JPH02307622A - Manufacture of titanium flexible tube and heat exchanger - Google Patents

Manufacture of titanium flexible tube and heat exchanger

Info

Publication number
JPH02307622A
JPH02307622A JP12762889A JP12762889A JPH02307622A JP H02307622 A JPH02307622 A JP H02307622A JP 12762889 A JP12762889 A JP 12762889A JP 12762889 A JP12762889 A JP 12762889A JP H02307622 A JPH02307622 A JP H02307622A
Authority
JP
Japan
Prior art keywords
tube
titanium
heat exchanger
inner tube
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12762889A
Other languages
Japanese (ja)
Inventor
Takaharu Ozawa
隆治 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEIGU KK
Original Assignee
TEIGU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEIGU KK filed Critical TEIGU KK
Priority to JP12762889A priority Critical patent/JPH02307622A/en
Publication of JPH02307622A publication Critical patent/JPH02307622A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To obtain a titanium flexible tube free from generation of cracks by cleaning and removing the oxide film of a JIS standard thin-wall tube made of titanium having a defined content of oxygen with acid liquid. CONSTITUTION:A straight tube suitable to the JIS 1st Class specification is formed with a titanium plate having a content of oxygen <=0.055wt.%. Then, the oxide film formed on the inside and outside surfaces of the tube is cleaned with acid liquid and removed nearly completely. Then, the surface of the titanium tube is worked in a spiral shape. Lubricant is used in this working and straight tube parts for forming joints are left on both ends of the tube. The lubricant is degreased, annealed under a condition of vacuum and cooled gently to the room temperature to make the flexible tube 10. When this tube 10 is used to a double heat exchanger, the efficiency can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熱交換器や埋設用配管等の広い用途に、手作
業で曲げ加工自在に用いることのできるチタンフレキシ
ブルチューブを製造する方法、及びそのチタンフレキシ
ブルチューブを用いた熱交換器に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a method for manufacturing titanium flexible tubes that can be bent manually for a wide range of applications such as heat exchangers and buried piping; The present invention also relates to a heat exchanger using the titanium flexible tube.

(従来技術及びその問題点) チタン資源は地球上の実用金属としては4番目に豊富に
存在している。そしてチタンは軽量であり、海水はもと
より、各種塩化物、腐蝕性ガス、酸等に対する耐食性に
優れている。このためチタンを高度の耐食性が要求され
る部品の材料として用いる試みが従来からなされていた
(Prior art and its problems) Titanium resources are the fourth most abundant practical metal on earth. Titanium is lightweight and has excellent corrosion resistance against not only seawater but also various chlorides, corrosive gases, acids, and the like. For this reason, attempts have been made to use titanium as a material for parts that require a high degree of corrosion resistance.

しかしながら例えばチタンからなる直管状のチューブを
熱交換器に用いる場合において、熱交換器の小形化を図
るにはチタンチューブを機械により折曲げ加工しなけれ
ばならず、面倒であり、コスト高となっていた。またチ
タンチューブを用いた熱交換器においてもその熱交換効
率の向上が要望されていた。
However, when using a straight tube made of titanium in a heat exchanger, for example, in order to make the heat exchanger more compact, the titanium tube must be mechanically bent, which is troublesome and increases costs. was. There has also been a demand for improved heat exchange efficiency in heat exchangers using titanium tubes.

(発明の目的) 本願発明は、チタンからなる薄肉チューブであって表面
がスパイラル形状に加工されてなるチタンフレキシブル
チューブを製造する方法、及びそのチタンフレキシブル
チューブを用いた熱交換器を提供することを目的とする
(Object of the Invention) The present invention provides a method for manufacturing a titanium flexible tube, which is a thin-walled titanium tube whose surface is processed into a spiral shape, and a heat exchanger using the titanium flexible tube. purpose.

