.

これらの複合酸化物については、本出願人による特願昭
62−091706号、同62−102718号、同6
2−102719号および同62−102720号等に
記載されている。
These composite oxides are described in Japanese Patent Application No. 62-091706, No. 62-102718, and No. 62-102718 by the present applicant.
It is described in No. 2-102719 and No. 62-102720.

このような組成とすると、40に以上の臨界温度Tcが
得られる。
With such a composition, a critical temperature Tc of 40 or more can be obtained.

なお、MにおけるBa、Sr、Rにおける上記希土類元
素は、それぞれ単独で含有されても組み合せて含有され
てもよい。 複合添加される場合、それぞれの量比は任
意である。
The rare earth elements Ba and Sr in M and the rare earth elements in R may be contained individually or in combination. When added in combination, the respective quantitative ratios are arbitrary.

このような複合酸化物は、ペロブスカイトないしペロブ
スカイト類似構造をもつ。
Such a composite oxide has a perovskite or perovskite-like structure.

このような複合酸化物の原料としては、例えば、Y、L
a、Nd、Eu、Ba、Sr等の酸化物あるいは加熱に
より酸化物となる化合物、例えば炭酸塩等とCuの酸化
物とであり、Y2O3、La2O3、Nd2O3、 Eu2O3、Er2O3、BaCO3、SrCO3,C
aCO3、CuO等を用いればよい。 これらの他、上
記のRおよびMに対応する酸化物等を適当に選択して用
いることができる。
Raw materials for such composite oxides include, for example, Y, L
oxides such as a, Nd, Eu, Ba, and Sr, or compounds that become oxides upon heating, such as carbonates, and oxides of Cu, such as Y2O3, La2O3, Nd2O3, Eu2O3, Er2O3, BaCO3, SrCO3, C
aCO3, CuO, etc. may be used. In addition to these, oxides corresponding to R and M above can be appropriately selected and used.

このような原料は、ボールミル等を用いて混合され、粉
体のままあるいは仮プレスされた後、所定の加熱処理が
施される。
Such raw materials are mixed using a ball mill or the like, and are subjected to a predetermined heat treatment after being mixed as a powder or temporarily pressed.

この加熱処理は、例えば、粉体の製造においては、上記
複合酸化物を形成し超伝導性を付与するためのものであ
り、焼結体の製造においては、いわゆる仮焼工程となる
ものである。
For example, in the production of powder, this heat treatment is for forming the above-mentioned composite oxide and imparting superconductivity, and in the production of sintered bodies, it is a so-called calcination step. .

この加熱処理の後、通常、粉砕され超伝導酸化物セラミ
クス粉体を得る。
After this heat treatment, it is usually ground to obtain a superconducting oxide ceramic powder.

また、この加熱処理の後、通常、必要に応じバインダー
成分を添加して成型され焼結して超伝導酸化物セラミク
ス焼結体を得る。 焼結体にはアニール処理を施しても
よい。
After this heat treatment, a binder component is usually added as required, and the material is molded and sintered to obtain a superconducting oxide ceramic sintered body. The sintered body may be subjected to an annealing treatment.

また、焼結体としては、バインダーおよび溶媒を添加し
てペースト化し、このペーストを印刷して焼結した印刷
法による厚膜であってもよい。 また、ペースト印刷の
場合には、セラミクス材料のいわゆるグリーンシート上
に印刷し、必要に応じこれを積層して焼結するグリーン
シート法による厚膜であってもよいし、種々のペースト
等と積層して焼結するハイブリッド型の厚膜であっても
よい。
Further, the sintered body may be a thick film formed by a printing method in which a binder and a solvent are added to form a paste, and this paste is printed and sintered. In the case of paste printing, a thick film may be obtained by a green sheet method in which printing is performed on a so-called green sheet of ceramic material, and if necessary, the sheets are laminated and sintered, or a thick film may be obtained by laminating various pastes, etc. It may also be a hybrid type thick film that is sintered.

このような粉体や、厚膜ないしバルクの焼結体の他、上
記の超伝導酸化物セラミクスは気相成長膜等の薄膜であ
ってもよい。
In addition to such powders and thick film or bulk sintered bodies, the above-mentioned superconducting oxide ceramics may be formed into thin films such as vapor-grown films.

薄膜としては、例えば上記の焼結体をターゲットとして
用いるスパッタ膜あるいは原料酸化物等をターゲットと
して用いる多元スパッタ膜等であってもよい。 また、
例えば対応する有機金属化合物をソースとするプラズマ
CVD膜であってもよい。
The thin film may be, for example, a sputtered film using the above-mentioned sintered body as a target or a multi-source sputtered film using raw material oxide or the like as a target. Also,
For example, it may be a plasma CVD film using a corresponding organometallic compound as a source.

これら薄膜には、必要に応じ加熱処理が施される。These thin films are subjected to heat treatment if necessary.

この他、種々の塗布膜も可能である。 塗布膜としては
、ディッピング、溶射、あるI/Xは各種塗布法による
ものいずれもが可能である。
In addition, various coating films are also possible. As for the coating film, dipping, thermal spraying, and some I/X coating methods can be used.

この塗布膜にも必要に応じ加熱処理が施される。This coating film is also subjected to heat treatment if necessary.

