JP4016507B2 - Bismuth glass composition - Google Patents

Bismuth glass composition Download PDF

Info

Publication number
JP4016507B2
JP4016507B2 JP29971298A JP29971298A JP4016507B2 JP 4016507 B2 JP4016507 B2 JP 4016507B2 JP 29971298 A JP29971298 A JP 29971298A JP 29971298 A JP29971298 A JP 29971298A JP 4016507 B2 JP4016507 B2 JP 4016507B2
Authority
JP
Japan
Prior art keywords
glass
less
bao
sro
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29971298A
Other languages
Japanese (ja)
Other versions
JP2000128574A (en
Inventor
俊郎 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP29971298A priority Critical patent/JP4016507B2/en
Publication of JP2000128574A publication Critical patent/JP2000128574A/en
Application granted granted Critical
Publication of JP4016507B2 publication Critical patent/JP4016507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【産業上の利用分野】
本発明は電子部品の接着、封着、被覆等に好適なビスマス系ガラス組成物に関するものである。
【0002】
【従来の技術】
従来から電子部品の接着や封着材料として、或いは電子部品に形成された電極や抵抗体の保護や絶縁のための被覆材料としてガラスが用いられている。
【0003】
これらのガラスは、その用途に応じて化学耐久性、機械的強度、流動性、電気絶縁性等種々の特性が要求されるが、何れの用途にも共通する特性として、低温で焼成可能であることが挙げられる。それゆえ何れの用途においても、ガラスの融点を下げる効果が極めて大きいPbOを多量に含有した低融点ガラスが広く用いられている。
【0004】
【発明が解決しようとする課題】
しかしながら最近、PbO含有ガラスに対して環境上の問題が指摘されており、PbOを含まないガラスに置換することが望まれている。またPbOを多量に含有するガラスを用いて電気絶縁膜を形成すると、Pb2+イオンが拡散して電気絶縁性が低下し易いという不都合もある。
【0005】
本発明は上記事情に鑑みなされたものであり、500℃以下の温度で焼成が可能であるとともに、PbOを含有しないために環境問題が生じたり、電気絶縁性が低下する恐れがないガラス組成物を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明のビスマス系ガラスは、モル分率で、Bi23 30〜50%、B23 10〜40%、BaO+SrO 1〜10%、ZnO 0〜30%、CuO 0〜20%、Fe23 0〜5%、SiO2+Al23 0〜5%、Cs2O 0〜5%、F2 0〜20%の組成を有し、かつ、Bi23/(BaO+SrO)が3.5〜3.0の関係を満たし、ガラス転移点が363℃以下であることを特徴とする。
【0007】
【作用】
本発明のビスマス系ガラス組成物の組成を上記のように限定した理由は次のとおりである。
【0008】
Bi23はガラスの軟化点を下げるための主要成分であり、その含有量は30〜50%、好ましくは35〜45%である。Bi23 の含有量が30%より少ないと転移点が高くなり過ぎて500℃以下で焼成できなくなり、50%より多いと安定なガラスが得られなくなる。
【0009】
23はガラス形成成分として必須であり、その含有量は10〜40%、好ましくは18〜40%である。B23の含有量が10%より少ないとガラスが不安定になって失透し易くなる。また失透を生じない場合でも、焼成時に結晶の析出速度が極めて大きく、接着、封着、被覆等の作業に必要な流動性が得られない。一方、B23が40%より多くなるとガラスの粘性が高くなり過ぎて500℃以下の温度で焼成が困難になる。