(発明の構成) 本願の第1の発明は、酸素含有率が0.055%以下で
あるチタンからなり且っJIS1種(TTP28W)の
規格に適合した薄肉チューブの内外表面の酸化被膜を、
酸性液で洗浄することにより略完全に除去した後、薄肉
チューブ表面をスパイラル形状に加工し、真空条件下で
焼鈍するようにしたことを特徴とするチタンフレキシブ
ルチューブの製造方法である。
(Structure of the Invention) The first invention of the present application provides an oxide film on the inner and outer surfaces of a thin-walled tube made of titanium with an oxygen content of 0.055% or less and conforming to the JIS Type 1 (TTP28W) standard.
This method of manufacturing a titanium flexible tube is characterized in that after almost completely removing the titanium by washing with an acidic solution, the surface of the thin-walled tube is processed into a spiral shape and annealed under vacuum conditions.

本願の第2の発明は、外側チューブ内に少くとも1本の
内側チューブを有し、内側チューブ内を流れる媒体と、
内側チューブと外側チューブとの間隙を流れる媒体との
間で熱交換を行なうようにした熱交換器であって、外側
チューブとして可撓性のものを用い、内側チューブとし
て、チタン製の薄肉チューブであって両端が直管で残り
表面がスパイラル形状に形成されたチタンフレキシブル
チューブを用い、チューブの両端に、上記間隙に連通ず
る連結口と内側チューブの上記直管部が外部配管に連結
される際の窓口となる連結口とを有する継手部をそれぞ
れ設けたことを特徴とする熱交換器である。
A second invention of the present application has at least one inner tube within the outer tube, and a medium flowing within the inner tube;
A heat exchanger that performs heat exchange between a medium flowing through a gap between an inner tube and an outer tube, in which a flexible outer tube is used and a thin titanium tube is used as an inner tube. Using a titanium flexible tube with straight tubes at both ends and a spiral surface on the remaining surface, a connecting port communicating with the gap at both ends of the tube and a straight tube section of the inner tube connected to the external piping are used. This heat exchanger is characterized in that it is provided with a joint portion each having a connection port serving as a window for the heat exchanger.

(実施例) 以下、本願発明の実施例を図に基づいて説明する。第1
図は本願の第1の発明のチタンフレキンプルチューブの
製造方法を工程順に示すブロック図、第2図はその製造
方法により得られたチタンフレキシブルチューブを示す
断面図である。チタンとしては、酸素含有率が0.05
5%以下のものを用いる。このようなチタンを用いて、
1181種(TTP28W)の規格に適合した直管状の
チューブを形成する(工程A)。ここでは肉厚tが0.
3mnで、直径Hが16mmのチューブを形成する。な
お肉厚tは0.5mm程度でもよい。JI81種(TT
P28W)とは、配管に使用する断面が丸形の耐食用の
チタン管のうち、溶接管で溶接のままの管であって、化
学成分及び機械的性質の異なる3種類のうちの1種類を
示す。チューブは板状のチタンをティグ溶接、プラズマ
溶接等して形成する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings. 1st
The figure is a block diagram showing the method for manufacturing a titanium flexible tube according to the first invention of the present application in the order of steps, and FIG. 2 is a sectional view showing the titanium flexible tube obtained by the manufacturing method. As titanium, the oxygen content is 0.05
Use 5% or less. Using such titanium,
A straight tube conforming to the 1181 type (TTP28W) standard is formed (Step A). Here, the wall thickness t is 0.
3 mm to form a tube with a diameter H of 16 mm. Note that the wall thickness t may be approximately 0.5 mm. JI81 type (TT
P28W) is a welded pipe of corrosion-resistant titanium pipes with a round cross section used for piping, and is one of three types with different chemical composition and mechanical properties. show. The tube is formed by TIG welding, plasma welding, etc. from titanium plates.