これら各種薄膜、塗布膜等の作製に際しては、酸化物と
して成膜してもよく、あるいは加熱により酸化物となる
化合物の形で成膜してもよい。 加熱により酸化物とな
る化合物としては、前記の炭酸塩等がある。
When producing these various thin films, coating films, etc., they may be formed as oxides, or may be formed as compounds that become oxides when heated. Examples of compounds that become oxides when heated include the above-mentioned carbonates.

この他、金属アルコキシド等の有機金属化合物を用い、
これを塗布し、加水分解物のゾル・ゲル反応により酸化
物塗膜を形成してもよい。
In addition, using organometallic compounds such as metal alkoxides,
This may be applied to form an oxide coating film through a sol-gel reaction of the hydrolyzate.

さらには、これら各種の膜の成膜に際しては、成膜後に
基材との拡散を行い、これにより酸化物膜を形成するも
のであってもよい。
Furthermore, when forming these various films, diffusion with the base material may be performed after the film formation, thereby forming an oxide film.

また、いわゆる高速急冷法に従い線材等とされ、その後
、加熱処理を施されたものであってもよい。
Alternatively, it may be made into a wire rod or the like according to a so-called high-speed quenching method, and then subjected to a heat treatment.

これら超伝導材料の作製については、本出願人による特
願昭62−064865号、同62−064866号、
同62−102718号、同62−102719号、同
62−102720号、同62−105959号および
同62−107566号等に記載されている。
Regarding the preparation of these superconducting materials, Japanese Patent Application No. 62-064865 and No. 62-064866 filed by the present applicant,
It is described in No. 62-102718, No. 62-102719, No. 62-102720, No. 62-105959, No. 62-107566, etc.

これら超伝導酸化物セラミクスの焼結体、粉体、各種膜
等は、その用いる用途に応じ、コイル、各種部品、素子
等とされる。 各種部品、素子等への応用に際しては、
従来公知の、また従来他の超伝導材で公知のものはいず
れも適用可能である。
The sintered bodies, powders, various films, etc. of these superconducting oxide ceramics are used as coils, various parts, elements, etc., depending on the intended use. When applying to various parts, elements, etc.
Any conventionally known or other conventionally known superconducting materials can be applied.

この他、本出願人による特願昭62−081500号、
同62−096064号、同62−098305号、同
62−104018号、同62−105960号、同6
2−107567号、同62−107568号、同62
−108633号、昭和62年5月26日付特許出願(
1)、同5月22日付特許出願、同5月27日付特許出
願、同5月29日付特許出願(3)等に記載のものはい
ずれも本発明を通用可能である。
In addition, Japanese Patent Application No. 62-081500 filed by the present applicant;
No. 62-096064, No. 62-098305, No. 62-104018, No. 62-105960, No. 6
No. 2-107567, No. 62-107568, No. 62
-108633, patent application dated May 26, 1986 (
1), the patent application dated May 22nd, the patent application dated May 27th, and the patent application (3) dated May 29th, etc. can all be applied to the present invention.

本発明では、上記各種超伝導酸化物セラミクス上に、直
接または必要な介在層を介してガラス質の保護層を有す
るものである。
In the present invention, a vitreous protective layer is provided on the various superconducting oxide ceramics described above, either directly or via a necessary intervening layer.

用いるガラス質としては特に制限はなく、例えば以下の
ようなものが挙げられる。
There are no particular limitations on the glass used, and examples include the following.

酸素、炭素、窒素、硫黄等を含む化合物:例えば5in
2、Sin、AfiN、AJ2203、Si3  N4
 、Zn3% BN%TiO2、TiN、ZrO2等の
酸化物、炭化物、窒化物、硫化物、あるいは例えばAI
、希土類金属等の1種以上とSiとを含み、OおよびN
を含むものなど上記化合物の複数から形成される複合化
合物などの各種ガラス質の無機物質。
Compounds containing oxygen, carbon, nitrogen, sulfur, etc.: e.g. 5in
2, Sin, AfiN, AJ2203, Si3 N4
, Zn3% BN% TiO2, TiN, ZrO2 etc. oxides, carbides, nitrides, sulfides, or e.g. AI
, one or more rare earth metals, etc. and Si, O and N
Various glassy inorganic substances such as composite compounds formed from multiple of the above compounds, including those containing.

ガラス;例えばホウケイ酸ガラス、バリウムホウケイ酸
ガラス、アルミニウムホウケイ酸ガラス等、あるいはこ
のものにさらにSi3N4等を含むガラス質などの材質
を用いればよい。 なかでも、S i 0240〜80
wt%のホウケイ酸ガラス、バリウムホウケイ酸ガラス
、アルミニウムホウケイ酸ガラスや、これらのSiO2
の一部をSi3N4等で置換したものが好ましい。
Glass: For example, a material such as borosilicate glass, barium borosilicate glass, aluminum borosilicate glass, or glass containing Si3N4 or the like may be used. Among them, S i 0240-80
wt% borosilicate glass, barium borosilicate glass, aluminum borosilicate glass, and these SiO2
It is preferable to substitute a part of with Si3N4 or the like.

低融点ガラス;ホウケイ酸鉛ガラス、ホウケイ酸亜鉛ガ
ラス、鉛ガラス等。
Low melting point glass; lead borosilicate glass, zinc borosilicate glass, lead glass, etc.

