JPH03189072A - Hear exchanger and its manufacture - Google Patents

Hear exchanger and its manufacture

Info

Publication number
JPH03189072A
JPH03189072A JP15391989A JP15391989A JPH03189072A JP H03189072 A JPH03189072 A JP H03189072A JP 15391989 A JP15391989 A JP 15391989A JP 15391989 A JP15391989 A JP 15391989A JP H03189072 A JPH03189072 A JP H03189072A
Authority
JP
Japan
Prior art keywords
tube
copper
pipe
layer
straight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15391989A
Other languages
Japanese (ja)
Inventor
Masataka Noguchi
昌孝 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15391989A priority Critical patent/JPH03189072A/en
Publication of JPH03189072A publication Critical patent/JPH03189072A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate bending, tube expansion and brazing by using a copper tube as a U-shaped tube, using a clad tube of a three-layer structure consisting of a specific material as a straight tube, bringing an end part of the clad tube to tube expansion and bringing the copper tube to insertion brazing. CONSTITUTION:As for a straight tube 2 of a heat exchanger constituted of many straight tubes 2, a fin 7 provided on the straight tube 2, and a U-shaped tube 1 for coupling the straight tubes 2, a clad tube which has a structure of at least three layers in which an inner layer 5 consists of copper, a valve metal is fitted and inserted into an intermediate layer 4, and an outer layer 6 consists of copper, a copper alloy, and nickel or a nickel alloy, and also, each metal is brought to metallic junction without generating an intermetallic compound is used. On the other hand, as for a U-shaped tube 1, a copper tube is used, and also, the copper tube is inserted into a tube expanding part formed by bringing an end part of the straight tube being a clad tube to tube expansion, and brazed and joined.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、外部熱を吸収し、管体内の流体に熱を伝達す
る熱交換器とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a heat exchanger that absorbs external heat and transfers the heat to a fluid within a tube, and a method for manufacturing the same.

(従来の技術及び解決しようとする課題)熱交換器用管
体は、主として、銅、銅合金、アルミニウム、アルミニ
ウム合金が使用されており、熱交換器の効率を高める目
的で、管体の外部に線材若しくは板材を接合してフィン
を形成し、熱源との接触面積の増大が図られている。
(Prior art and problems to be solved) Copper, copper alloy, aluminum, and aluminum alloy are mainly used for heat exchanger tubes, and in order to increase the efficiency of the heat exchanger, Fins are formed by joining wire rods or plate materials to increase the contact area with the heat source.

各種工業排熱の回収、及びガス湯沸器の燃焼ガスの熱吸
収などの気体熱を吸収する熱交換器においては、銅製の
管体の外部に結露が生じるが、排ガス及び燃焼ガスには
、塩素系、硫酸系、硝酸系の組成物質を含む場合があり
、結露によって腐食性液体が生成し、熱交換器の機能を
無にする欠陥、すなわち、管体の肉厚を貫通する孔が発
生する。
In heat exchangers that absorb gas heat, such as those used to recover various types of industrial waste heat and absorb heat from combustion gas in gas water heaters, condensation occurs on the outside of the copper tubes, but there is no condensation in the exhaust gas and combustion gas. It may contain chlorine-based, sulfuric acid-based, and nitric acid-based compositions, and condensation produces corrosive liquids that cause defects that nullify the function of the heat exchanger, i.e., holes that penetrate through the wall thickness of the tube body. do.

この対策としては、銅製管体の外部に、例えば。As a countermeasure for this, for example, on the outside of the copper tube.

Cuよりも腐食物質に対する耐食性の良いTiなどを設
けて2重管とする手法が考えられ、従来からもこのよう
なタイプの2重管自体は公知である(例、実開昭60−
105990号など)。
One possible method is to make a double pipe by adding Ti, which has better corrosion resistance to corrosive substances than Cu, and this type of double pipe itself has been known for a long time (for example, the method of
105990 etc.).

また、銅管の内側にTiを介してCu層を設けた3重管
自体も公知である(例、実開昭63−36889号など
)。
Further, a triple-pipe tube itself in which a Cu layer is provided on the inside of a copper tube via Ti is also known (for example, Utility Model Application No. 63-36889, etc.).

しかしながら、前記用途のうちの特に家庭用のガス湯沸
器の熱交換器などは、全体のコンパクト化が図られてい
る故に、管体自身が小径で、しかも多数の流路を構成す
るため、多数本の直管が多数本の曲げ半径の小さいU字
管によって溶接される構造となっている。
However, among the above-mentioned applications, in particular heat exchangers for domestic gas water heaters, etc., because the overall structure is made compact, the tube body itself has a small diameter and has a large number of flow paths. It has a structure in which a large number of straight pipes are welded together by a large number of U-shaped pipes with a small bending radius.

