JPS63317255A - Jointing method for closely packed multitube to porous metal member - Google Patents
Jointing method for closely packed multitube to porous metal memberInfo
- Publication number
- JPS63317255A JPS63317255A JP15027687A JP15027687A JPS63317255A JP S63317255 A JPS63317255 A JP S63317255A JP 15027687 A JP15027687 A JP 15027687A JP 15027687 A JP15027687 A JP 15027687A JP S63317255 A JPS63317255 A JP S63317255A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- small
- joining
- porous metal
- metal member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 73
- 239000002184 metal Substances 0.000 title claims abstract description 73
- 238000000034 method Methods 0.000 title claims description 34
- 238000005304 joining Methods 0.000 claims abstract description 21
- 230000005496 eutectics Effects 0.000 claims abstract description 19
- 238000006243 chemical reaction Methods 0.000 claims abstract description 14
- 239000006104 solid solution Substances 0.000 claims abstract description 14
- 238000000576 coating method Methods 0.000 claims abstract description 12
- 239000011248 coating agent Substances 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims abstract description 9
- 238000002844 melting Methods 0.000 claims description 23
- 230000008018 melting Effects 0.000 claims description 22
- 239000011148 porous material Substances 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 229910052782 aluminium Inorganic materials 0.000 description 20
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 20
- 238000005219 brazing Methods 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 239000000463 material Substances 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- -1 alloys) Chemical compound 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Details Of Heat-Exchange And Heat-Transfer (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は熱交換器のように、複数の長尺小径管とマニホ
ールドを部分的に接合することが必要な管組立構造体の
集成接合法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for assembling a tube assembly structure, such as a heat exchanger, in which a plurality of long small diameter tubes and a manifold need to be partially joined. It is related to.
従来技術としては以下の2M1りの接合方法あるいはこ
れらの派生方法がある。Conventional techniques include the following 2M1 joining method or derivative methods thereof.
(1) フラックスを用いた半田付は法又はろう付は
法
(2) フラックスレスろう付は方法(但し真空炉又
は不活性ガス炉を使用し、置きろう方式又はろう材のク
ラッド方式を採用する。)〔発明が解決しようとする問
題点〕
前記の従来接合方式のうち(1)においては接合後のフ
ワックスを完全に除去することが困難又は不可能であり
、腐食の原因や使用中の周辺雰囲気との反応による不具
合の原因となり、接合自身の信頼性にも欠ける。また前
記(2)の接合方式においては多量かつ高密度に配管組
立する場合、置きろう作業が困難でありかつ、接合の仕
上がりも信頼性に欠ける。(1) Method for soldering using flux or method for brazing (2) Method for fluxless brazing (however, a vacuum furnace or inert gas furnace is used, and the brazing method or brazing metal cladding method is used) ) [Problems to be Solved by the Invention] In (1) of the conventional bonding methods described above, it is difficult or impossible to completely remove fuwax after bonding, which may cause corrosion or damage to the surrounding area during use. This can cause problems due to reactions with the atmosphere, and the bond itself lacks reliability. Furthermore, in the joining method (2), when assembling a large number of pipes at high density, it is difficult to place and solder the pipes, and the finished joint is unreliable.
特に、宇宙ロケットに用いられ又は積載される機器は、
打上げ能力等の問題から、軽量、小型でしかもできるだ
け高効率のものが求められる。特に、宇宙空間では、地
上と違って対流がないため、熱交換機能が重要視されて
いる。例えば、宇宙空間で用いられる熱交換器は、上記
要求を満足するため、例えば直径A5m、板厚(125
m、長さ1000■程度の小径管を1 m”内に140
00本という極めて高い密度で管をマニホールドに接合
する必要がある。これを例えば従来の接合方式のろう付
は法で行おうとすると、管の上下にろうを配することが
作業上困難であるうえ、上下上下に順次ろう付作業する
手間がかかるとともに、管どうしが近接しすぎるため溶
けだしたろう材がその表面張力により引き合いろう材が
かたよって、ろう付けされる部分とされない部分とが生
じ、熱交換器全体について均一なろう付けがなされない
という不具合がある。In particular, equipment used or loaded on space rockets,
Due to issues such as launch capability, there is a need for something that is lightweight, small, and as efficient as possible. In particular, in space, unlike on the ground, there is no convection, so the heat exchange function is particularly important. For example, in order to satisfy the above requirements, a heat exchanger used in outer space has a diameter of A5 m and a plate thickness of (125 m).