例えば、PbO−B203−3 i O2、PbO−Z
nO−3i O2,R20−B2O3−3in2 (R
:Li、Na、K)、ZnO−”B203−3in、、
  、PbO−に20−3iO□等の融点が700℃程
度以下のガラス。
For example, PbO-B203-3 i O2, PbO-Z
nO-3i O2,R20-B2O3-3in2 (R
:Li, Na, K), ZnO-”B203-3in,,
, PbO-, 20-3iO□, etc., with a melting point of about 700°C or less.

このようなガラス質から形成される保護層の層厚は、0
.01〜100μm、一般には5〜20μm程度とする
ことが好ましい。
The thickness of the protective layer formed from such glassy material is 0.
.. The thickness is preferably about 0.01 to 100 μm, generally about 5 to 20 μm.

この厚さが0.01μm未満であると耐水および耐湿性
が不十分であり、100μmを超えても本発明の効果に
変りはなく、上記範囲を超える必要はない。
If the thickness is less than 0.01 μm, the water resistance and moisture resistance will be insufficient, and if the thickness exceeds 100 μm, the effect of the present invention will not change, so it is not necessary to exceed the above range.

このようなガラス質からなる保護層の設層方法は、その
組成に応じてスパッタ法等の気相成膜法、有機化合物を
用いたゾル・ゲル法、焼付法等、各種成膜法を適当に選
択すればよいが、ガラス質保護層の組成とその好ましい
設層方法との組合わせとしては、例えば以下のようなも
のが挙げられる。
The protective layer made of glass can be formed using various film-forming methods, such as vapor-phase film-forming methods such as sputtering, sol-gel methods using organic compounds, and baking methods, depending on the composition. Examples of combinations of the composition of the vitreous protective layer and its preferred method of layer formation include the following.

1)SiO□ 、AI203 、TiO2、ZrO2,
Bad、Cab、MgO,SrOの1種以上。
1) SiO□, AI203, TiO2, ZrO2,
One or more types of Bad, Cab, MgO, and SrO.

これらは、各種気相成膜法、例えばスパッタ法、蒸着法
、イオンブレーティング法、CVD法等により設層すれ
ばよいが、有機金属化合物、特に金属アルコキシドの加
水分解を利用するゾル・ゲル法によって設層してもよい
These layers may be formed by various vapor phase film forming methods, such as sputtering, vapor deposition, ion blating, CVD, etc., but the sol-gel method utilizes hydrolysis of organometallic compounds, especially metal alkoxides. The layers may be set by

ゾル・ゲル法による場合、シリコンアルコキシドとして
は、例えば、シリコンメトキシド[S i  (OCH
3) 4 ] 、シリコンエトキシド[S i (OC
2H5)4コ、シリコンイソプロポキシド[S i (
0−iso c3H7)4 ]等を使用することができ
る。 また、チタンアルコキシドとしては、例えば、チ
タンイソプロポキシド[T i (0−iso C3H
7) 4 ] 、]チタンn−ブトキシドTi (0−
nC4H9)4コ等を使用することができる。 この他
、アルミニウムアルコキシド、ジルコニウムアルコキシ
ド等の各種金属アルコキシドも同様にして選択すればよ
い。
In the case of the sol-gel method, the silicon alkoxide is, for example, silicon methoxide [S i (OCH
3) 4], silicon ethoxide [S i (OC
2H5) 4, silicon isopropoxide [S i (
0-iso c3H7)4 ], etc. can be used. Further, as the titanium alkoxide, for example, titanium isopropoxide [T i (0-iso C3H
7) 4] , ]Titanium n-butoxide Ti (0-
nC4H9)4 etc. can be used. In addition, various metal alkoxides such as aluminum alkoxide and zirconium alkoxide may be selected in the same manner.

これら金属アルコキシドを所定の溶媒に溶解し、これを
超伝導酸化物セラミクス材料に塗設し、加水分解後乾燥
して保護層とする。 用いる溶媒としては、メタノール
、エタノール、プロパツール、ブタノール等のアルコー
ル系を用いる。 濃度は上記原料化合物が20〜60%
程度となるようにすればよい。 この場合、安定化剤を
用いることもできる。
These metal alkoxides are dissolved in a predetermined solvent, coated on a superconducting oxide ceramic material, and dried after hydrolysis to form a protective layer. As the solvent used, alcohols such as methanol, ethanol, propatool, and butanol are used. The concentration is 20-60% of the above raw material compounds.
It may be done so that it is within the range of In this case, stabilizers can also be used.

塗布には、超伝導酸化物セラミクス材料の形状等に応じ
、ディッピング法やスピンコード法等を適宜用いればよ
い。
For coating, a dipping method, a spin cord method, or the like may be used as appropriate depending on the shape of the superconducting oxide ceramic material.

加水分解は、通常、常温にて行えばよい。Hydrolysis may normally be carried out at room temperature.

この加水分解によって、通常はゾル状のネットワークが
形成される。
This hydrolysis usually results in the formation of a sol-like network.