しかも、U字管と直管との接続法としては、熱交換器と
しての機能発揮のためのフィンを直管に設けて、直管と
フィンとの組立て1本を作成した後、直管端部を拡管し
、しかる後にこの拡管部にU字管を嵌め込み、溶接する
手法が熱交換器製作の効率的手法として確立されている
Moreover, the method of connecting the U-shaped pipe and the straight pipe is to install fins on the straight pipe to perform its function as a heat exchanger, create one assembly of the straight pipe and the fins, and then A method has been established as an efficient method for manufacturing a heat exchanger, in which a section is expanded, and then a U-shaped tube is fitted into the expanded section and welded.

したがって、まず、このような接続法を前記2重管に適
用した場合、小径管或いは曲げ半径の小さいU字管の製
造自体がTiの加工性の悪さからして困難であり、この
ため、予めTiとCuとの複合ビレットを作成して熱間
静水圧押出しで複合管を製作するなどの効率的手法が採
用できず、コストアップとなる。更には、U字管と直管
の接続に際しても、第3図に示すように、拡管部10の
接合は、U字管(2重管)11の外側のTiと、直管(
2重管)12の内側のCuとの異種金属接合となるため
、溶接自体が困難となる。
Therefore, first of all, when such a connection method is applied to the double pipe, it is difficult to manufacture a small diameter pipe or a U-shaped pipe with a small bending radius due to the poor workability of Ti. Efficient methods such as creating a composite billet of Ti and Cu and manufacturing a composite pipe by hot isostatic extrusion cannot be adopted, resulting in increased costs. Furthermore, when connecting a U-shaped pipe and a straight pipe, as shown in FIG.
The welding itself becomes difficult because it becomes a dissimilar metal bond to the Cu inside the double tube) 12.

一方、3重管に適用する場合、難加工のTiの両側を易
加工のCuでサンドイッチした構造であるため、Cuが
潤滑材としても働き、前記静水圧押出しなどで容易に複
合直管が製造できる。
On the other hand, when applied to triple pipes, since the structure is such that both sides of difficult-to-process Ti are sandwiched with easy-to-process Cu, Cu also acts as a lubricant, making it easy to manufacture composite straight pipes by the above-mentioned hydrostatic extrusion etc. can.

しかしながら、前述の通り、湯沸器の熱交換器のU字管
は曲げ半径が小さく、U字管作成の曲げ加工の場合に、
Tiの肉厚を薄くすることは元々の耐食性アップの意図
(一定の肉厚は必要)からも限度があるので、必然的に
Ti、Cuの両者の弾性係数の相違から、加工困難が生
じてしまう。
However, as mentioned above, the bending radius of the U-shaped tube of a water heater heat exchanger is small, and when bending the U-shaped tube,
There is a limit to reducing the thickness of Ti due to the original intention of increasing corrosion resistance (a certain thickness is required), so processing difficulties inevitably arise due to the difference in the elastic modulus of both Ti and Cu. Put it away.

本発明は、上記従来技術の問題点を解決するためになさ
れたものであって、熱交換器の組立てが容易であり、し
かも熱交換器の機能を損なう配管肉厚の貫通孔の発生な
どの問題がない熱交換器を提供し、またその管体の製造
方法を提供することを目的とするものである。
The present invention was made in order to solve the problems of the prior art described above, and it is possible to easily assemble a heat exchanger, and to avoid the occurrence of through-holes in the pipe wall that impair the function of the heat exchanger. The object of the present invention is to provide a problem-free heat exchanger and a method for manufacturing its tube body.

(gA題が解決するための手段) か\る目的を達成するため、本発明者は、貫通孔発生が
なく管体の組立が容易となる方策について鋭意研究を重
ねた。
(Means for Solving the Problem gA) In order to achieve the above object, the present inventor has conducted extensive research into ways to facilitate assembly of the tube without the occurrence of through holes.

その結果、直管とU字管を共に3層構造にした場合、前
述の如くU字管を曲げ半径の小さい曲げ成形することが
困難となるが、もともとU字管の部分は燃焼ガスが直接
接触しない部分であるため、問題が少なく、敢えて3層
構造のものを使用する必要がなく、シたがって、U字管
としては単管である銅管を使用することにより、U字管
の成形加工上の問題が解決できることを知見した。更に
As a result, when both a straight pipe and a U-shaped pipe are made into a three-layer structure, it becomes difficult to bend the U-shaped pipe with a small bending radius as described above. Since the parts do not touch each other, there are fewer problems and there is no need to use a three-layer structure.Therefore, by using a single copper tube as a U-shaped tube, it is possible to form a U-shaped tube. We found that processing problems can be solved. Furthermore.

直管としては特定材料からなる3層構造にすることによ
り、耐食性並びに熱間静水圧押出しによる加工を容易に
できることを知見し、ここに本発明をなしたものである
It has been found that by forming a straight pipe into a three-layer structure made of a specific material, corrosion resistance and processing by hot isostatic extrusion can be easily achieved, and the present invention has been made based on this finding.