140 m, a small diameter pipe with a length of about 1000 cm within 1 m”
It is necessary to join the tubes to the manifold at an extremely high density of 00 tubes. For example, if you try to braze the conventional joining method using a brazing method, it is difficult to place the solder on the top and bottom of the pipe, and it takes time and effort to braze the top and bottom in sequence, and the pipes are not connected to each other. Because they are too close together, the melted brazing filler metal draws together due to its surface tension, causing the brazing filler metal to shift, resulting in some parts being brazed and some not, resulting in a problem that uniform brazing cannot be achieved over the entire heat exchanger.
本発明は前記のような従来技術の有する問題点を解消す
るためになされたものでちって、本発明は
(1)密集した多数の孔を有する多孔金属部材に複数の
小径金属管を接合するにあたシ、多孔金属部材及び小径
金属管と共晶反応もしくは低融点固溶体を形成する元素
を小径金属管の接合表面にコーティングする工程と、該
小径金属管を多孔金属部材の孔部に嵌合させて仮組立す
る工程と、該仮組立したものを前記小径金属管及び多孔
金属部材の融点以下の温度であって前記コーティング元
素との共晶温度もしくは低融点固溶体の融点温度以上の
温度に加熱する工程とよりなることを特徴とする密集多
管の多孔金属部材への接合方法及び(2)密集した多数
の孔を有する多孔金属部材に複数の小径金属管を接合す
るにわたり、多孔金属部材及び小径金属管と共晶反応も
しくは低融点固溶体を形成する元素を小径金属管の接合
表面にコーティングする工程と、該小径金属管を多孔金
属部材の孔部に嵌合させた後該小径金属管を拡管して仮
組立する工程と、該仮組立したものをF]il記小径全
小径金属管孔金属部材の融点以下の温度であって前記コ
ーティング元素との共晶温度もしくは低融点固溶体の融
点温度以上の温度に加熱する工程とよりなることを特徴
とする密着多管の多孔金属部材への接合方法
である。The present invention has been made in order to solve the problems of the prior art as described above.The present invention has been made in order to (1) join a plurality of small diameter metal tubes to a porous metal member having a large number of closely spaced holes; A process of coating the joint surface of the small diameter metal tube with an element that forms a eutectic reaction or a low melting point solid solution with the porous metal member and the small diameter metal tube, and fitting the small diameter metal tube into the hole of the porous metal member. and temporarily assembling the temporarily assembled product at a temperature below the melting point of the small diameter metal tube and the porous metal member and above the eutectic temperature with the coating element or the melting point temperature of the low melting point solid solution. (2) A method for joining a plurality of small-diameter metal tubes to a porous metal member having a large number of closely spaced pores, the method comprising: heating the porous metal member; and a step of coating the joining surface of the small diameter metal tube with an element that undergoes a eutectic reaction or forms a low melting point solid solution with the small diameter metal tube, and after fitting the small diameter metal tube into the hole of the porous metal member. The process of expanding and temporarily assembling the temporarily assembled product is carried out at a temperature below the melting point of the small-diameter metal pipe and the metal member, and the eutectic temperature with the coating element or the melting point of the low-melting solid solution. This is a method for joining a close-fitting multi-tube to a porous metal member, the method comprising the step of heating to a temperature higher than the above temperature.
本発明は、特に前記した宇宙空間用機具に求められる軽
量、小型で、しかも高い効率の熱交換器の製造に欠くこ
とのできない小径管とマニホールドの接合に有利に適用
できるものである。The present invention can be particularly advantageously applied to the joining of small diameter pipes and manifolds, which are indispensable for manufacturing the lightweight, compact, and highly efficient heat exchangers required for the above-mentioned space equipment.