その後乾燥を行なう。 乾燥は、室温で相対湿度60%
以下の条件下で行なえばよく、また、200℃以下、よ
り好ましくは120〜150℃で10〜30分程度行な
ってもよい。 乾燥時の雰囲気には特に制限はない。
Then dry it. Drying at room temperature and 60% relative humidity
It may be carried out under the following conditions, and may be carried out at 200°C or lower, more preferably 120 to 150°C, for about 10 to 30 minutes. There are no particular restrictions on the atmosphere during drying.

この後、必要に応じて加熱処理を行ない、保護層を得る
。 加熱処理は、200 ”C〜1000℃にて1〜2
時間時間性なえばよい。
After this, heat treatment is performed as necessary to obtain a protective layer. Heat treatment is 1-2 at 200"C to 1000℃
Time should be temporal.

このように形成される保護層は、5i02、AIL20
3.T i 02 、ZrO2、Bad%Cab、Mg
O1SrOの1種以上を含むものであるが、特ニS 1
02 100 wt%、70〜95wt%5i02−5
〜3owt%B2o3.70wt%Sin2−30wt
%Af1203.40〜97wt%S i 02−3〜
60wt%ZrO2,70〜80wt%SiO2−20
〜30wt%Tie2 、66wt%5iQ2−18w
t%P2O3−7wt%An203−9wt%BaO1
62〜90wt%SiO2−10〜38wt%CaO等
が好ましい。
The protective layer formed in this way is 5i02, AIL20
3. T i 02 , ZrO2, Bad%Cab, Mg
It contains one or more types of O1SrO, but especially S1
02 100 wt%, 70-95 wt%5i02-5
~3wt%B2o3.70wt%Sin2-30wt
%Af1203.40~97wt%S i 02-3~
60wt%ZrO2, 70~80wt%SiO2-20
~30wt%Tie2, 66wt%5iQ2-18w
t%P2O3-7wt%An203-9wt%BaO1
62 to 90 wt% SiO2-10 to 38 wt% CaO, etc. are preferred.

保護層厚の制御は、塗布回数の増減により調整すればよ
い。
The thickness of the protective layer may be controlled by increasing or decreasing the number of times of coating.

このようにして得られるガラス質保護層の層厚は、通常
5〜10μmであり、超伝導酸化物セラミクス焼結体、
超伝導酸化物セラミクス線材等に好適に用いられる。
The layer thickness of the glassy protective layer obtained in this way is usually 5 to 10 μm, and the superconducting oxide ceramic sintered body,
Suitable for use in superconducting oxide ceramic wires, etc.

1i)(1)Si02換算で酸化ケイ素40〜60wt
%と、BaO,Cab、SrO。
1i) (1) Silicon oxide 40-60wt in terms of Si02
%, BaO, Cab, SrO.

MgO,ZnO,PbO等の2価金属の酸化物50wt
%以下(2価金属酸化物換算)および/またはアルカリ
金属の酸化物10wt%以下(1価金属酸化物換算)と
、酸化ホウ素および/または酸化アルミニウムとを含有
するもの。 なお、各酸化物は化学量論組成からはずれ
たものであってもよい。
50wt of divalent metal oxides such as MgO, ZnO, PbO, etc.
% or less (in terms of divalent metal oxides) and/or 10 wt% or less of alkali metal oxides (in terms of monovalent metal oxides), and boron oxide and/or aluminum oxide. Note that each oxide may have a stoichiometric composition.

(2)Siと他の金属または半金属元素としてBa、C
a、Sr、Mg、Zn、Pb等の1種以上、An、Hの
1種以上およびアルカリ金属元素の1種以上のうちの少
なくとも1つとを含み、全金属ないし半金属中のSi原
子比が0.3〜0.9であり、ざらにOおよびNを含み
、O/(0+N)が0.4〜0.8であるもの。
(2) Si and other metal or metalloid elements such as Ba and C
a, Sr, Mg, Zn, Pb, etc., one or more of An, H, and at least one of one or more alkali metal elements, and the Si atomic ratio in the total metal or semimetal is 0.3 to 0.9, roughly containing O and N, and having O/(0+N) of 0.4 to 0.8.

これらは、各種気相成膜法、例えばスパッタ法、蒸着法
、イオンブレーティング法、CVD法等により設層すれ
ばよい。
These layers may be formed by various vapor phase film forming methods, such as sputtering, vapor deposition, ion blasting, and CVD.

スパッタ法を用いる場合、複数のターゲットを用いる多
元スパッタによってもよく、あるいはターゲットに上記
ガラス質を用いてもよい。
When using the sputtering method, multi-source sputtering using a plurality of targets may be used, or the above-mentioned glassy material may be used as the target.

これらの気相成膜法により得られるガラス質保護層の層
厚は、通常0.01〜30μmであり、このようなガラ
ス質保護層は、ジョセフソン素子、磁気検出計、赤外線
センサー等の各種素子の超伝導酸化物セラミクス材料に
好適に用いられ、超伝導酸化物セラミクス焼結体、超伝
導酸化物セラミクス線材等の超伝導酸化物セラミクス材
料に用いることもできる。
The thickness of the glassy protective layer obtained by these vapor phase film forming methods is usually 0.01 to 30 μm, and such a glassy protective layer is used for various types of devices such as Josephson elements, magnetic detectors, and infrared sensors. It is suitably used as a superconducting oxide ceramic material for devices, and can also be used for superconducting oxide ceramic materials such as superconducting oxide ceramic sintered bodies and superconducting oxide ceramic wires.