次に工程Aにおいてチューブの内外表面に形成された極
薄の酸化被膜を、酸性液で洗浄することにより略完全に
除去する(工程B)。酸化被膜は例えば厚さ20μ程度
形成されている。酸化被膜は完全に除去するのが望まし
いが、半分位の厚さまで除去する程度でもよい。酸性液
としては、例えば硝酸やフッ酸を用□′いる。
Next, the extremely thin oxide film formed on the inner and outer surfaces of the tube in step A is almost completely removed by washing with an acidic solution (step B). The oxide film is formed to have a thickness of, for example, about 20 μm. Although it is desirable to completely remove the oxide film, it is also possible to remove it to about half the thickness. As the acidic liquid, for example, nitric acid or hydrofluoric acid is used.

次にチタンチューブの表面をスパイラル形状に加工する
(工程C)。ここでは谷部と111部との深さの差りが
3.2m+nで、山部と山部との間隔即ち1ピツチPが
3mmとなるよう加]ユする。この加工においては一般
に潤滑剤を用いる。なおチューブの両端には継手となる
直管部を残しておく。
Next, the surface of the titanium tube is processed into a spiral shape (Step C). Here, the difference in depth between the troughs and the 111th section is 3.2 m+n, and the distance between the crests, that is, 1 pitch P, is added to be 3 mm. A lubricant is generally used in this process. Note that straight pipe sections that will serve as joints are left at both ends of the tube.

次に工程Cで用いた潤滑剤の脱脂を行なった後、真空条
件下でチューブを焼鈍する(工程D)。脱指処理は、普
通には有機溶媒例えばトリクロルエタンの蒸気による凝
縮溶解で行なうが、仕上げとしてアルカリ液による鹸化
等の流体による油分除去又は超音波洗浄を行なうのが望
ましい。焼鈍は、例えば10−5〜−6To r rの
真空パージ又は99.99%のアルゴンパージで、10
分間700℃に加熱した後、緩かに常温まで冷却して、
行なう。こうしてチタンからなる薄肉チューブであって
両端が直管で残り表面がスパイラル形状に加工されてな
るチタンフレキシブルチューブ10(第2図)が得られ
る。
Next, after degreasing the lubricant used in Step C, the tube is annealed under vacuum conditions (Step D). Defingering treatment is usually carried out by condensing and dissolving an organic solvent such as trichloroethane vapor, but it is desirable to finish by removing oil with a fluid such as saponification with an alkaline solution or by ultrasonic cleaning. Annealing is carried out, for example, with a vacuum purge of 10-5 to -6 Torr or with a 99.99% argon purge.
After heating to 700°C for minutes, slowly cooling to room temperature,
Let's do it. In this way, a titanium flexible tube 10 (FIG. 2) is obtained, which is a thin-walled titanium tube having both ends straight and the remaining surface processed into a spiral shape.

チタンチューブの表面をスパイラル形状に加工する際に
問題となるのは、クラックの発生である。
A problem that arises when processing the surface of a titanium tube into a spiral shape is the occurrence of cracks.

しかしながら本発明では、酸素含有率が0.05−6 
= 5%以下のチタンを用い、JISIMi(TTP28W
)の規格に適合したチューブを形成し、チューブ表面の
酸化被膜を除去した後に、チューブ表面をスパイラル形
状に加工するようにしているので、クラックの発生は略
完全に防止される。
However, in the present invention, the oxygen content is 0.05-6
= Using titanium of 5% or less, JISIMi (TTP28W
), and after removing the oxide film on the tube surface, the tube surface is processed into a spiral shape, so the occurrence of cracks is almost completely prevented.