すなわち、本発明は、多数の直管と、直管に設けられた
フィンと、直管同士を結合するU字管より構成される熱
交換器おいて、前記直管は、銅を基体とする複合管であ
って、内側の内層が銅からなり、肉厚内部の中間層がバ
ルブ金属が層状に嵌挿されており、外側の外層が銅、銅
合金、ニッケル或いはニッケル合金からなる少なくとも
3層の構造を有し、かつ、各金属が金属間化合物を生成
せずに金属接合しているクラッド管であり、一方、前記
U字管は銅管であり、更に、該クラッド管の端部を拡管
した拡管部に該銅管が内挿されてろう付け接合されてい
ることを特徴とする熱交換器を要旨とするものである。
That is, the present invention provides a heat exchanger comprising a large number of straight pipes, fins provided on the straight pipes, and U-shaped pipes connecting the straight pipes, wherein the straight pipes are made of copper as a base. Composite pipe, the inner layer of which is made of copper, the middle layer of the thick inner layer with a layer of valve metal inserted therein, and the outer layer of which is made of at least three layers of copper, copper alloy, nickel, or nickel alloy. The U-shaped tube is a copper tube, and the ends of the clad tube are made of copper. The gist of the present invention is a heat exchanger characterized in that the copper tube is inserted into an expanded tube portion and brazed and joined.

また、該クラッド管の製造に係る本発明は、上記クラッ
ド管における内層、中間層、外層などの各材料を機械的
嵌合状態に組合せた後、バルブ金属と銅又は銅合金が金
属間化合物を生成しない温度領域で熱間静水圧押出しを
行い、金属結合させることを特徴とするものである。
Further, the present invention relating to the production of the clad pipe provides that after the materials of the inner layer, intermediate layer, outer layer, etc. of the clad pipe are combined in a mechanically fitted state, the valve metal and copper or copper alloy form an intermetallic compound. The feature is that hot isostatic extrusion is carried out in a temperature range where no metallurgical bonding occurs.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

(作用) 耐食性に優れた材料としては、タンタル、ニオブ、チタ
ン、ジルコニウムなどのバルブ金属や、ニッケル基合金
、ステンレス鋼、更には非金属等々の多くの材料が知ら
れているが、熱交換器用材料としては、次の1〜4の機
能を兼備することが必要不可欠である。
(Function) Many materials are known as materials with excellent corrosion resistance, such as valve metals such as tantalum, niobium, titanium, and zirconium, nickel-based alloys, stainless steel, and even nonmetals. It is essential that the material has the following functions 1 to 4.

1、熱伝導性の良いこと。1. Good thermal conductivity.

2、気密、液密構造で管体の継ぎ接合が容易であること
2. It has an airtight and liquidtight structure, making it easy to join the pipes together.

3、吸熱効率の向上を目的とする板及び線状材(フィン
)を管外周に接合することが容易であること。
3. It is easy to join plates and linear members (fins) to the outer circumference of the pipe for the purpose of improving heat absorption efficiency.

4、耐食性に優れ、肉厚部を貫通する孔が発生しないも
のであること。
4. It should have excellent corrosion resistance and should not have holes penetrating the thick part.

熱交換器用管体として、他に必要な要因もあるが、必要
不可欠な項目として上記4項目に絞り込んで種々検討し
たところ、単一素材で対応することは困難であるとの結
論に至り、各種機能材の組合せと加工法を鋭意検討を重
ねた結果、以下に説明する3層構造のクラッド管とした
ものである。
There are other factors that are necessary for heat exchanger tubes, but after narrowing it down to the four items listed above as essential items, we came to the conclusion that it would be difficult to meet the requirements with a single material. As a result of careful consideration of the combination of functional materials and processing methods, we have created a 3-layer clad pipe as described below.

まず、各種機能材料を適所配置し、異種材料の接触熱抵
抗を理想状態に小さくし、熱交換器への組込みの管体の
接続を容易にする耐食性機能を有する熱交換器用管体と
しては、以下に示すように、直管としては銅を基体とし
且つ少なくとも3層を有するクラッド管を用いることが
必要である。
First, as a tube body for a heat exchanger, it has a corrosion-resistant function that makes it easy to connect the built-in tube body to the heat exchanger by arranging various functional materials in the appropriate places to reduce the contact thermal resistance of different materials to an ideal state. As shown below, it is necessary to use a clad pipe having copper as a base and having at least three layers as a straight pipe.

すなわち、クラッド管体内面には銅を内層として使用す
る。これは、銅は熱伝導性がよく、また管体の継ぎ接合
がろう付で良く、従来よりも容易に施工されるためであ
る。
That is, copper is used as an inner layer on the inner surface of the clad pipe. This is because copper has good thermal conductivity, and the pipes can be joined by brazing, which is easier than before.