1ii)低融点ガラス 低融点ガラスとしては、融点が700℃程度以下、好ま
しくは450℃〜600℃程度のものがよく、このよう
なガラスとしては、一般にホウ酸ガラスを用いればよい
1ii) Low melting point glass The low melting point glass preferably has a melting point of about 700° C. or lower, preferably about 450° C. to 600° C. As such glass, boric acid glass may generally be used.

ホウ酸ガラスとしては、B2O3にPbO1ZnO,S
iO2の1種または2種以上を添加してなり、これに必
要に応じ、Tl2O3、Bi2 03 、CdolBa
d% Li20゜Na2O、K2O、V20S 、A 
J2203(7) 1種または2種以上を添加してなる
成分からなり、種々の組成のものを用いることができる
As boric acid glass, B2O3 contains PbO1ZnO,S
One or more types of iO2 are added, and if necessary, Tl2O3, Bi203, CdolBa
d% Li20゜Na2O, K2O, V20S, A
J2203(7) It consists of a component made by adding one or more kinds, and various compositions can be used.

このようなホウ酸ガラスの中でも、B203−PbO−
ZnO系、B203−PbO−3i02系、B20.−
ZnO−3i O2系であることが好ましく、これらの
系は、いずれも上記のTfi203等を含んでもよく、
また、その組成比も広範囲に選択することができる。
Among such boric acid glasses, B203-PbO-
ZnO series, B203-PbO-3i02 series, B20. −
The ZnO-3i O2 system is preferred, and any of these systems may contain the above-mentioned Tfi203, etc.
Furthermore, the composition ratio can be selected from a wide range.

また、この他の低融点ガラスとしては、P b OK 
20  S i O2系等が挙げられる。
In addition, as other low melting point glass, P b OK
20 S i O2 type etc. are mentioned.

これらの低融点ガラスから形成されるガラス質保護層は
、上記低融点ガラスを粉体とし、これを分散媒に分散し
て超伝導酸化物セラミクス材料に塗布し、加熱処理を施
して溶融結着させるいわゆる焼付法により形成すること
が好ましい。
The glassy protective layer formed from these low-melting glasses is made by turning the low-melting glasses into powder, dispersing it in a dispersion medium, applying it to a superconducting oxide ceramic material, and heat-treating it to fuse and bond it. It is preferable to form by a so-called baking method.

低融点ガラス粉の粒径は、0.5〜i、。The particle size of the low melting point glass powder is 0.5 to i.

μm程度が好ましい。The thickness is preferably about μm.

分散媒としては、被塗布体である超伝導酸化物セラミク
ス材料が水によって分解されるため、有機溶媒を用いる
As the dispersion medium, an organic solvent is used because the superconducting oxide ceramic material to be coated is decomposed by water.

有機溶媒としては、通常、メチルエチルケトン等のケト
ン類、フタル酸ジエチル、フタル酸シフチル、キジロー
ル等の芳香族類、シクロヘキサノン、ブチルカルピトー
ルアセテート、ジアセトンアルコール等を用いればよい
As the organic solvent, ketones such as methyl ethyl ketone, aromatics such as diethyl phthalate, cyphthyl phthalate, and quidylole, cyclohexanone, butyl carpitol acetate, diacetone alcohol, etc. may be used.

また、塗布分散物中には、樹脂分を含有させてもよい。Further, a resin component may be included in the coating dispersion.

このような分散媒に分散された低融点ガラス粉は、刷毛
、スクリーン印刷あるいはディッピング等により超伝導
酸化物セラミクス材料に塗布される。
The low melting point glass powder dispersed in such a dispersion medium is applied to the superconducting oxide ceramic material by brushing, screen printing, dipping, or the like.

この後、通常、500〜900℃の温度範囲にて加熱処
理することにより、上記低融点ガラス粉が溶融結着され
、ガラス質保護層が形成される。
Thereafter, the low melting point glass powder is melted and bonded by heat treatment, usually in a temperature range of 500 to 900°C, to form a vitreous protective layer.

なお、加熱処理は、通常空気中にて行なえばよいが、場
合によっては、酸素分圧等を制御して行なってもよい。
Note that the heat treatment may normally be performed in air, but depending on the case, it may be performed by controlling the oxygen partial pressure or the like.

このようにして得られるガラス質保護層の層厚は、通常
2〜20μmであり、超伝導酸化物セラミクス焼結体、
超電導酸化物セラミクス線材等に好適に用いられる。
The thickness of the glassy protective layer obtained in this way is usually 2 to 20 μm, and the superconducting oxide ceramic sintered body,
Suitable for use in superconducting oxide ceramic wires, etc.

なお、ガラス質保護層の下地として必要に応じ設けられ
る下地層としては、各種無機ないし有機膜がある。 ま
た、ガラス質保護層は必要に応じ複数積層してもよい。
Note that various inorganic or organic films may be used as the base layer provided as necessary as the base for the glassy protective layer. Further, a plurality of glassy protective layers may be laminated as necessary.

■ 発明の具体的作用効果 本発明の超伝導酸化物セラミクス材料は、ガラス質の保
護層を有する。
(2) Specific effects of the invention The superconducting oxide ceramic material of the invention has a vitreous protective layer.