第3図は本願の第2の発明の熱交換器を示す断面図であ
る。この熱交換器20は二重管式のものである。即ち1
本の内側チューブ1が外側チューブ2内に略同心に収容
されており、内側チューブ1内を流れる媒体と、内側チ
ューブ1と外側チューブ2との間隙3を流れる媒体との
間で熱交換か行なわれるようになっている。内側チュー
ブ1には例えばフレオン等の冷却媒体が流され、外側チ
ューブ2には例えば塩水等の被冷却媒体が流される。
FIG. 3 is a sectional view showing a heat exchanger according to the second invention of the present application. This heat exchanger 20 is of a double pipe type. That is, 1
An inner tube 1 is housed approximately concentrically within an outer tube 2, and heat exchange is performed between the medium flowing inside the inner tube 1 and the medium flowing through the gap 3 between the inner tube 1 and the outer tube 2. It is now possible to A cooling medium such as Freon is flowed through the inner tube 1, and a cooling medium such as salt water is flowed through the outer tube 2.

内側チューブ1としては、上述した第1の発明により形
成されたチタンフレキシブルチューブ10を用いている
。1aは両端の直管部、1bはスパイラル部である。直
管部1aの端部の外表面には外部配管と連結するための
ねじ10aが形成されている。
As the inner tube 1, a titanium flexible tube 10 formed according to the first invention described above is used. 1a is a straight pipe portion at both ends, and 1b is a spiral portion. A thread 10a for connecting to external piping is formed on the outer surface of the end of the straight pipe portion 1a.

外側チューブ2としては、可撓性を有するもの、例えば
塩化ビニル等の樹脂からなるものを用いている。この外
側チューブ、2は内側チューブ1と同様にスパイラル状
に形成されている。なお外側チューブ2としては、樹脂
からなるスパイラル状のものに限るものではなく、例え
ばスチレンチューブの内面にテフロンをコーティングし
たものをスパイラル状としたものや、内側チューブ1よ
り大径のチタンフレキシブルチューブを用いてもよい。
The outer tube 2 is made of a flexible material such as a resin such as vinyl chloride. This outer tube 2 is spirally formed like the inner tube 1. The outer tube 2 is not limited to a spiral-shaped tube made of resin; for example, a spiral-shaped styrene tube coated with Teflon, or a titanium flexible tube with a larger diameter than the inner tube 1 can be used. May be used.

また外側チューブ2は可撓性を有すれば、スパイラル状
でなくてもよい。
Further, the outer tube 2 does not need to be spiral-shaped as long as it has flexibility.

4はチューブの両端にそれぞれ取付けられた継手部であ
る。継手部4は直角方向に開口した2つの連結口4 a
 ’、 4 bを有している。連結口4aは内側チュー
ブ1の直管部1aが外部配管(図示せず)と連結される
際の窓口となり、連結口4bは間隙3に連通している。
Reference numeral 4 denotes joints attached to both ends of the tube. The joint part 4 has two connecting ports 4 a opened in a right angle direction.
', has 4 b. The connecting port 4a serves as a window for connecting the straight pipe portion 1a of the inner tube 1 to an external pipe (not shown), and the connecting port 4b communicates with the gap 3.

このような構成の熱交換器では、図中右側から左側(矢
印入方向)に内側チューブ1内を流れる冷却媒体と、図
中左側から右側(矢印B方向)に間隙3内を流れる被冷
却媒体との間で、熱交換が行なわれる。このとき内側チ
ューブ1の内面に沿って流れる冷却媒体と、内側チュー
ブ1の外面に沿って流れる被冷却媒体とは、内側チュー
ブ1の回りを互いに逆方向に回転しながら流れ、両媒体
は乱流となる。このため両媒体間の熱交換は効率良く行
なわれる。しかも内側チューブ1はスパイラル形状に形
成されているので、その内外の表面積は直管式の場合に
比して増大している。即ち伝熱面積が増大している。こ
れによっても両媒体間の熱交換効率は向上し、熱交換効
率は直管式の約4倍となる。
In a heat exchanger with such a configuration, the cooling medium flows in the inner tube 1 from the right side to the left side (in the direction of arrow B) in the figure, and the cooled medium flows in the gap 3 from the left side to the right side in the figure (in the direction of arrow B). Heat exchange takes place between the At this time, the cooling medium flowing along the inner surface of the inner tube 1 and the medium to be cooled flowing along the outer surface of the inner tube 1 flow around the inner tube 1 while rotating in opposite directions, and both media flow in a turbulent flow. becomes. Therefore, heat exchange between both media is performed efficiently. Moreover, since the inner tube 1 is formed in a spiral shape, its inner and outer surface areas are increased compared to a straight tube type. That is, the heat transfer area is increased. This also improves the heat exchange efficiency between the two media, and the heat exchange efficiency is approximately four times that of the straight pipe type.