一方、クラッド管体の外面(外層)は、吸熱効率向上の
ための板及び線状材(フィン)との接合を容易にするた
めに、銅が好ましく、更に耐食性を付加するには銅合金
、ニッケル又はニッケル基合金も接合可能な材料として
適用できる。この場合、銅合金やニッケル基合金は従来
と同程度の施工技術ではフィンとの接合が困難となる恐
れはあるものの、実現可能な技術範囲である。
On the other hand, the outer surface (outer layer) of the clad pipe body is preferably made of copper in order to facilitate bonding with plates and wire materials (fins) for improving heat absorption efficiency, and copper alloy or copper alloy to further add corrosion resistance. Nickel or nickel-based alloys are also applicable as bondable materials. In this case, although it may be difficult to join copper alloys and nickel-based alloys to the fins using the same level of construction technology as in the past, this is within the technical range that can be achieved.

更に、耐食性を保持するためにクラッド管体の中間層と
して、肉厚内部にバルブ金属を層状に嵌挿して設ける。
Further, in order to maintain corrosion resistance, a layer of valve metal is inserted into the thick wall as an intermediate layer of the clad pipe.

バルブ金属はタンタル、ニオブ、チタン、ジルコニウム
等を示しているが、いずれも耐食性に優れた材料であり
、それぞれの材料は特徴を有しているので、目的に応じ
て選択して使用する。例えば、タンタルは、耐食性には
極めて優れるが高価である。チタンはタンタル、ニオブ
に比べて安価であるが、結晶構造が比較的加工性の良く
ない稠密六方晶であり、厚みを薄くすると欠陥を生じ易
い。また、これらの金属は全ての腐食物質に対して優れ
た耐食性を発揮するものではないので、腐食物質、用途
等に応じて使用する。
The valve metals shown are tantalum, niobium, titanium, zirconium, etc., all of which have excellent corrosion resistance, and each material has its own characteristics, so they are selected and used depending on the purpose. For example, tantalum has excellent corrosion resistance but is expensive. Although titanium is cheaper than tantalum and niobium, its crystal structure is a close-packed hexagonal crystal that is relatively difficult to work with, and is prone to defects when its thickness is reduced. Furthermore, since these metals do not exhibit excellent corrosion resistance against all corrosive substances, they are used depending on the corrosive substance, purpose, etc.

このような3層構造のクラッド管は、以下に説明する観
点から、内層、中間層、外層の各材料を機械的嵌合状態
に組合せ、熱間静水圧押出しにより特定温度域で金属接
合させて製造する。
From the viewpoint explained below, such a three-layer clad pipe is made by combining the materials of the inner layer, intermediate layer, and outer layer in a mechanically fitted state, and metallurgically bonding them in a specific temperature range by hot isostatic extrusion. Manufacture.

すなわち、まず、熱交換は管体の外面から内部の流体に
熱を伝達するので、管体の肉厚内部での熱伝達抵抗を極
力小さくすることが好ましい。そのためには、第1に、
異種金属材の金属接合を達成すること、第2に、熱伝達
抵抗の大きい材料の厚みを薄くすることが肝要である。
That is, first, since heat exchange involves transferring heat from the outer surface of the tube to the internal fluid, it is preferable to minimize the heat transfer resistance within the thick wall of the tube. To that end, firstly,
It is important to achieve metal bonding of dissimilar metal materials, and secondly, to reduce the thickness of materials with high heat transfer resistance.

前者の金属接合については、高温域で大きな変形加工を
加えることにより達成できるという知見により、本発明
では熱間静水圧押出し法を適用するものである。この場
合、加工温度域は一般的に高温になるほど変形抵抗は小
さくなり、強加工が可能となる。したがって、高温と強
加工で金属接合は容易になる。
Regarding the former metal bonding, based on the knowledge that it can be achieved by applying large deformation processing in a high temperature range, the present invention applies hot isostatic extrusion. In this case, generally speaking, the higher the processing temperature range, the lower the deformation resistance, and the stronger the processing becomes possible. Therefore, metal joining is facilitated by high temperatures and heavy processing.

しかし、採用する金属材料の組合せによってそれぞれの
適温域があるので留意する。例えば、バルブ金属のうち
、チタンの場合、900℃以上に加熱すると、結晶構造
がαからβに変態し、結晶粒が粗大化し、チタンの薄肉
化加工に支障を来たすので、適温域として600〜85
0℃が好ましい。一方、ニオブ、タンタルはチタンの場
合よりも高温にしても支障はないが、高温にしすぎると
銅が軟かくなりすぎるので、1000℃以下に制限する
のが好ましい。
However, it should be noted that there is an appropriate temperature range depending on the combination of metal materials used. For example, in the case of titanium among valve metals, if it is heated above 900°C, the crystal structure will transform from α to β, the crystal grains will become coarse, and this will hinder the thinning process of titanium. 85
0°C is preferred. On the other hand, for niobium and tantalum, there is no problem even if the temperature is higher than that for titanium, but if the temperature is too high, the copper becomes too soft, so it is preferable to limit the temperature to 1000°C or less.