このため、本発明の超伝導酸化物セラミクス材料は耐水
性、耐湿性に優れ、例えば水と接触する環境、あるいは
高湿条件下等での使用においても超電導酸化物セラミク
スが分解することがなく、超電導特性が劣化することが
ない安定な焼結体、線材、各種素子等が実現する。
Therefore, the superconducting oxide ceramic material of the present invention has excellent water resistance and moisture resistance, and the superconducting oxide ceramic material does not decompose even when used in an environment where it comes into contact with water or under high humidity conditions. Stable sintered bodies, wires, various elements, etc., whose superconducting properties do not deteriorate, will be realized.

■ 発明の具体的実施例 以下、本発明の具体的実施例を挙げ、本発明を更に詳細
に説明する。
(2) Specific Examples of the Invention The present invention will be described in more detail below with reference to specific examples of the invention.

[実施例1−1] サファイヤ製基板上に、Y、BaおよびCuの複合酸化
物粉をチルビオネールに分散し、バインダーとしてエチ
ルセルロースを加えて作製したペーストを塗布し、92
0 ”Cl2O時間焼成して、膜厚2μmのY I B
 a 2 Cu 307−6の組成の超伝導酸化物セラ
ミクス膜を形成した。
[Example 1-1] On a sapphire substrate, a paste prepared by dispersing Y, Ba, and Cu composite oxide powder in Chilbionel and adding ethyl cellulose as a binder was applied.
Y I B with a film thickness of 2 μm after firing for 0 ” Cl2O time
A superconducting oxide ceramic film having a composition of a 2 Cu 307-6 was formed.

この超伝導酸化物セラミクス膜上に、下記に示す条件に
てゾル・ゲル法によりS i O2のガラス質保護層を
形成した。
A glassy protective layer of SiO2 was formed on this superconducting oxide ceramic film by a sol-gel method under the conditions shown below.

原料として、シリコンエトキシドを用い、溶媒(エチル
アルコール十安定化剤)に10%の濃度で溶解し、攪拌
した後、上記超伝導酸化物セラミクス上にスピンコード
により塗布した。
Silicon ethoxide was used as a raw material, dissolved in a solvent (ethyl alcohol and a stabilizer) at a concentration of 10%, stirred, and then applied onto the superconducting oxide ceramics using a spin cord.

この後、相対湿度40%で乾燥し、300 ”Cにて1
時間加熱処理を施した。
This was followed by drying at 40% relative humidity and 1 hour at 300"C.
Heat treatment was performed for a period of time.

このような塗布、加熱処理の工程を10回緑返し、層厚
5μmの上記組成のガラス質保護層を形成した。
Such coating and heat treatment steps were repeated 10 times to form a glassy protective layer having the above composition and having a layer thickness of 5 μm.

このものをサンプルNo、1−1とした。This product was designated as sample No. 1-1.

[実施例1−21 ガラス質保護層の原料をチタンイソプロポキシドに変え
た他は実施例1−1と同様にして、厚さ5μmのTiO
2製ガラス質保護層を形成した。
[Example 1-21 A 5 μm thick TiO
A vitreous protective layer manufactured by No. 2 was formed.

このものをサンプルNo、1−2とした。This product was designated as sample No. 1-2.

[実施例2コ サファイヤ製基板上に、Y、BaおよびCuの複合酸化
物をターゲットとしてスパッタ法により超伝導酸化物セ
ラミクス薄膜を形成した。
[Example 2] A superconducting oxide ceramic thin film was formed on a cosapphire substrate by sputtering using a composite oxide of Y, Ba, and Cu as a target.

その後、膜を910℃で2時間、熱処理をした。Thereafter, the film was heat treated at 910° C. for 2 hours.

得られた薄膜の厚さは2μm、組成は Y 1B a 2 Cu 307+ δであった。The thickness of the obtained thin film was 2 μm, and the composition was Y 1B a 2 Cu 307+δ.

この薄膜上に、下記に示すサンプルNo。On this thin film, sample No. shown below was applied.

2−1〜2−4のガラス質保護層を、厚さ2μmに反応
性スパッタ法により設層しサンプルを作製した(サンプ
ルNo、2−1〜2−4)。
Samples were prepared by forming glassy protective layers 2-1 to 2-4 to a thickness of 2 μm by reactive sputtering (sample Nos. 2-1 to 2-4).

スパッタリングに際しては、必要に応じ多元スパッタを
行い、下記化合物に換算したスパッタレートとなるよう
にスパッタレートを制御した。
During sputtering, multi-source sputtering was performed as necessary, and the sputtering rate was controlled to be the sputtering rate converted to the following compound.

サンプルNo、2−1 Sin2    48.0wt% B2O347,0wt% Na2O3,0wt% に20      2.Owt% 保護層の金属組成は、上記とほぼ同等であった。Sample No. 2-1 Sin2 48.0wt% B2O347.0wt% Na2O3,0wt% 20 2. Owt% The metal composition of the protective layer was almost the same as above.