またこのような熱交換器では、外側チューブ2が可撓性
を有しているのに加え、内側チューブ1も薄肉であり表
面がスパイラル形状であることにより可撓性を有してい
るので、自由な曲げ加工が手作業で可能である。また内
側チューブ1を外側チューブ2内から取外すことも可能
である。
In addition, in such a heat exchanger, in addition to the outer tube 2 having flexibility, the inner tube 1 is also flexible due to its thin wall and spiral-shaped surface. Free bending can be done manually. It is also possible to remove the inner tube 1 from within the outer tube 2.

また内側チューブ]は、チタンで形成されているので、
海水はもとより、各種塩化物、腐蝕性ガス、酸等に対す
る耐食性に優れている。従ってこの熱交換器は、上記の
ような多種類の被冷却媒体に対し高度な耐食性を持って
用いられる。しかもチタンは鉄、鋼、ステンレスに比し
て40%程度、また銅、ニッケルに比して50%程度軽
量であるので、広範囲に用いられる。特に重量制限の厳
格な船舶等に有効に用いられる。
In addition, the inner tube] is made of titanium, so
It has excellent corrosion resistance against not only seawater but also various chlorides, corrosive gases, acids, etc. Therefore, this heat exchanger can be used with a high degree of corrosion resistance against the various types of media to be cooled as described above. Moreover, titanium is about 40% lighter than iron, steel, and stainless steel, and about 50% lighter than copper and nickel, so it is widely used. It is especially effective for ships with strict weight restrictions.

(発明の効果) 以上のように本願の第1の発明によれば、酸素含有率が
0.055%以下であるチタンからなり且つJIS1種
(TTP28W)の規格に適合した薄肉チューブの内外
表面の酸化被膜を、酸性液で洗浄することにより略完全
に除去した後、薄肉チューブ表面をスパイラル形状に加
工するようにしたので、例えば肉厚tが0.3〜0.5
mmで直径Hか16+nmの薄肉チタンチューブの表面
を、クラックを発生させることなく、例えば谷部と山部
との深さの差りが3.2mmで、山部と山部との間隔即
ち1ピツチPが3mmであるスパイラル形状に加工する
ことができる。従って、■手作業で自由に曲げ加工でき
、このため製作基において大幅な汎用性を有して用いる
ことができ、製作の省力化、製作品の小形化等を図るこ
とができ、■高度の耐食性が要求される部品として、広
範囲に用いることができ、■特に熱交換器に用いた場合
には、スパイラル形状によって発生する流れる媒体の乱
流効果、及び大幅な伝熱面積の増大によって、直管式の
約4倍の熱交換効率を得ることができる−9の種々の効
果を有するチタンフレキシブルチューブ10を得ること
ができる。
(Effects of the Invention) As described above, according to the first invention of the present application, the inner and outer surfaces of a thin-walled tube made of titanium with an oxygen content of 0.055% or less and conforming to the JIS Type 1 (TTP28W) standard. After the oxide film was almost completely removed by washing with an acidic solution, the surface of the thin-walled tube was processed into a spiral shape, so that the wall thickness t was, for example, 0.3 to 0.5.
The surface of a thin titanium tube with a diameter H or 16+ nm in mm can be coated without cracking, for example, when the difference in depth between the valleys and peaks is 3.2mm, and the distance between the peaks is 1. It can be processed into a spiral shape with a pitch P of 3 mm. Therefore, ■It can be bent freely by hand, and therefore it can be used with great versatility in the production base, making it possible to save labor in production and reduce the size of manufactured products. It can be used in a wide range of parts that require corrosion resistance, and especially when used in heat exchangers, the spiral shape produces a turbulent flow effect in the flowing medium and a large increase in heat transfer area, resulting in direct corrosion resistance. It is possible to obtain a titanium flexible tube 10 which has various effects of -9 and can obtain a heat exchange efficiency approximately four times that of a tubular type.