【0010】
BaOとSrOはガラスの安定化に大きな効果があり、これらを合量で1〜10%、好ましくは2〜9%含有する。これらの成分の合量が1%より少ないとその効果がなく、一方、10%より多くなると転移点が高くなる。なおBaOの含有量は0〜10%、特に2〜9%であることが好ましく、またSrOの含有量は0〜5%、特に0〜3%であることが好ましい。
【0011】
また、Bi23と(BaO+SrO)の割合は、低融点でかつ安定なガラスを得る上で重要な要素であり、モル比でBi23/(BaO+SrO)が3.5〜35.0、好ましくは4.0〜15.0、さらに好ましくは5.0〜10.0である。Bi23/(BaO+SrO)が3.5未満になると、ガラスの転移点が高くなり、500℃以下の温度で封着し難くなる。また35.0を超えると結晶の析出速度が極めて大きくなって流動性が悪くなる。
【0012】
ZnOはガラスの安定化に大きな効果があり、その含有量は0〜30%、好ましくは15〜25%である。その含有量が30%より多くなるとガラスが結晶化しやすくなって流動性が悪くなる。
【0013】
CuOはガラスを安定化するための成分であり、その含有量は0〜20%、好ましくは0〜15%である。CuOが20%を超えると結晶の析出速度が極めて大きくなって流動性が悪くなる。
【0014】
Fe23はガラスを安定化するための成分であり、その含有量は0〜5%、好ましくは0〜2%である。Fe23が5%を超えると逆にガラスが不安定になる。
【0015】
SiO2及びAl23は何れもガラスをより安定化させるために含有させる成分であり、合量で5%以下、好ましくは2%以下使用する。これらの成分が上記範囲を超えるとガラスの粘性が高くなり過ぎて好ましくない。なおSiO2及びAl23の含有量はそれぞれ0〜2%であることが好ましい。
【0016】
Cs2OとF2はガラスをより低粘性化する成分であり、Cs2Oの含有量は0〜5%、好ましくは0〜3%、F2の含有量は0〜20%、好ましくは0〜10%である。これらの成分が上記範囲を超えるとガラスの化学耐久性が低下する。
【0017】
なお上記成分以外にも、ガラスの粘性や熱膨張係数の調整のために、MgO、La23、TiO2、ZrO2、V25、Nb25、MoO3、WO3、TeO2、Ag2O、Na2O、K2O、Li2O等を5%以下添加することが可能である。ただしPbO等、環境上問題のある成分の添加は避けるべきである。
【0018】
以上の組成を有するガラスは、ガラス転移点が363℃以下であり、500℃以下の温度で良好な流動性を示す非結晶性又は結晶性のガラスである。また30〜300℃における熱膨張係数が約100×10-7/℃以上であり、これと適合する高膨張材料を500℃以下の温度で接着、封着又は被覆することが可能である。
【0019】
一方、熱膨張係数の適合しない材料の接着、封着又は被覆を行う場合、対象物との熱膨張係数差を是正するために、耐火性フィラーを混合して使用することが可能である。また機械的強度が不足する場合も耐火性フィラーを混合して使用することができる。
【0020】
耐火性フィラーを混合する場合、その混合割合はガラス45〜95体積%と耐火性フィラー55〜5体積%であることが好ましい。両者の割合をこのように規定した理由は、耐火性フィラーが5体積%より少ないとその効果がなく、55体積%より多くなると流動性が悪くなり易いためである。
【0021】
耐火性フィラーとしては、チタン酸鉛系セラミック、ウイレマイト系セラミック、β−ユークリプタイト、コーディエライト、ジルコン系セラミック、酸化錫系セラミック、ムライト、石英ガラス、アルミナ等の粉末を単独、或は組み合わせて使用することが好ましい。
【0022】
なお本発明のビスマス系ガラス組成物の具体的な用途としては、▲1▼蛍光表示管用パッケージの封着、絶縁層の形成、▲2▼プラズマディスプレイ−パネルの気密封着、絶縁層や誘電体層の形成、バリアリブの形成、▲3▼磁気ヘッド−コア同士又はコアとスライダーの封着、等が挙げられる。また使用時の形態は特に制限はなく、粉末状、板状、棒状等、その用途に応じて種々の形態に成形して使用することができる。
【0023】
【実施例】
以下、本発明のビスマス系ガラス組成物を実施例に基づいて詳細に説明する。
【0024】
表1〜3は、本発明の参考例(試料No.1)、実施例(試料No.〜12)及び比較例(試料No.13〜15)を示すものである。
【0025】
【表1】