但し、これら選択される金属に共通する問題として、銅
と脆い金属間化合物を生成し易い点があり、金属間化合
物が生じると複合管としての機能が損なわれるため、熱
間静水圧押出しの温度は、金属間化合物が生じる温度以
下とすることが必須となる。
However, a common problem with these selected metals is that they tend to form brittle intermetallic compounds with copper, and the formation of intermetallic compounds impairs the function of the composite pipe, so the hot isostatic extrusion temperature It is essential that the temperature be below the temperature at which intermetallic compounds are formed.

後者の肉厚に関しては、銅が熱伝導率の最も高い金属で
あるので、熱伝導率の低い耐食性材料の方を薄くするこ
とが、管体の熱伝導抵抗を小さくすることになる。しか
し、クラッド管を構成する各層のいずれの材料も、肉厚
部を貫通する欠陥が生じないようにするためには、ある
程度の厚みが必要である。その目安は以下のとおりであ
る。
Regarding the latter wall thickness, since copper is the metal with the highest thermal conductivity, making the corrosion-resistant material with lower thermal conductivity thinner will reduce the thermal conduction resistance of the tube. However, each material of each layer constituting the cladding tube needs to have a certain thickness in order to prevent defects from penetrating through the thick wall portion. The guidelines are as follows.

耐食性材料の欠陥検査として、外皮材を酸洗除去し、そ
の後も酸に浸漬すれば欠陥の有無が確認できるが、この
ような欠陥検査力によれば、例えば、ニオブは10μm
程度まで薄くしても内部の銅の溶出はなく、ニオブ層の
貫通孔は発生しない。
To inspect for defects in corrosion-resistant materials, the presence or absence of defects can be confirmed by removing the outer covering material by pickling and then immersing it in acid.
Even if the thickness is reduced to a certain extent, the internal copper will not be eluted, and no through-holes will occur in the niobium layer.

一方、タンタルはニオブに比べて若干加工性が悪く、2
0μmで銅の溶出が検出され、貫通孔が発生する。チタ
ンはニオブ、タンタルの豆方晶に比べて加工性の悪い六
方晶であり、40μmでタンタルの20μmと同様に欠
陥が発生する。
On the other hand, tantalum is slightly less workable than niobium;
Copper elution is detected at 0 μm, and through holes are generated. Titanium is a hexagonal crystal that is less workable than the hexagonal crystals of niobium and tantalum, and defects occur at 40 μm in the same way as tantalum at 20 μm.

このように、それぞれの材料で適当な厚みを選定する必
要があるが、概してクラッド管の全肉厚0.4〜1.O
n+m程度の管体において、耐食性材料の厚さは100
μm程度を目安にするのが好ましい。
In this way, it is necessary to select an appropriate thickness for each material, but in general, the total wall thickness of the clad pipe is 0.4 to 1. O
In a tube of about n+m, the thickness of the corrosion-resistant material is 100
It is preferable to use approximately μm as a guide.

上記構成のクラッド管は直管として用いるが、この直管
に接合するU字管には銅管単管を用いる点が本発明の1
つの特徴である。これは、従来のように銅以外の材料を
クラッドした2重管又は3重管のクラッド管を直管と同
様にU字管として用いると、U字管曲げ成形上に問題が
あるからであり、またU字管部分は、第1図に示すよう
にシェル8が設けられるので燃焼ガスが直接接触するこ
とがないため、腐食の問題がなく敢えて直管と同様にク
ラッド管を使用する必要がないためである。
The clad pipe having the above structure is used as a straight pipe, but one of the points of the present invention is that a single copper pipe is used for the U-shaped pipe connected to the straight pipe.
These are two characteristics. This is because if a conventional double or triple clad pipe clad with a material other than copper is used as a U-shaped tube in the same way as a straight tube, there is a problem in bending and forming the U-shaped tube. In addition, since the U-shaped tube part is provided with a shell 8 as shown in Figure 1, there is no direct contact with combustion gas, so there is no problem of corrosion, and it is necessary to use a clad tube in the same way as a straight tube. This is because there is no

次に、上記直管のクラッド管と、U字管の銅管の組立と
しては、クラッド管の端部を拡管し、この拡管部にU字
管の端を内挿した状態で、ろう相接合して組み立てる。
Next, assembling the straight clad pipe and the U-shaped copper pipe, the end of the clad pipe is expanded, and the end of the U-shaped pipe is inserted into the expanded part, and then the wax-phase welding is performed. and assemble.