また本願の第2の発明によれば、外側チューブ2内に例
えば1本の内側チューブ1を略同心に収容してなる二重
管式の熱交換器において、外側チューブ2として例えば
樹脂からなる可撓性のものを用い、内側チューブ1とし
て上記第1の発明で得られたチタンフレキシブルチュー
ブ1oを用いたので、以下のような効果を奏する。即ち
、■内側チューブ1の内外面に沿って流れる冷却媒体、
被冷却媒体は乱流となり、しかも内側チューブ1の表面
積即ち伝熱面積は直管式に比して増大しているので、直
管式に比して約4倍の効率で熱交換を行なうことができ
る。
Further, according to the second invention of the present application, in a double-tube heat exchanger in which, for example, one inner tube 1 is housed approximately concentrically within the outer tube 2, the outer tube 2 is made of a resin material, for example. Since a flexible material was used, and the titanium flexible tube 1o obtained in the first invention was used as the inner tube 1, the following effects were achieved. That is, ■ a cooling medium flowing along the inner and outer surfaces of the inner tube 1;
The medium to be cooled becomes a turbulent flow, and the surface area of the inner tube 1, that is, the heat transfer area, is increased compared to the straight pipe type, so heat exchange is performed with approximately four times the efficiency compared to the straight pipe type. I can do it.

■外側チューブ2のみならず、内側チューブ1も可撓性
を有しているので、手作業で自在に曲げ加工できる。従
って熱交換器を大幅に小形化することができる。また両
チューブ]、2とも可撓性を有しているので、振動によ
るチューブ1.2の損失を低減できる。更に内側チュー
ブ1を外側チューブ2内から取外すことができ、内側チ
ューブ1、外側チューブ2の内外面を清掃することがで
きる。
- Not only the outer tube 2 but also the inner tube 1 has flexibility, so it can be bent manually. Therefore, the heat exchanger can be significantly downsized. In addition, since both tubes 1 and 2 are flexible, loss of the tubes 1 and 2 due to vibration can be reduced. Further, the inner tube 1 can be removed from the outer tube 2, and the inner and outer surfaces of the inner tube 1 and the outer tube 2 can be cleaned.

■内側チューブ1として、チタン製のものを用いている
ので、本発明の熱交換器は塩水はもちろん、各種塩化物
、腐蝕性ガス、各種酸等を冷却するのに用いることがで
きる。またチタンは鉄等に比して軽量であるので、本発
明の熱交換器は特に重量の制限が厳格な船舶等に有効に
用いることかできる。
(2) Since the inner tube 1 is made of titanium, the heat exchanger of the present invention can be used to cool not only salt water but also various chlorides, corrosive gases, and various acids. Furthermore, since titanium is lighter than iron or the like, the heat exchanger of the present invention can be effectively used particularly in ships and the like where weight restrictions are strict.