サンプルNo、2−2 Sin2    48.0wt% Al2O36,0wt% B203    12.OV/1% Na2O1,0wt% に20      1.0wt% BaO20,0wt% CaO10,0wt% ZnO2,Owt% 保護層の金属組成は、上記とほぼ同等であった。Sample No. 2-2 Sin2 48.0wt% Al2O36.0wt% B203 12. OV/1% Na2O1.0wt% to 20 1.0wt% BaO20.0wt% CaO10.0wt% ZnO2, Owt% The metal composition of the protective layer was almost the same as above.

サンプルNo、2−3 SiO238,0wt% Si3N4   20.0wt% BaO24,0wt% Ca0     18.Owt% 保護層組成は、全金属ないし半金属中のSi原子比が0
.7、o/(0+N)が0.73であった。
Sample No. 2-3 SiO238.0wt% Si3N4 20.0wt% BaO24.0wt% Ca0 18. Owt% The composition of the protective layer is such that the Si atomic ratio in all metals or metalloids is 0.
.. 7, o/(0+N) was 0.73.

サンプルNo、2−4 Sin2   21.0wt% S i 3N4   29.0wt% A1203   9.0wt% B2O35,0wt% Ba0     26.0wt% Ca0     10.Qwt% 保護層組成は、全金属ないし半金属中のSi原子比が0
.6、O/(0+N)が0.63であった。
Sample No. 2-4 Sin2 21.0wt% Si 3N4 29.0wt% A1203 9.0wt% B2O35.0wt% Ba0 26.0wt% Ca0 10. Qwt% The protective layer composition has a Si atomic ratio of 0 in all metals or semimetals.
.. 6, O/(0+N) was 0.63.

[実施例3−1] サファイヤ製基板上に、Y、BaおよびCuの複合酸化
物粉をチルビオネールに分散し、バインダーどしてエチ
ルセルロースを加えて作製したペーストを塗布し、91
0℃、20時間焼成して、膜厚5μmのY、Ba2Cu
30.−.5の組成の超伝導酸化物セラミクス膜を形成
した。
[Example 3-1] On a sapphire substrate, a paste prepared by dispersing Y, Ba, and Cu composite oxide powder in Chilbionel and adding ethyl cellulose as a binder was applied.
Sintered at 0°C for 20 hours to form a film of Y, Ba2Cu with a thickness of 5 μm.
30. −. A superconducting oxide ceramic film having a composition of No. 5 was formed.

この膜上に、下記に示す条件にて焼付法により低融点ガ
ラスを溶融結着し、ガラス質保護層とした。
A low melting point glass was melted and bonded onto this film by a baking method under the conditions shown below to form a vitreous protective layer.

作業温度600℃のPbOB2 03−3 i O2ガ
ラスの粉体(粒径0.5μm)をメチルエチルケトンに
分散したものを上記超伝導酸化物セラミクス膜上にスク
リーン印刷により塗布した。
PbOB2 03-3 i O2 glass powder (particle size 0.5 μm) dispersed in methyl ethyl ketone at a working temperature of 600° C. was applied onto the superconducting oxide ceramic film by screen printing.

これに600℃にて1時間加熱処理を施して上記ガラス
を溶融結着させ、厚さ10μmのガラス質保護層とした
This was subjected to heat treatment at 600° C. for 1 hour to melt and bond the above-mentioned glass to form a vitreous protective layer having a thickness of 10 μm.

このものをサンプルNo、3−1とした。This product was designated as sample No. 3-1.

[実施例3−2] 用いる低融点ガラスを作業温度700℃のP b OK
 20  S i O2ガラスとし、加熱処理条件を7
50℃、1時間とした他は実施例3−1と同様にしてガ
ラス質保護層を設層した。
[Example 3-2] The low melting point glass used was P b OK at a working temperature of 700°C.
20 SiO2 glass, heat treatment conditions were 7.
A vitreous protective layer was formed in the same manner as in Example 3-1 except that the temperature was 50°C for 1 hour.

このものをサンプルNo、3−2とした。This product was designated as sample No. 3-2.

[比較例1コ 上記実施例1−1において、ガラス質保護層を設層しな
いサンプルを作製し、比較サンプル1とした。
[Comparative Example 1] In Example 1-1 above, a sample without the glassy protective layer was prepared and designated as Comparative Sample 1.

[比較例2] 上記実施例2において、ガラス質保護層を設層しないサ
ンプルを作製し、比較サンプル2とした。
[Comparative Example 2] In Example 2 above, a sample without the glassy protective layer was prepared and designated as Comparative Sample 2.

上記の各実施例および比較例で得られた各サンプルにつ
いて、初期と保存後の超伝導特性を測定し、その変化を
調べた。
For each sample obtained in each of the above Examples and Comparative Examples, the superconducting properties at the initial stage and after storage were measured, and changes therein were investigated.

なお、保存条件は30℃、80%RHにて2週間とし、
外観の変化も観察した。
The storage conditions were 30°C and 80% RH for 2 weeks.
Changes in appearance were also observed.

この結果、本発明のガラス質保護層を有する超伝導酸化
物セラミクス材料(サンプルNo、1−1.1−2.2
−1〜2−4.3−1.3−2)は、保存後においても
臨界温度、臨界電流密度等の超伝導特性の劣化がなく、
外観にも異常がみられなかった。
As a result, the superconducting oxide ceramic material (sample No. 1-1.1-2.2) having a vitreous protective layer of the present invention was obtained.
-1 to 2-4.3-1.3-2), there is no deterioration in superconducting properties such as critical temperature and critical current density even after storage.
No abnormality was observed in appearance.

これに対し、比較サンプル1および2は、臨界温度、臨
界電流密度の低下が生じ、また、超伝導酸化物セラミク
ス膜表面に変色がみられ、超伝導酸化物セラミクスに分
解が生じていることが確認された。
On the other hand, in Comparative Samples 1 and 2, the critical temperature and critical current density decreased, and discoloration was observed on the surface of the superconducting oxide ceramic film, indicating that the superconducting oxide ceramic had decomposed. confirmed.

また、耐候試験として、水に2時間浸漬したのちの変化
を調べた。 比較サンプルは水と反応して変色していた
が、本発明サンプルには変化がみられなかった。
In addition, as a weather resistance test, changes after being immersed in water for 2 hours were examined. The comparative sample was discolored due to reaction with water, but no change was observed in the sample of the present invention.

以上の実施例から、本発明の効果は明らかである。From the above examples, the effects of the present invention are clear.

Claims (1)

【特許請求の範囲】[Claims] (1)ガラス質保護層を有することを特徴とする超伝導
酸化物セラミクス材料。
(1) A superconducting oxide ceramic material characterized by having a glassy protective layer.
JP62153029A 1987-06-19 1987-06-19 Superconductive oxide ceramics material Pending JPS63318016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62153029A JPS63318016A (en) 1987-06-19 1987-06-19 Superconductive oxide ceramics material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62153029A JPS63318016A (en) 1987-06-19 1987-06-19 Superconductive oxide ceramics material

Publications (1)

Publication Number Publication Date
JPS63318016A true JPS63318016A (en) 1988-12-26

Family

ID=15553410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62153029A Pending JPS63318016A (en) 1987-06-19 1987-06-19 Superconductive oxide ceramics material

Country Status (1)

Country Link
JP (1) JPS63318016A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410512A (en) * 1987-07-01 1989-01-13 Matsushita Electric Ind Co Ltd Superconductor structure
JPS6419613A (en) * 1987-07-14 1989-01-23 Marui Sangyo Kk Superconducting material
JPS6433087A (en) * 1987-07-28 1989-02-02 Sumitomo Spec Metals Superconducting ceramics having superior water resistance
JPH01126205A (en) * 1987-07-06 1989-05-18 Sumitomo Electric Ind Ltd Superconducting thin film and its formation
JPH01163058A (en) * 1987-07-17 1989-06-27 Sumitomo Electric Ind Ltd Supercoductive thin film and its preparation
JPH01246106A (en) * 1988-03-29 1989-10-02 Mitsubishi Mining & Cement Co Ltd Superconducting oxide material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410512A (en) * 1987-07-01 1989-01-13 Matsushita Electric Ind Co Ltd Superconductor structure
JPH07106895B2 (en) * 1987-07-01 1995-11-15 松下電器産業株式会社 Superconductor structure
JPH01126205A (en) * 1987-07-06 1989-05-18 Sumitomo Electric Ind Ltd Superconducting thin film and its formation
JPS6419613A (en) * 1987-07-14 1989-01-23 Marui Sangyo Kk Superconducting material
JPH01163058A (en) * 1987-07-17 1989-06-27 Sumitomo Electric Ind Ltd Supercoductive thin film and its preparation
JPS6433087A (en) * 1987-07-28 1989-02-02 Sumitomo Spec Metals Superconducting ceramics having superior water resistance
JPH01246106A (en) * 1988-03-29 1989-10-02 Mitsubishi Mining & Cement Co Ltd Superconducting oxide material

Similar Documents

Publication Publication Date Title
JP3814810B2 (en) Bismuth glass composition
JP4016507B2 (en) Bismuth glass composition
US6461415B1 (en) High temperature amorphous composition based on aluminum phosphate
US5153070A (en) Coated refractory article and method
JP3381332B2 (en) High dielectric constant glass ceramic
JP3406611B2 (en) Low loss PZT ceramic compositions that can be fired with silver at low sintering temperatures and methods for making the same
US4101952A (en) Monolithic base-metal glass-ceramic capacitor
JPH0397669A (en) Dielectric porcelain composition
JP4061792B2 (en) Lead-free low melting glass and glass frit
JPS59162146A (en) Glass-ceramic containing orsmilite
CN1872753A (en) Ceramic material of microcrystalline glass, and preparation method
WO2007029425A1 (en) Nonlead glass composition
JP2004507429A (en) Glass ceramic material and its use
JPS63318016A (en) Superconductive oxide ceramics material
US2863782A (en) Low-melting high-expansion glass
TWI243806B (en) Glass ceramic mass and ceramic body
US3663244A (en) High durability lead titanate-containing enamel for glass ceramics
CN1328732C (en) Dielectric composition on the basis of barium titanate
JP4621995B2 (en) Bismuth glass composition and bismuth material
JPH03133116A (en) Multilayer ceramic chip capacitor
JP2001322832A (en) Sealing composition
JP2006143585A (en) Bismuth-based glass mixture
KR100259406B1 (en) Cold sintering type board and manufacturing method thereof
JPH01131025A (en) Production of oxide based superconducting material
JPS61186248A (en) Glass ceramic