Figure 0004016507
【0026】
【表2】
Figure 0004016507
【0027】
【表3】
Figure 0004016507
Figure 0004016507
【0028】
表の各試料は次のようにして調製した。
【0029】
まず表に示したガラス組成となるように各種酸化物、炭酸塩等を調合したガラスバッチを準備し、これを白金坩堝に入れて900〜1000℃で2時間溶融した後、溶融ガラスをステンレス製の金型に流しだして成形した。得られた各試料について、ガラス転移点、30〜300℃における熱膨張係数、焼成温度、及び結晶性か非結晶性かを評価した。結果を表に示す。
【0030】
表から明らかなように、本発明の実施例であるNo.〜12の各試料は、ガラス転移点が345〜33℃、30〜300℃の温度範囲における熱膨張係数が109〜119×10-7/℃であり、焼成温度が500℃以下であった。また試料No.3、4、7、9、12は結晶性であり、試料No.2、5、6、8、10、11は非結晶性であった。
【0031】
一方、比較例であるNo.13の試料はBaOとSrOの含有量が1%未満であり、またBi23/(BaO+SrO)が35.0を超える。このためガラスの結晶化傾向が著しく、その結果、流動性が悪く、500℃以下で焼成できなかった。No.14の試料はBaOとSrOが合量で10%を超え、Bi23/(BaO+SrO)が3.5未満であるために、またNo.15の試料はBi23が30%未満であるために、ガラス転移点が高くなり、何れも500℃以下の温度で焼成できなかった。
【0032】
なお転移点は示差熱分析装置(DTA)により求めた。熱膨張係数は、成形したガラス体を直径4mm、長さ40mmの円柱状に研磨加工し、押し棒式熱膨張係数測定装置を用いて測定した。焼成温度は、次のようにして求めた。まずガラス体を粉砕してガラス粉末を得、ガラスの真比重に相当する重量のガラス粉末を金型を用いて外径20mm、高さ約5mmのボタン状に加圧成形した。次いでこのボタンを板ガラスの上に載せて電気炉に入れ、10℃/分の速度で昇温し、種々の温度で10分間保持した。このようにして得られたボタンの外径が21〜22mmの範囲にある温度を焼成温度とした。また結晶性か非結晶性かの判定は、焼成温度で10分間加熱された後の試料の外観を顕微鏡で観察し、結晶の析出状態から評価した。
【0033】
【発明の効果】
以上のように本発明のビスマス系ガラス組成物は、PbOを含有しないため、環境問題を引き起こす心配がない。また500℃以下の温度で焼成できるため、従来のPbOを含有する低融点ガラスの代替材料として、電子部品の接着、封着、被覆等の用途に使用することが可能である。[0001]
[Industrial application fields]
The present invention relates to a bismuth-based glass composition suitable for bonding, sealing, coating, etc. of electronic components.
[0002]
[Prior art]
Conventionally, glass has been used as an adhesive or sealing material for electronic components, or as a coating material for protecting and insulating electrodes and resistors formed on electronic components.
[0003]
These glasses are required to have various properties such as chemical durability, mechanical strength, fluidity, and electrical insulation depending on the application, but can be fired at a low temperature as a property common to all applications. Can be mentioned. Therefore, in any application, low-melting glass containing a large amount of PbO that has an extremely large effect of lowering the melting point of glass is widely used.
[0004]
[Problems to be solved by the invention]
Recently, however, environmental problems have been pointed out with respect to PbO-containing glasses, and it is desired to replace them with glass containing no PbO. In addition, when an electrical insulating film is formed using glass containing a large amount of PbO, there is also a disadvantage that Pb 2+ ions diffuse and electrical insulation properties are liable to deteriorate.
[0005]
The present invention has been made in view of the above circumstances, and can be fired at a temperature of 500 ° C. or less, and does not contain PbO, so that there is no risk of environmental problems or a decrease in electrical insulation. The purpose is to provide.
[0006]
[Means for Solving the Problems]
The bismuth-based glass of the present invention has a mole fraction of Bi 2 O 3 30-50%, B 2 O 3 10-40%, BaO + SrO 1-10%, ZnO 0-30%, CuO 0-20%, Fe 2 O 3 0-5%, SiO 2 + Al 2 O 3 0-5%, Cs 2 O 0-5%, F 2 0-20%, and Bi 2 O 3 / (BaO + SrO) is 3.5-3 5 . It meets 0 relationships, and a glass transition point of 363 ° C. or less.
[0007]
[Action]
The reason for limiting the composition of the bismuth-based glass composition of the present invention as described above is as follows.
[0008]
Bi 2 O 3 is a main component for lowering the softening point of the glass, and its content is 30 to 50%, preferably 35 to 45%. If the content of Bi 2 O 3 is less than 30%, the transition point becomes too high to be fired at 500 ° C. or less, and if it exceeds 50%, stable glass cannot be obtained.
[0009]
B 2 O 3 is essential as a glass forming component, and its content is 10 to 40%, preferably 18 to 40%. If the content of B 2 O 3 is less than 10%, the glass becomes unstable and tends to devitrify. Even when devitrification does not occur, the crystal deposition rate is extremely high at the time of firing, and the fluidity necessary for operations such as adhesion, sealing, and coating cannot be obtained. On the other hand, if B 2 O 3 exceeds 40%, the viscosity of the glass becomes too high and firing at a temperature of 500 ° C. or less becomes difficult.