この場合、U字管として単管である銅管を使用するので
、曲げ成形加工によるU字管の製造は容易であり、従来
一部にチタンを用いるクラッド管の場合のような曲げ成
形上の問題は生じない。
In this case, since a single copper tube is used as the U-shaped tube, it is easy to manufacture the U-shaped tube by bending. No problems arise.

なお、直管にフィンを設ける方法は従来と同様で良い。Note that the method for providing fins on the straight pipe may be the same as the conventional method.

かくして得られる熱交換器は、第1図に示すように、プ
レートフィン又はワイヤフィン7を設けた直管2が銅か
らなる内層5と耐食材料からなる中間層4と外層6の3
層構造であり、その拡管部において銅単管からなるU字
管1とろう付けされている。図中53はろう材、7はシ
ェルである。
As shown in FIG. 1, the thus obtained heat exchanger consists of a straight pipe 2 provided with plate fins or wire fins 7, an inner layer 5 made of copper, an intermediate layer 4 made of a corrosion-resistant material, and an outer layer 6.
It has a layered structure, and its expanded portion is brazed to a U-shaped tube 1 made of a single copper tube. In the figure, 53 is a brazing material, and 7 is a shell.

(実施例) 次に本発明の実施例を示す。(Example) Next, examples of the present invention will be shown.

311例」3 内径143φ、3を寸法の外層用銅管と、外径134.
5φ、内径51φ寸法の内層用銅管と、これらの中間に
中間層としてQ、5nv+厚のニオブ板を二重巻きで円
筒状に挿入した三層構造のものを準備した。
311 Example 3 Copper tube for outer layer with inner diameter 143φ and dimension 3, outer diameter 134.
A three-layer structure was prepared in which a copper tube for an inner layer having dimensions of 5φ and an inner diameter of 51φ was inserted into a cylindrical shape with a double winding of a niobium plate having a thickness of Q and a thickness of 5nv inserted between these as an intermediate layer.

次いで、ニオブの周囲空間を脱ガス状態に気密封止した
後、熱間静水圧押出しにより押出した。
Next, the space surrounding the niobium was hermetically sealed in a degassed state, and then extruded by hot isostatic extrusion.

押出し加熱温度は750℃、押出し寸法は外径36mm
、内径30mo+である。その後、冷間抽伸により12
.7φX0,6を寸法に加工し、ベルマウス拡管した。
Extrusion heating temperature is 750℃, extrusion dimension is 36mm outer diameter
, the inner diameter is 30mo+. Then, by cold drawing, 12
.. It was machined to size 7φX0.6 and expanded into a bell mouth tube.

この拡管部に銅単管を挿入してろう付けを実施した。A single copper tube was inserted into this expanded section and brazed.

このような施工は従来の銅管と全く同様に施工できた。This kind of construction could be done in exactly the same way as conventional copper pipes.

また、拡管部にはニオブ層に欠陥はなく、各金属間に剥
離は全(認められなかった。
In addition, there were no defects in the niobium layer in the tube expansion section, and no peeling was observed between the metals.

失ILス 内径143φX3を寸法の外層用銅管と、外径122φ
、内径51φ寸法の内層用銅管と、これらの中間に中間
層として肉厚f3.5mm+のチタンの溶接円筒を挿入
した三層構造のものを準備した。
Copper tube for outer layer with inner diameter 143φX3 and outer diameter 122φ
A three-layer structure was prepared in which a copper tube for an inner layer with an inner diameter of 51φ was inserted, and a titanium welded cylinder with a wall thickness of f3.5 mm+ was inserted as an intermediate layer between these tubes.

次いで、チタンの周囲空間を脱ガス状態に気密封止した
後、熱間静水圧押出しにより押出した。
Next, the space surrounding the titanium was hermetically sealed in a degassed state, and then extruded by hot isostatic extrusion.

押出し加熱温度は750℃、押出し寸法は外径36mm
、内径30mmである。その後、冷間抽伸により127
φX0.6を寸法に加工し、ベルマウス拡管した。この
拡管部に銅単管を挿入してろう付けを実施した。
Extrusion heating temperature is 750℃, extrusion dimension is 36mm outer diameter
, the inner diameter is 30 mm. Then, by cold drawing, 127
It was machined to a size of φX0.6 and expanded into a bell mouth tube. A single copper tube was inserted into this expanded section and brazed.

このような施工は従来の銅管と全く同様に施工できた。This kind of construction could be done in exactly the same way as conventional copper pipes.

また、拡管部にはチタン層に欠陥はなく、各金属間に剥
離は全く認められなかった。
Furthermore, there were no defects in the titanium layer in the expanded tube section, and no peeling was observed between the metals.