(別の実施例) 本願の第2の発明の別の実施例として、外側チューブ2
内に複数本の内側チューブ1を設けてもよい。第4図は
内側チューブ1を4本設けた熱交換器30を示す断面図
である。図において、第3図と同じ符号は対応する部分
を示す。この例によれば、内側チューブ1が1本の場合
に比して概ね伝熱面積が増大することとなり、熱交換効
率を向上させることができる。
(Another embodiment) As another embodiment of the second invention of the present application, the outer tube 2
A plurality of inner tubes 1 may be provided inside. FIG. 4 is a sectional view showing a heat exchanger 30 provided with four inner tubes 1. In the figure, the same reference numerals as in FIG. 3 indicate corresponding parts. According to this example, the heat transfer area is generally increased compared to the case where there is only one inner tube 1, and the heat exchange efficiency can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願の第1の発明のチタンフレキシブルチュー
ブの製造方法を工程順に示すブロック図、第2図は第1
図に示す方法により得られるチタンフレキシブルチュー
ブを示す断面図、第3図は本願の第2の発明の熱交換器
を示す断面図、第4図は本願の第2の発明の別の実施例
を示す断面図である。1・・・内側チューブ、2・・・
外側チューブ、3・・・間隙、4・・・継手部、10・
・・チタンフレキシブルチューブ、20.30・・・熱
交換器 特許出願人  株式会社 ティグ チタン材料 チタンフレキシブルチューブ
FIG. 1 is a block diagram showing the manufacturing method of a titanium flexible tube according to the first invention of the present application in the order of steps, and FIG.
A sectional view showing a titanium flexible tube obtained by the method shown in the figure, FIG. 3 is a sectional view showing a heat exchanger of the second invention of the present application, and FIG. 4 shows another embodiment of the second invention of the present application. FIG. 1...inner tube, 2...
Outer tube, 3... Gap, 4... Joint part, 10.
...Titanium flexible tube, 20.30...Heat exchanger patent applicant TIG titanium material titanium flexible tube

Claims (2)

【特許請求の範囲】[Claims] (1)酸素含有率が0.055%以下であるチタンから
なり且つJIS1種(TTP28W)の規格に適合した
薄肉チューブの内外表面の酸化被膜を、酸性液で洗浄す
ることにより略完全に除去した後、薄肉チューブ表面を
スパイラル形状に加工し、真空条件下で焼鈍するように
したことを特徴とするチタンフレキシブルチューブの製
造方法。
(1) The oxide film on the inner and outer surfaces of a thin-walled tube made of titanium with an oxygen content of 0.055% or less and conforming to JIS Class 1 (TTP28W) standards was almost completely removed by cleaning with acidic liquid. A method for manufacturing a titanium flexible tube, characterized in that the surface of the thin-walled tube is processed into a spiral shape and annealed under vacuum conditions.
(2)外側チューブ内に少くとも1本の内側チューブを
有し、内側チューブ内を流れる媒体と、内側チューブと
外側チューブとの間隙を流れる媒体との間で熱交換を行
なうようにした熱交換器であって、外側チューブとして
可撓性のものを用い、内側チューブとして、チタン製の
薄肉チューブであって両端が直管で残り表面がスパイラ
ル形状に形成されたチタンフレキシブルチューブを用い
、チューブの両端に、上記間隙に連通する連結口と内側
チューブの上記直管部が外部配管に連結される際の窓口
となる連結口とを有する継手部をそれぞれ設けたことを
特徴とする熱交換器。
(2) A heat exchanger that has at least one inner tube within the outer tube, and performs heat exchange between the medium flowing inside the inner tube and the medium flowing through the gap between the inner tube and the outer tube. The outer tube is flexible, and the inner tube is a thin-walled titanium flexible tube with straight ends and a spiral surface. A heat exchanger characterized in that joint portions are provided at both ends, each having a connecting port communicating with the gap and a connecting port serving as a window when the straight pipe portion of the inner tube is connected to external piping.
JP12762889A 1989-05-19 1989-05-19 Manufacture of titanium flexible tube and heat exchanger Pending JPH02307622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12762889A JPH02307622A (en) 1989-05-19 1989-05-19 Manufacture of titanium flexible tube and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12762889A JPH02307622A (en) 1989-05-19 1989-05-19 Manufacture of titanium flexible tube and heat exchanger

Publications (1)