[0010]
BaO and SrO have a great effect on the stabilization of the glass, and contain them in a total amount of 1 to 10%, preferably 2 to 9%. If the total amount of these components is less than 1%, the effect is not obtained, while if it exceeds 10%, the transition point becomes high. The BaO content is preferably 0 to 10%, particularly preferably 2 to 9%, and the SrO content is preferably 0 to 5%, particularly preferably 0 to 3%.
[0011]
The ratio of Bi 2 O 3 and (BaO + SrO) is an important factor for obtaining a stable glass having a low melting point, and Bi 2 O 3 / (BaO + SrO) is 3.5 to 35.0 in terms of molar ratio. Preferably, it is 4.0-15.0, More preferably, it is 5.0-10.0. When Bi 2 O 3 / (BaO + SrO) is less than 3.5, the glass transition point becomes high and sealing becomes difficult at a temperature of 500 ° C. or lower. On the other hand, if it exceeds 35.0, the deposition rate of crystals becomes extremely high and the fluidity becomes poor.
[0012]
ZnO has a great effect on glass stabilization, and its content is 0 to 30%, preferably 15 to 25%. When the content exceeds 30%, the glass is easily crystallized and the fluidity is deteriorated.
[0013]
CuO is a component for stabilizing the glass, and its content is 0 to 20%, preferably 0 to 15%. When CuO exceeds 20%, the precipitation rate of crystals becomes extremely high and the fluidity becomes poor.
[0014]
Fe 2 O 3 is a component for stabilizing the glass, and its content is 0 to 5%, preferably 0 to 2%. If Fe 2 O 3 exceeds 5%, the glass becomes unstable.
[0015]
Both SiO 2 and Al 2 O 3 are components that are added to stabilize the glass, and the total amount is 5% or less, preferably 2% or less. If these components exceed the above range, the viscosity of the glass becomes too high, which is not preferable. Note it is preferable that the content of SiO 2 and Al 2 O 3 is 0-2%, respectively.
[0016]
Cs 2 O and F 2 are components that lower the viscosity of the glass. The content of Cs 2 O is 0 to 5%, preferably 0 to 3%, and the content of F 2 is 0 to 20%, preferably 0 to 10%. When these components exceed the above range, the chemical durability of the glass is lowered.
[0017]
In addition to the above components, MgO, La 2 O 3 , TiO 2 , ZrO 2 , V 2 O 5 , Nb 2 O 5 , MoO 3 , WO 3 , TeO are used to adjust the viscosity and thermal expansion coefficient of the glass. 2 , Ag 2 O, Na 2 O, K 2 O, Li 2 O or the like can be added at 5% or less. However, addition of environmentally problematic components such as PbO should be avoided.
[0018]
The glass having the above composition is a non-crystalline or crystalline glass having a glass transition point of 363 ° C. or lower and good fluidity at a temperature of 500 ° C. or lower. Further, the coefficient of thermal expansion at 30 to 300 ° C. is about 100 × 10 −7 / ° C. or higher, and a high expansion material compatible therewith can be bonded, sealed or coated at a temperature of 500 ° C. or lower.
[0019]
On the other hand, when bonding, sealing, or coating a material that does not match the thermal expansion coefficient, it is possible to mix and use a refractory filler in order to correct the difference in thermal expansion coefficient from the object. Also, when the mechanical strength is insufficient, a refractory filler can be mixed and used.
[0020]
When mixing a refractory filler, the mixing ratio is preferably 45 to 95% by volume of glass and 55 to 5% by volume of refractory filler. The reason for defining the ratio of the two in this way is that if the refractory filler is less than 5% by volume, there is no effect, and if it exceeds 55% by volume, the fluidity tends to deteriorate.
[0021]
As the refractory filler, powders of lead titanate ceramics, willemite ceramics, β-eucryptite, cordierite, zircon ceramics, tin oxide ceramics, mullite, quartz glass, alumina, etc., alone or in combination Are preferably used.
[0022]