尖嵐涯y 内径143φXSt寸法の外層用銅−ニッケル合金管(
70%Cu、30%Ni)と、外径112φ、内径51
φ寸法の内層用銅管と、これらの中間に中間層として肉
厚6.5+n+nのチタンの溶接円筒を挿入した三層構
造のものを準備した。
Copper-nickel alloy tube for outer layer with inner diameter 143φXSt dimensions (
70% Cu, 30% Ni), outer diameter 112φ, inner diameter 51
A three-layer structure was prepared in which a φ-sized inner layer copper tube and a titanium welded cylinder with a wall thickness of 6.5+n+n was inserted as an intermediate layer between these tubes.

次いで、チタンの周囲空間を脱ガス状態に気密封止した
後、熱間静水圧押出しにより押出した。
Next, the space surrounding the titanium was hermetically sealed in a degassed state, and then extruded by hot isostatic extrusion.

押出し加熱温度は800℃、押出し寸法は外径44mm
、内径35mmである。その後、冷間抽伸により12.
7φX0.6を寸法に加工し、ベルマウス拡管した。こ
の拡管部に銅単管を挿入してろう付けを実施した。
Extrusion heating temperature is 800℃, extrusion dimension is 44mm outer diameter
, the inner diameter is 35 mm. After that, 12.
It was machined to a size of 7φ x 0.6 and expanded into a bell mouth tube. A single copper tube was inserted into this expanded section and brazed.

このような施工は従来の銅管と同様に施工できた。また
、拡管部には外層の銅合金及び中間層のチタン層に欠陥
はなく、各金属間の剥離は全く認められなかった。
This kind of construction could be done in the same way as conventional copper pipes. Furthermore, in the expanded tube section, there were no defects in the outer copper alloy layer and the intermediate titanium layer, and no peeling between the metals was observed.

(発明の効果) 以上詳述したように、本発明によれば、配管肉厚の貫通
孔の発生を防止できると共に、金属層間が金属接合して
いるので接触熱抵抗が極小であるから、熱交換器の機能
を損なうことがなく、しかもU字管として銅管を用いる
ので、曲げ成形、拡管、ろう付けが従来の銅管と同様に
容易に施工できる。また、金属間化合物を生成すること
なくクラッド管を製造できる。したがって、工業的生産
に寄与するところが大である。
(Effects of the Invention) As described in detail above, according to the present invention, it is possible to prevent the occurrence of through holes in the pipe wall thickness, and since the metal layers are metal-bonded, the contact thermal resistance is minimal, so the heat Since the function of the exchanger is not impaired, and since a copper tube is used as the U-shaped tube, bending, expanding, and brazing can be easily performed in the same way as conventional copper tubes. Furthermore, cladding pipes can be manufactured without producing intermetallic compounds. Therefore, it greatly contributes to industrial production.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明に係る熱交換器の直管とU字
管を示す図で、第1図は熱交換器の断面図であり、第2
図の(a)はろう付け部近傍の断面図、(b)はその拡
大図であり、 第3図は従来の2重管を用いた直管とU字管との接合部
を示す説明断面図である。 1・・・銅単管(U字管)、2・・・クラッド管(直管
)、3・・・ろう材、4・・・中間層(耐食材料)、5
・・・内層(銅)、6・・・外層、7・・・プレートフ
ィン(又はワイヤーフィン)、8・・・シェル。
1 and 2 are diagrams showing a straight pipe and a U-shaped tube of a heat exchanger according to the present invention, and FIG. 1 is a cross-sectional view of the heat exchanger, and FIG.
In the figure, (a) is a cross-sectional view of the vicinity of the brazed part, (b) is an enlarged view thereof, and Fig. 3 is an explanatory cross-section showing the joint between a straight pipe and a U-shaped pipe using a conventional double pipe. It is a diagram. 1... Copper single tube (U-shaped tube), 2... Clad pipe (straight pipe), 3... Brazing metal, 4... Intermediate layer (corrosion resistant material), 5
... Inner layer (copper), 6... Outer layer, 7... Plate fin (or wire fin), 8... Shell.

Claims (2)