本発明は前記のような構成の一種のフラックスレスろう
付法であるため、小径管が多数かつ密集する構造体の製
作に際しても、ろう材相当の元素の配置が容易かつ確実
であると同時に接合後のフワックス除去が不要であるこ
とから、大幅なコストの低下が図れ、史に接合部の品質
及び信頼性を高めることが可能である。Since the present invention is a type of fluxless brazing method with the above-mentioned configuration, even when manufacturing a structure in which a large number of small-diameter pipes are densely packed, the arrangement of elements equivalent to the brazing material is easy and reliable, and at the same time, it is possible to join. Since there is no need to remove fuwax afterwards, it is possible to significantly reduce costs and improve the quality and reliability of the joint.
以下、本発明方法の手段を具体的に説明する。Hereinafter, the means of the method of the present invention will be specifically explained.
先ず多孔金属部材の孔径よシや一外径の小さい小径金属
管を準備し、この小径金属管の多孔金属部材へ接合する
部分に多孔金属部材、小径金属管と共晶反応もしくは低
融点固溶体を形成する元素をコーティングするにあたっ
ては、これらの元素をめっき法、CVD (化学蒸着)
法、PVD (物理蒸着)法などによって行われる。First, a small diameter metal tube with a smaller outer diameter than the pore diameter of the porous metal member is prepared, and a eutectic reaction or a low melting point solid solution is applied to the part of the small diameter metal tube to be joined to the porous metal member. When coating the forming elements, these elements are coated using a plating method or CVD (chemical vapor deposition).
method, PVD (physical vapor deposition) method, etc.
これらのコーティング法はコートの範囲やコート層の厚
さの管理が容易であるという利点がある。These coating methods have the advantage that the range of coating and the thickness of the coating layer can be easily controlled.
上記元素全コーティングした小径金属管と多孔金属部材
の孔との精度が悪い場合には元素をコーティングした小
径金属管を多孔金属部材の孔に嵌挿させた後、小径金属
管を拡管すればよい。拡管手段としてはローラ・マント
Vlし拡管法、スリーブ・マンドレル拡管法、アルミナ
粉体、ゴムなどを利用する引抜き式または押込み式パy
ジ圧拡管法などの任意の手段で行いうる。If the precision between the small-diameter metal tube coated with all of the above elements and the hole in the porous metal member is poor, you can insert the small-diameter metal tube coated with the element into the hole in the porous metal member, and then expand the small-diameter metal tube. . Tube expansion methods include roller mant expansion, sleeve mandrel expansion, and pull-out or push-in tubes using alumina powder, rubber, etc.
This can be done by any means such as di-pressure tube expansion.
多孔金属部材及び小径金属管(以下、両者を含めて接合
対象材という)がアルミニウム(合金も含む)である場
合には、アルミニウムと共晶反応を起こしうる銅、銀、
ゲルマニウム、亜鉛などの元素がコーテングされる。接
合対象材がニッケ/L/(合金を含む)の場合には、ニ
ッケルと共晶反応を起こしうるリン、硼素、カドミウム
、ジルコニウム、゛マグネシウム、クロムなどの元素、
及びニッケルよシ融点の低い固溶体を形成する銅、金な
どの元素がコーティングされる。また接合対象材がニオ
ブ(合金を含む)である場合には、ニオブと共晶反応を
起こしうるリン、ニッケルなどの元素がコーティングさ
れる。更にまた接合対象材がチタン(合金を含む)の場
合には、チタンと共晶反応を起こしうる銅、ニッケル、
銀などの元素がコーテングされる。When the porous metal member and the small diameter metal tube (hereinafter referred to as the joining material) are aluminum (including alloys), copper, silver,
Coated with elements such as germanium and zinc. When the material to be joined is nickel/L/(including alloy), elements such as phosphorus, boron, cadmium, zirconium, magnesium, and chromium that can cause a eutectic reaction with nickel,
Coated with copper, gold, and other elements that form a solid solution with a lower melting point than nickel. Furthermore, when the material to be joined is niobium (including alloys), it is coated with elements such as phosphorus and nickel that can cause a eutectic reaction with niobium. Furthermore, when the material to be joined is titanium (including alloys), copper, nickel, and
Coated with elements such as silver.