Specific uses of the bismuth-based glass composition of the present invention include (1) sealing of fluorescent display tube packages, formation of insulating layers, (2) hermetic sealing of plasma display panels, insulating layers and dielectrics. Examples include formation of a layer, formation of a barrier rib, and (3) sealing of a magnetic head-core or between a core and a slider. Moreover, the form at the time of use does not have a restriction | limiting in particular, According to the use, it can shape | mold and use it in various forms, such as powder form, plate shape, and rod shape.
[0023]
【Example】
Hereinafter, the bismuth-based glass composition of the present invention will be described in detail based on examples.
[0024]
Tables 1 to 3 show reference examples (sample No. 1), examples (sample Nos. 2 to 12) and comparative examples (sample Nos. 13 to 15) of the present invention.
[0025]
[Table 1]
Figure 0004016507
[0026]
[Table 2]
Figure 0004016507
[0027]
[Table 3]
Figure 0004016507
Figure 0004016507
[0028]
Each sample in the table was prepared as follows.
[0029]
First, a glass batch prepared by preparing various oxides, carbonates and the like so as to have the glass composition shown in the table was prepared, put in a platinum crucible and melted at 900 to 1000 ° C. for 2 hours, and then the molten glass was made of stainless steel. The mold was poured into a mold. About each obtained sample, the glass transition point, the thermal expansion coefficient in 30-300 degreeC, a calcination temperature, and crystalline or non-crystalline were evaluated. The results are shown in the table.
[0030]
As is apparent from the table, No. 1 as an example of the present invention. 2-12 of each sample, the glass transition point three hundred forty-five to three 6 3 ° C., the thermal expansion coefficient in a temperature range of 30 to 300 ° C. is 109~119 × 10 -7 / ℃, the firing temperature is 500 ° C. or less there were. Sample no . 3 , 4, 7, 9, and 12 are crystalline. 2, 5, 6, 8, 10, and 11 were non-crystalline.
[0031]
On the other hand, No. which is a comparative example. Sample No. 13 has a BaO and SrO content of less than 1%, and Bi 2 O 3 / (BaO + SrO) exceeds 35.0. For this reason, the crystallization tendency of the glass was remarkable, and as a result, the fluidity was poor, and the glass could not be fired at 500 ° C. or lower. No. In the sample No. 14, the total amount of BaO and SrO exceeds 10%, and Bi 2 O 3 / (BaO + SrO) is less than 3.5. Since the sample No. 15 had Bi 2 O 3 of less than 30%, the glass transition point was high and none of the samples could be fired at a temperature of 500 ° C. or lower.
[0032]
The transition point was determined by a differential thermal analyzer (DTA). The thermal expansion coefficient was measured using a push rod type thermal expansion coefficient measuring device after polishing the molded glass body into a cylindrical shape having a diameter of 4 mm and a length of 40 mm. The firing temperature was determined as follows. First, a glass body was pulverized to obtain a glass powder, and a glass powder having a weight corresponding to the true specific gravity of the glass was press-molded into a button shape having an outer diameter of 20 mm and a height of about 5 mm using a mold. Next, this button was placed on a plate glass, placed in an electric furnace, heated at a rate of 10 ° C./min, and held at various temperatures for 10 minutes. The temperature at which the outer diameter of the button thus obtained was in the range of 21 to 22 mm was defined as the firing temperature. The crystallinity or non-crystallinity was determined by observing the appearance of the sample after being heated at the firing temperature for 10 minutes with a microscope and evaluating from the crystal precipitation state.
[0033]
【The invention's effect】
As described above, since the bismuth-based glass composition of the present invention does not contain PbO, there is no concern of causing environmental problems. Moreover, since it can bake at the temperature of 500 degrees C or less, it can be used for uses, such as adhesion | attachment of an electronic component, sealing, and coating | cover, as an alternative material of the low melting glass containing conventional PbO.