【特許請求の範囲】[Claims] (1)多数の直管と、直管に設けられたフィンと、直管
同士を結合するU字管より構成される熱交換器おいて、
前記直管は、銅を基体とする複合管であって、内側の内
層が銅からなり、肉厚内部の中間層がバルブ金属が層状
に嵌挿されており、外側の外層が銅、銅合金、ニッケル
或いはニッケル合金からなる少なくとも3層の構造を有
し、かつ、各金属が金属間化合物を生成せずに金属接合
しているクラッド管であり、一方、前記U字管は銅管で
あり、更に、該クラッド管の端部を拡管した拡管部に該
銅管が内挿されてろう付け接合されていることを特徴と
する熱交換器。
(1) In a heat exchanger consisting of a large number of straight pipes, fins provided on the straight pipes, and U-shaped pipes that connect the straight pipes,
The straight pipe is a composite pipe with a copper base, the inner layer is made of copper, the thick middle layer is fitted with a layer of valve metal, and the outer layer is made of copper or copper alloy. , is a clad pipe having a structure of at least three layers made of nickel or nickel alloy, and in which each metal is metal-bonded without forming an intermetallic compound, and on the other hand, the U-shaped pipe is a copper pipe. Furthermore, the heat exchanger is characterized in that the copper pipe is inserted into an expanded part formed by expanding the end of the clad pipe and is joined by brazing.
(2)請求項1に記載のクラッド管の製造方法において
、前記内層、中間層、外層などの各材料を機械的嵌合状
態に組合せた後、バルブ金属と銅又は銅合金が金属間化
合物を生成しない温度領域で熱間静水圧押出しを行い、
金属結合させることを特徴とする熱交換器用クラッド管
の製造方法。
(2) In the method for manufacturing a clad pipe according to claim 1, after the materials of the inner layer, intermediate layer, outer layer, etc. are combined in a mechanically fitted state, the valve metal and the copper or copper alloy form an intermetallic compound. Hot isostatic extrusion is carried out in a temperature range that does not produce
A method for manufacturing a clad tube for a heat exchanger, characterized by metal bonding.
JP15391989A 1989-06-16 1989-06-16 Hear exchanger and its manufacture Pending JPH03189072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15391989A JPH03189072A (en) 1989-06-16 1989-06-16 Hear exchanger and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15391989A JPH03189072A (en) 1989-06-16 1989-06-16 Hear exchanger and its manufacture

Publications (1)

Publication Number Publication Date
JPH03189072A true JPH03189072A (en) 1991-08-19

Family

ID=15572965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15391989A Pending JPH03189072A (en) 1989-06-16 1989-06-16 Hear exchanger and its manufacture

Country Status (1)

Country Link
JP (1) JPH03189072A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005273966A (en) * 2004-03-23 2005-10-06 Daikin Ind Ltd Plate type heat exchanger and method of manufacturing the same
JP2013125938A (en) * 2011-12-16 2013-06-24 Tokyo Electron Ltd Heat exchanger for heat treatment apparatus and heat treatment apparatus including the same
CN113478038A (en) * 2021-07-08 2021-10-08 西安热工研究院有限公司 Composite welding method for copper pipe of air cooler
JP2024004383A (en) * 2022-06-28 2024-01-16 三菱重工パワー環境ソリューション株式会社 Heat transfer pipe, heat exchanger, flue gas treatment device, and method for manufacturing heat transfer pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005273966A (en) * 2004-03-23 2005-10-06 Daikin Ind Ltd Plate type heat exchanger and method of manufacturing the same
JP2013125938A (en) * 2011-12-16 2013-06-24 Tokyo Electron Ltd Heat exchanger for heat treatment apparatus and heat treatment apparatus including the same
CN113478038A (en) * 2021-07-08 2021-10-08 西安热工研究院有限公司 Composite welding method for copper pipe of air cooler
JP2024004383A (en) * 2022-06-28 2024-01-16 三菱重工パワー環境ソリューション株式会社 Heat transfer pipe, heat exchanger, flue gas treatment device, and method for manufacturing heat transfer pipe

Similar Documents

Publication Publication Date Title
US20020007938A1 (en) Plate heat exchanger
US4031921A (en) Hydrogen-isotope permeation barrier
JPH03189072A (en) Hear exchanger and its manufacture
JPH0474099B2 (en)
JPH03251686A (en) Heat exchanger
JP2590250Y2 (en) Heat exchanger
JP2996904B2 (en) How to make a piping connection block
JP3919998B2 (en) Manufacturing method of heat exchange device
JP2002162177A (en) Heat exchanger element
JPH058057A (en) Manufacture of double metal tube
JPH03189071A (en) Tubular body for titanium heat exchanger and production thereof
JPH02307622A (en) Manufacture of titanium flexible tube and heat exchanger
JP2539229B2 (en) Heat exchanger manufacturing method
JPH0647179B2 (en) Method for manufacturing dissimilar metal pipe fittings
JP3477665B2 (en) Welded structure between ferritic steel sheet and austenitic steel pipe
JPH0227349Y2 (en)
JPS62224420A (en) Manufacture of double pipe
JPH0619970Y2 (en) Double tube heat exchanger end joint structure
JPS6046866A (en) Connecting method of fin and pipe
JP3026515U (en) Heat exchanger
JP2001330390A (en) Heat exchanger for high pressure
Adderley et al. High performance titanium plate fin heat exchanger using a novel manufacturing process
JPH0640666U (en) Heat exchanger
JPH029543B2 (en)
JPH0371942A (en) Double tube heat exchanger of aluminum