このような元素を小径金属管の接合部表面にコーティン
グした後、該小径金属管を多孔金属部材の孔に嵌合(又
は嵌挿後、拡管)し、接合対象材の融点よりは低いが共
晶体または低融点固溶体の融点より高い温度に加熱し、
接合対象材を接合する。After coating the surface of the joint of a small-diameter metal tube with such an element, the small-diameter metal tube is fitted into the hole of the porous metal member (or expanded after fitting), and the melting point is lower than the melting point of the materials to be welded, but is the same. heating to a temperature higher than the melting point of the crystal or low melting point solid solution;
Join the materials to be joined.
以下、木発、明の一夾施をあげ、本発明の効果を立証す
る。Hereinafter, the effects of the present invention will be demonstrated by citing the invention and development of the invention.
この実施例は多孔アルミニウム部材と小径アルミニウム
管の接合例を示す。This example shows an example of joining a porous aluminum member and a small diameter aluminum tube.
第1図(a)は小径アルミニウム管1を示し、この管は
肉厚α25−1外径五5■、長さ約1.000−の小径
管であシ、多孔アルミニウム部材の孔に嵌合する両端部
(斜線で示す)には20〜25ミクロン厚のAj’めっ
きがなされている。このものを14000本作製して準
備しておく。Fig. 1 (a) shows a small diameter aluminum tube 1, which is a small diameter tube with a wall thickness of α25-1, an outer diameter of 55 cm, and a length of approximately 1.000 mm, and is fitted into a hole in a porous aluminum member. Aj' plating with a thickness of 20 to 25 microns is applied to both ends (indicated by diagonal lines). 14,000 pieces of this material are manufactured and prepared.
第1図(b)は多孔アルミニウム部材2の平面図、第1
図(c)は同側面図であり、この多孔アルミニウム部材
2は縦横1000mで、前記小径アルミニウム管lの結
合部厚さ部3が10m、孔4(D数14000iを有す
るアルミニウムマニホールドとなるもので、このものを
2個作製して準備しておく。FIG. 1(b) is a plan view of the porous aluminum member 2.
Figure (c) is a side view of the same, and this porous aluminum member 2 is 1000 m in length and width, the thickness part 3 of the joint part of the small diameter aluminum pipe 1 is 10 m, and it is an aluminum manifold having holes 4 (D number 14000i). , make and prepare two of these.
このように準備した1 6,000本の小径アルミニウ
ム管1を、多孔アルミニウム部材2の孔4に嵌合させ、
AL−Afの共晶温度(566℃)以上、Atの融点(
660℃)以下の温度に加熱後、冷却して、第1図(d
)に示すような梠造体を製作した。The 16,000 small-diameter aluminum tubes 1 prepared in this way were fitted into the holes 4 of the porous aluminum member 2,
Above the eutectic temperature of AL-Af (566°C), the melting point of At (
After heating to a temperature of 660°C or lower, cooling the
) I made a wooden structure like the one shown in the figure.
この際、AA−AP二元系平衡状態図より加熱温度にお
ける共晶反応に関与するAt、 Arの各量が求められ
ることがら、APめっきの厚さ及び加熱温度を管理する
ことによって、小径アルミニウム管1の必要残存肉厚(
共晶反応に関与しない肉厚)が容易に管理できる。At this time, since the amounts of At and Ar involved in the eutectic reaction at the heating temperature can be determined from the AA-AP binary system equilibrium phase diagram, by controlling the thickness of the AP plating and the heating temperature, small diameter aluminum Required remaining wall thickness of pipe 1 (
Wall thickness that does not participate in eutectic reactions) can be easily controlled.