Claims (2)

モル分率で、Bi23 30〜50%、B23 10〜40%、BaO+SrO 1〜10%、ZnO 0〜30%、CuO 0〜20%、Fe23 0〜5%、SiO2+Al23 0〜5%、Cs2O 0〜5%、F2 0〜20%の組成を有し、かつ、Bi23/(BaO+SrO)が3.5〜35.0の関係を満たし、ガラス転移点が363℃以下であることを特徴とするビスマス系ガラス組成物。Mole fraction, Bi 2 O 3 30~50%, B 2 O 3 10~40%, BaO + SrO 1~10%, 0~30% ZnO, 0~20% CuO, Fe 2 O 3 0~5%, It has a composition of SiO 2 + Al 2 O 3 0-5%, Cs 2 O 0-5%, F 2 0-20%, and Bi 2 O 3 / (BaO + SrO) is 3.5-35.0. meets a relationship, bismuth glass composition, wherein the glass transition point of 363 ° C. or less. 本質的にPbOを含有しないことを特徴とする請求項1のビスマス系ガラス組成物。  The bismuth-based glass composition according to claim 1, which essentially contains no PbO.
JP29971298A 1998-10-21 1998-10-21 Bismuth glass composition Expired - Fee Related JP4016507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29971298A JP4016507B2 (en) 1998-10-21 1998-10-21 Bismuth glass composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29971298A JP4016507B2 (en) 1998-10-21 1998-10-21 Bismuth glass composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007078255A Division JP4621995B2 (en) 2007-03-26 2007-03-26 Bismuth glass composition and bismuth material