Publication Number Publication Date
JPH02307622A true JPH02307622A (en) 1990-12-20

Family

ID=14964790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12762889A Pending JPH02307622A (en) 1989-05-19 1989-05-19 Manufacture of titanium flexible tube and heat exchanger

Country Status (1)

Country Link
JP (1) JPH02307622A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100486828B1 (en) * 2004-04-28 2005-04-29 (주)삼화엔지니어링 The evaporator with connector thereof
KR100729644B1 (en) * 2006-07-10 2007-06-18 손광억 The heat exchanging tube and the heat exchanger
JP2007322121A (en) * 2006-06-01 2007-12-13 Nobel Plastiques Heat exchanger having coil-shaped serpentine tube, and cooling circuit, fuel circuit and vehicle equipped with the heat exchanger
JP2008261566A (en) * 2007-04-12 2008-10-30 Sumitomo Light Metal Ind Ltd Double-pipe heat exchanger
KR100940219B1 (en) * 2009-02-24 2010-02-04 (주)대성이노텍 Tube structure of helical cross setting type for heat exchanger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238465A (en) * 1984-05-11 1985-11-27 Nippon Stainless Steel Co Ltd Manufacture of bright-annealed titanium and titanium alloy material with superior formability

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238465A (en) * 1984-05-11 1985-11-27 Nippon Stainless Steel Co Ltd Manufacture of bright-annealed titanium and titanium alloy material with superior formability

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100486828B1 (en) * 2004-04-28 2005-04-29 (주)삼화엔지니어링 The evaporator with connector thereof
JP2007322121A (en) * 2006-06-01 2007-12-13 Nobel Plastiques Heat exchanger having coil-shaped serpentine tube, and cooling circuit, fuel circuit and vehicle equipped with the heat exchanger
KR100729644B1 (en) * 2006-07-10 2007-06-18 손광억 The heat exchanging tube and the heat exchanger
JP2008261566A (en) * 2007-04-12 2008-10-30 Sumitomo Light Metal Ind Ltd Double-pipe heat exchanger
KR100940219B1 (en) * 2009-02-24 2010-02-04 (주)대성이노텍 Tube structure of helical cross setting type for heat exchanger

Similar Documents

Publication Publication Date Title
US20060289151A1 (en) Fin tube assembly for heat exchanger and method
US8152047B2 (en) Method of producing a corrosion resistant aluminum heat exchanger
AU596145B2 (en) Heat exchanger &amp; method to produce same
KR0157184B1 (en) Corrugated pipe
CN101368800A (en) Axial fin flat pipe heat exchanger and manufacturing method thereof
JPH02307622A (en) Manufacture of titanium flexible tube and heat exchanger
CN1498702A (en) Method for manufacturing brazed composited tube
CN111322899A (en) External fin heat exchange tube with spiral inner core and manufacturing method thereof
JPH0285694A (en) Plate-fin type heat exchanger
CN101033921A (en) Combined corrugated tube type heat exchanger
JP2007163115A (en) Heat exchanger
CN214892803U (en) Novel fluid conveying pipe for heat exchange and heat exchange equipment
JPH0648148B2 (en) Heat exchanger
JPH0246969A (en) Production of brazed flat aluminum tube for heat exchanger
JPH03189072A (en) Hear exchanger and its manufacture
CN207066197U (en) Titanium double-tube heat exchanger
JP2855240B2 (en) Manufacturing method of oil cooler for automobile
JPH11221615A (en) Tube and its production
JP2007023311A (en) Clad material and manufacturing method therefor
CN217272461U (en) Precipitation type stainless steel pipe section
JPH03189071A (en) Tubular body for titanium heat exchanger and production thereof
JP3079576U (en) Heat exchanger tubes
JPH0255664A (en) Production of heat exchanger
CN114353556B (en) Large-scale belt-wound spiral micro-channel heat exchanger and brazing process thereof
JP2014119212A (en) Heat exchanger