又、マニホールドとなる多孔アルミニウム部材2の孔4
の精度と小径アルミニウム管外径の関係からその間隙が
大きすぎるがあるいは管理できない場合は前述した各種
の拡管方法を行って管理することができる。この実施例
では引抜き方式のゴムバルジ圧方法を採用した結果、第
2図に示すような優れた接合性を示した。In addition, the holes 4 of the porous aluminum member 2 that will become the manifold
If the gap is too large or unmanageable due to the relationship between the accuracy of the pipe and the outside diameter of the small-diameter aluminum tube, it can be managed by using the various tube expansion methods described above. In this example, a pull-out rubber bulge pressure method was adopted, and as a result, excellent bonding properties were exhibited as shown in FIG. 2.
第2図は上記実施例の手段で組立て桶造体の、1木の小
径アルミニウム管1と多孔アルミニウム部材201個の
孔4の部分の接合状シラ示す顕微鏡写真で、第2図(a
)はその構造部に4第2図(b)は第2図(a)の″
■部の100倍の金属m織の顕微鏡写真である。FIG. 2 is a microscopic photograph showing the joined state of the small-diameter aluminum pipe 1 made of one piece of wood and the holes 4 of the porous aluminum member 201 in the assembled tub structure using the method of the above-mentioned embodiment.
) is a microscopic photograph of the metal weave at a magnification of 100 times that of section ``2'' in FIG. 2(a).
第2図において、1は小径アルミニウム管、2は多孔ア
ルミニウム部材、3はAt−Ay共晶徂織を示す。In FIG. 2, 1 is a small diameter aluminum tube, 2 is a porous aluminum member, and 3 is an At-Ay eutectic weave.
以上、小径アルミニウム管と多孔アルミニウム部材との
接合についての実施例をあげたが、他の小径金属管と多
孔金属部材との組合せによっても、本発明方法により優
れた接合性が示された。Although examples have been given above of joining small-diameter aluminum pipes and porous aluminum members, excellent joining performance was also demonstrated by the method of the present invention in other combinations of small-diameter metal pipes and porous metal members.
本発明による接合法はフラックスレスのろう付は法の一
種であるが母材の金属と共晶反応を起させて接合するも
のであり、接合前の置きろう作業の容易化、低廉化及び
めっき等のコーティングの厚さ管理及び温度管理によっ
て接合反応量の管理ができるため、又、間隙も拡管作業
によって容易に管理ができるため、接合部品質の高品位
化、高信頼性化が可能であると同時に高密度に集成する
ような集合体の組立てに適する。The bonding method according to the present invention is a type of fluxless brazing method, but it is a method that causes a eutectic reaction with the base metal to perform bonding, which facilitates the brazing work before bonding, reduces the cost, and reduces the cost of plating. The amount of bonding reaction can be controlled by controlling the coating thickness and temperature, and the gap can also be easily controlled by expanding the pipe, making it possible to improve the quality and reliability of the bonded parts. At the same time, it is suitable for assembling aggregates that are assembled at high density.
顕微鏡写真(−紅#妾100倍)÷云十啓でちる。 Micrograph (-Red #Concubine 100 times) divided by 10 times.
Claims (2)
小径金属管を接合するにあたり、多孔金属部材及び小径
金属管と共晶反応もしくは低融点固溶体を形成する元素
を小径金属管の接合表面にコーティングする工程と、該
小径金属管を多孔金属部材の孔部に嵌合させて仮組立す
る工程と、該仮組立したものを前記小径金属管及び多孔
金属部材の融点以下の温度であつて前記コーティング元
素との共晶温度もしくは低融点固溶体の融点温度以上の
温度に加熱する工程とよりなることを特徴とする密集多
管の多孔金属部材への接合方法。(1) When joining multiple small-diameter metal tubes to a porous metal member having a large number of densely packed pores, an element that forms a eutectic reaction or a low melting point solid solution with the porous metal member and the small-diameter metal tube is added to the joining surface of the small-diameter metal tubes. a step of temporarily assembling the small-diameter metal tube by fitting it into the hole of the porous metal member; and a step of temporarily assembling the small-diameter metal tube at a temperature below the melting point of the small-diameter metal tube and the porous metal member. A method for joining a dense multi-tube to a porous metal member, comprising the step of heating to a temperature higher than the eutectic temperature with the coating element or the melting point temperature of the low melting point solid solution.
小径金属管を接合するにあたり、多孔金属部材及び小径
金属管と共晶反応もしくは低融点固溶体を形成する元素
を小径金属管の接合表面にコーティングする工程と、該
小径金属管を多孔金属部材の孔部に嵌合させた後該小径
金属管を拡管して仮組立する工程と、該仮組立したもの
を前記小径金属管及び多孔金属部材の融点以下の温度で
あつて前記コーティング元素との共晶温度もしくは低融
点固溶体の融点温度以上の温度に加熱する工程とよりな
ることを特徴とする密着多管の多孔金属部材への接合方
法。(2) When joining multiple small-diameter metal tubes to a porous metal member having a large number of densely packed pores, an element that forms a eutectic reaction or a low melting point solid solution with the porous metal member and the small-diameter metal tube is added to the joining surface of the small-diameter metal tubes. a step of fitting the small-diameter metal tube into the hole of the porous metal member and then expanding the small-diameter metal tube to temporarily assemble it; and a step of temporarily assembling the small-diameter metal tube and the porous metal member; A method for joining a close-fitting multi-tube to a porous metal member, comprising the step of heating to a temperature below the melting point of the member and above the eutectic temperature with the coating element or the melting point temperature of the low melting point solid solution. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15027687A JPS63317255A (en) | 1987-06-18 | 1987-06-18 | Jointing method for closely packed multitube to porous metal member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15027687A JPS63317255A (en) | 1987-06-18 | 1987-06-18 | Jointing method for closely packed multitube to porous metal member |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63317255A true JPS63317255A (en) | 1988-12-26 |
Family
ID=15493424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15027687A Pending JPS63317255A (en) | 1987-06-18 | 1987-06-18 | Jointing method for closely packed multitube to porous metal member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63317255A (en) |
-
1987
- 1987-06-18 JP JP15027687A patent/JPS63317255A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4869421A (en) | Method of jointing titanium aluminide structures | |
US6129262A (en) | Fluxless brazing of unclad aluminum using selective area plating | |
US4744505A (en) | Method of making a heat exchanger | |
JP2011117720A (en) | Plate heat exchanger | |
US4858686A (en) | Heat exchanger | |
JP4037477B2 (en) | Method of forming a hard soldered aluminum heat exchanger | |
JPH04228480A (en) | Composite being stable at high temperature and preparation thereof | |
EP0932472B1 (en) | Method for joining rhenium to columbium | |
JP2012000643A (en) | Joining method of aluminum pipe and copper pipe, joining structure and heat exchanger having the joining structure | |
JP2012000645A (en) | Joining method of aluminum pipe and copper pipe, joining structure and heat exchanger having the joining structure | |
JPS63317255A (en) | Jointing method for closely packed multitube to porous metal member | |
JP5633206B2 (en) | Joining method and joining structure of aluminum tube and copper tube, and heat exchanger having this joining structure | |
JPH11320085A (en) | Brazed product and its manufacture | |
JPH01249294A (en) | Precoated brazing filler metal-coated metal sheet, production thereof and using method therefor | |
JP2798760B2 (en) | Heat exchanger manufacturing method | |
JPS6090879A (en) | Ceramic and metal bonding method | |
JPH02192873A (en) | Heat exchanger | |
JPS58190880A (en) | Method of bonding aluminum material and ceramic material | |
JPS60222665A (en) | Aluminium bellows and manufacturing method thereof | |
US6932264B2 (en) | Method for making a heat exchanger with soldered plates and resulting heat exchanger | |
JPS5855693A (en) | Manufacture of multi-tubular heat exchanger | |
JPH0775773B2 (en) | Method for manufacturing pipe with plate fin | |
JPH02127973A (en) | Manufacture of heat exchanger made of aluminum | |
JPS6087968A (en) | Brazing method | |
JPH0619970Y2 (en) | Double tube heat exchanger end joint structure |