Publications (2)

Publication Number Publication Date
JP2000128574A JP2000128574A (en) 2000-05-09
JP4016507B2 true JP4016507B2 (en) 2007-12-05

Family

ID=17876063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29971298A Expired - Fee Related JP4016507B2 (en) 1998-10-21 1998-10-21 Bismuth glass composition

Country Status (1)

Country Link
JP (1) JP4016507B2 (en)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2794120B1 (en) * 1999-05-28 2003-05-02 Baruch Nachmansohn LEAD-FREE DEVITRIFICATION WELDING GLASSES OR OTHER TOXIC MATERIALS
JP4839539B2 (en) * 2001-07-24 2011-12-21 旭硝子株式会社 Lead-free glass, glass frit, glass paste, electronic circuit components and electronic circuits
US6787239B2 (en) * 2001-11-30 2004-09-07 Matsushita Electric Industrial Co., Ltd. Electrode material, dielectric material and plasma display panel using them
CN1286753C (en) 2002-03-29 2006-11-29 松下电器产业株式会社 Bismuth glass composition, and magnetic head and plasma display panel including the same as sealing member
JP4299021B2 (en) * 2003-02-19 2009-07-22 ヤマト電子株式会社 Sealing material and sealing paste
EP1642871B1 (en) 2003-06-27 2010-12-01 Yamato Electronic Co., Ltd. Lead-free glass material for use in sealing and, sealed article and method for sealing using the same
KR100565194B1 (en) 2003-08-04 2006-03-30 엘지전자 주식회사 Glass compositions for plasma display panel and preparing method therefor
JP2007516143A (en) * 2003-10-23 2007-06-21 カウンシル・オブ・サイエンティフィック・アンド・インダストリアル・リサーチ Composition for preparing high concentration fullerene (C60) glass and method for preparing large single layer glass
TW200520008A (en) 2003-11-06 2005-06-16 Asahi Glass Co Ltd Glass for forming barrier ribs, and plasma display panel
JP4556624B2 (en) * 2004-11-12 2010-10-06 日本電気硝子株式会社 Sealing powder and sealing paste
JP4900868B2 (en) * 2004-12-14 2012-03-21 日本電気硝子株式会社 Tablet integrated exhaust pipe
JP4941880B2 (en) * 2006-01-16 2012-05-30 日本電気硝子株式会社 Bismuth-based glass composition and bismuth-based sealing material
JP2006327845A (en) * 2005-05-24 2006-12-07 Asahi Techno Glass Corp Press frit
JP4766444B2 (en) * 2005-05-31 2011-09-07 日本電気硝子株式会社 Bismuth-based lead-free sealing material
JP4688620B2 (en) * 2005-09-26 2011-05-25 パナソニック株式会社 Display panel, method for manufacturing the same, and sealing member
KR100722471B1 (en) * 2005-09-28 2007-05-28 엘지전자 주식회사 A method and apparatus for mobile station using gyro sensor
JP5245224B2 (en) * 2005-10-03 2013-07-24 パナソニック株式会社 Plasma display panel
KR101355116B1 (en) * 2006-01-16 2014-01-24 니폰 덴키 가라스 가부시키가이샤 Bismuth-base glass composition and bismuth-base sealing material
JP5419249B2 (en) * 2006-01-16 2014-02-19 日本電気硝子株式会社 Bismuth-based glass composition and bismuth-based sealing material
JP5257824B2 (en) * 2006-04-03 2013-08-07 日本電気硝子株式会社 Non-crystalline glass tablet and tablet integrated exhaust pipe
JP2008024558A (en) * 2006-07-24 2008-02-07 Nihon Yamamura Glass Co Ltd Lead-free glass composition for sealing metal-made vacuum double container
JP5083705B2 (en) * 2006-11-15 2012-11-28 日本電気硝子株式会社 Crystalline bismuth-based material
JP5321934B2 (en) * 2007-03-23 2013-10-23 日本電気硝子株式会社 Crystalline bismuth-based material
JP4621995B2 (en) * 2007-03-26 2011-02-02 日本電気硝子株式会社 Bismuth glass composition and bismuth material
JP5252364B2 (en) * 2007-06-28 2013-07-31 日本電気硝子株式会社 Glass melting equipment and glass melting method
JP5046099B2 (en) * 2007-07-23 2012-10-10 Tdk株式会社 Manufacturing method of multilayer ceramic substrate
JP5476691B2 (en) * 2007-08-31 2014-04-23 日本電気硝子株式会社 Sealing material
JP5257829B2 (en) * 2007-08-31 2013-08-07 日本電気硝子株式会社 Sealing material
JP5440997B2 (en) * 2008-08-21 2014-03-12 日本電気硝子株式会社 Sealing material for organic EL display
JP5458579B2 (en) * 2008-02-28 2014-04-02 日本電気硝子株式会社 Sealing material for organic EL display
WO2009107428A1 (en) * 2008-02-28 2009-09-03 日本電気硝子株式会社 Sealing material for organic el display
JP5717043B2 (en) * 2008-09-04 2015-05-13 日本電気硝子株式会社 Electrode forming glass composition and electrode forming material
CN102066275A (en) * 2008-09-04 2011-05-18 日本电气硝子株式会社 Glass composition for electrode formation and electrode formation material
JP5709033B2 (en) * 2010-02-23 2015-04-30 日本電気硝子株式会社 Bismuth glass
EP2558426B1 (en) * 2010-04-15 2020-04-08 Ferro Corporation Low-melting lead-free bismuth sealing glasses
JP2011105596A (en) * 2011-02-10 2011-06-02 Nippon Electric Glass Co Ltd Glass tablet, method for producing the same, and glass tablet-integrated exhaust pipe
US9969648B2 (en) * 2011-09-13 2018-05-15 Ferro Corporation Induction sealing of inorganic substrates
JP5679522B2 (en) * 2012-10-09 2015-03-04 日本電気硝子株式会社 Sealing material
CN103626398B (en) * 2013-12-13 2015-08-12 福州大学 A kind of crystallization type lead-free low-temperature seal glass and preparation thereof and using method
CN105731802A (en) * 2014-12-11 2016-07-06 辽宁法库陶瓷工程技术研究中心 Sealing glass for sealing optical fibers and sealing method thereof
JP6642786B2 (en) * 2015-04-07 2020-02-12 日本電気硝子株式会社 Composite powder material
WO2018070529A1 (en) * 2016-10-13 2018-04-19 日本電気硝子株式会社 Bismuth-based glass, method for manufacturing bismuth-based glass, and sealing material
US20190376359A1 (en) * 2018-06-10 2019-12-12 Pa&E, Hermetic Solutions Group, Llc Hydrophobic dielectric sealing materials
CN112551902A (en) * 2019-09-25 2021-03-26 中国科学院上海硅酸盐研究所 Low-melting-point glass powder containing alkaline earth metal and preparation method and application thereof
CN114212995B (en) * 2021-12-27 2023-10-20 中建材玻璃新材料研究院集团有限公司 Preparation method of OLED sealing solder
CN115925436B (en) * 2022-12-26 2023-09-22 哈尔滨工业大学 Method for connecting ferrite and microwave dielectric ceramic by using low-melting glass soldering paste

Also Published As

Publication number Publication date
JP2000128574A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
JP4016507B2 (en) Bismuth glass composition
JP3814810B2 (en) Bismuth glass composition
JP3845853B2 (en) Tin borophosphate glass and sealing material
JP3424219B2 (en) Low melting point sealing composition
JP3951514B2 (en) Silica tin phosphate glass and sealing material
CA2122459C (en) Non-lead sealing glasses
KR900003448B1 (en) Glass composition for binding and filling ceramic parts
JP2003095697A (en) Sealing composition
JP4061792B2 (en) Lead-free low melting glass and glass frit
JP3339647B2 (en) Lead-free low melting glass and sealing glass composition
JP4621995B2 (en) Bismuth glass composition and bismuth material
JP4013012B2 (en) Tin borophosphate glass and sealing material
JP3748533B2 (en) Low melting glass and method for producing the same
JP4154732B2 (en) Sealing bismuth glass mixture
JP2000072473A (en) Low melting point glass and sealing composition
JP2007161524A (en) Bismuth-based glass composition
JP2015166289A (en) glass or crystallized glass
WO2004037736A1 (en) Gap bonding glass for magnetic heads and magnetic head
CN115066404B (en) Glass for coating semiconductor element and material for coating semiconductor using same
JP4132119B2 (en) Heat resistant glass
JP4425386B2 (en) Low melting point glass and sealing composition
KR20090063408A (en) Lead-free glass frit and display panel sealing composition containing same
JPH07126037A (en) Glass for bonding and sealing
JPH07126035A (en) Low-melting glass
JPH07330372A (en) Glass having low melting point

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees