JPS63315943A - Ultrasonic flaw detector for plate spring - Google Patents

Ultrasonic flaw detector for plate spring

Info

Publication number
JPS63315943A
JPS63315943A JP62151444A JP15144487A JPS63315943A JP S63315943 A JPS63315943 A JP S63315943A JP 62151444 A JP62151444 A JP 62151444A JP 15144487 A JP15144487 A JP 15144487A JP S63315943 A JPS63315943 A JP S63315943A
Authority
JP
Japan
Prior art keywords
probe
flaw detection
leaf spring
probes
plate spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62151444A
Other languages
Japanese (ja)
Inventor
Hidenobu Komatsu
英伸 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP62151444A priority Critical patent/JPS63315943A/en
Publication of JPS63315943A publication Critical patent/JPS63315943A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To simultaneously execute a single probe method and a two-probe method, to make up each other even a defect which cannot be detected by one flaw detecting method, by both the methods, and also, to reduce the rate for overlooking the defect by a scan of once. CONSTITUTION:An ultrasonic probe 1 is a transmitter-receiver whose vibrator diameter is a small aperture and whose directional characteristic is narrow, and an ultrasonic probe 2 is a receiver whose aperture is large and whose directional characteristic is wide. These probes, 1, 2 are supported so as to be opposed at an incident angle of 15-25 deg. to the side face of each plate spring (a)-(c) from the outside of the upper nozzle 10 in a prescribed direction by a scanner 3, without changing each relative position. Subsequently, they are moved as they are along the length direction of the plate spring to the lower part from the upper part of an inclination, shifted upward and downward by a thickness portion of each plate spring, and also, while changing the direction to match an inclination angle of each plate, a scan is executed repeatedly by a piece number portion of the plate spring.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本究明は、板ばねの、t11音波探傷装置に関し、更に
詳しくは加圧水型原子炉用燃料集合体の上部ノズル頂部
に取付けられて冷却材流れに対する燃料集合体の浮上り
を防止するための押さ左ばねを構成する数枚重ねの板ば
ねを、前記上部ノズルに取付は状態のまま水中で遠隔操
作で超音波深間する装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present study relates to a T11 sonic flaw detection device for leaf springs, more specifically, it is installed at the top of the upper nozzle of a fuel assembly for a pressurized water reactor to detect coolant flow. This invention relates to a device that performs deep ultrasonic waves under water by remote control, with several leaf springs constituting a pressed left spring for preventing the fuel assembly from surfacing in the water while still attached to the upper nozzle. .

〔従来の技術〕[Conventional technology]

加圧水型原子炉用燃f、1果合体の上部ノズルの頂部に
は、下方から上方へ流れろ冷却材の流れによって燃料集
合体が浮−しらないように上部炉心板に抗して下向きの
ホールドグウノカを与える押さえばねとして、2〜3枚
重ねの板ばねが取り付けら′i]ている。この押さ^ば
ねの検査は、装荷燃料について水中干しビカメラによる
外戎検査とばね力の定期検査が行われているが、ばね付
は根部の亀裂などの探傷1よ特に行われておらず、最適
な手法の開発が望まれていたのが実情であった。
At the top of the upper nozzle of the fuel assembly for pressurized water reactors, there is a hold gouge pointing downward against the upper core plate to prevent the fuel assembly from floating due to the flow of coolant flowing from below upwards. A stack of two or three leaf springs is attached as a pressure spring to apply the knock. Inspection of this compressed spring is carried out using an underwater drying camera for the loaded fuel, and periodic inspection of the spring force. The reality was that there was a desire to develop a method that would

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の課題は、核物質を取り扱う一般的な作業条件に
適合し、遠隔操作で能率よく探1功作業を行うことがで
き、加圧水型原子炉用燃料集合体の押さえばねの付は根
部に発生する亀習を各板ばね毎に識別して確実に探傷で
きる殴ばねの超音波探傷装置を提供することである。
The object of the present invention is to be compatible with general working conditions for handling nuclear materials, to be able to perform search operations efficiently by remote control, and to attach pressure springs to the roots of fuel assemblies for pressurized water reactors. To provide an ultrasonic flaw detection device for striking springs that can identify the occurrence of cracks in each leaf spring and reliably detect flaws.

・〔問題点を解決するための手段〕 本究明に従えば、加圧水型原子炉用燃料集合体の上部ノ
ズル頂部に取付けられて冷却材流れに対する燃料集合体
の浮上りを防止するための押さえばねを構成する数枚重
ねの板ばねを、前記上部ノズルに取付は状態のまま水中
で超a波探傷する装置が提供され、この装置は特に前述
の課i岨を達成するために、数枚重ねの板ばねの各板を
識別可能とするために比較的狭い指向特性をもつ第1の
探触子と、前記第1の探触子と同じ指向方向にほぼ平行
配置された比較的広い指向特性をもつ第2の探触子と、
これら両扉触子を板ばねの側面に所定の大引角で指向さ
せて各枚毎に板ばね長さ方向に走査を行う走査手段と、
第1の探触子に送信パルスを供給する手段と、第1と第
2の探触子による受信エコー信号を信号処理して表示す
る探傷表示手段とを備えている。
・[Means for solving the problem] According to this research, a presser spring is installed at the top of the upper nozzle of a fuel assembly for a pressurized water reactor to prevent the fuel assembly from floating against the flow of coolant. An apparatus is provided for underwater ultra-A wave flaw detection in which a plurality of leaf springs constituting a stack of leaf springs are attached to the upper nozzle. a first probe with a relatively narrow directional characteristic to enable each plate of the leaf spring to be identified; and a relatively wide directional characteristic arranged substantially parallel to the same directional direction as the first probe. a second probe having a
scanning means that scans each leaf spring in the length direction by directing these door tentacles at a predetermined large pull angle to the side surface of the leaf spring;
The device includes means for supplying a transmission pulse to the first probe, and flaw detection display means for signal processing and displaying echo signals received by the first and second probes.

本究明の好ましい一実施態様においては、前記走査手段
は両扉触子の入射角を遠隔調整する駆動装置を有してお
り、また特に好ましい別の実施態様によれば、第1の探
触子はその狭指向特性によって板ばねの幅方向両端部寄
りの探傷領域を受持ち、第2の探触子は残りの幅方向中
間部の探傷領域を受持つように第1の1ア触子よりも大
径の受信面を有し、市川表示手段はこれら両扉触子から
の受イ3信号中から各々が受持つ1〒傷領域に対応する
時間軸範囲内の受信エコー信号を取出して表示ずろ時間
軸ゲート回路を有している。
In a preferred embodiment of the present invention, the scanning means has a drive device for remotely adjusting the angle of incidence of the double door probe; Due to its narrow directivity characteristics, the second probe is in charge of the flaw detection area near both ends of the leaf spring in the width direction, and the second probe is in charge of the flaw detection area in the remaining middle part in the width direction. It has a large-diameter receiving surface, and the Ichikawa display means extracts and displays the received echo signal within the time axis range corresponding to the scratch area, which each one is responsible for, from among the three received signals from these double door touchers. It has a time axis gate circuit.

本究明の別の好ましい実施態様によれば、riiJ記人
射用人射角〜25°の範囲内に定められいる。
According to another preferred embodiment of the present invention, the angle of incidence is set within the range of ~25°.

本究明のさらに別の実施態様によれば、前記探傷表示手
段は第1と第2の探触子による受(:エコ(,3;を別
けて表示する282争表示器を有している。
According to yet another embodiment of the present invention, the flaw detection display means has a 282 flaw display that separately displays the results of the first and second probes.

〔作用〕[Effect]

本究明のJ11?llf彼探傷装置は、特に加圧水型原
子炉用燃料fJS合体の押さえばねを構成する数枚重ね
の板ばねを、前記上部ノズルに取付は状態のまま各枚毎
に遠隔操作による自動走査によって水中で超音波探傷す
る。第1の探触子と第2の探触子とは走査装置によって
板ばねの鍔面に所定の入射角で指向されて各枚毎に板ば
ね長さ方向に走査を行う。この場合、第1の探触子は数
枚重ねの板ばオ〕の各板を識別可能とするために比較的
狭い指向特性をもち、単一探触子による斜角探傷用の送
受(5子の役目を果す。この第1の探触子と同じ指向方
向にほぼ平行配置された比較的広い指向特性をもつ第2
の探触子は受信専用であり、第1の探触子を送信子とす
る二探触子による斜角探傷用の受信子の役目を果す。
J11 of this investigation? In particular, the flaw detection device detects several stacked leaf springs, which make up the presser spring of the pressurized water reactor fuel fJS combination, underwater by automatically scanning each leaf spring by remote control while still attached to the upper nozzle. Perform ultrasonic flaw detection. The first probe and the second probe are directed at a predetermined angle of incidence onto the collar surface of the leaf spring by a scanning device, and scan each probe in the length direction of the leaf spring. In this case, the first probe has a relatively narrow directivity characteristic in order to make it possible to identify each plate in the stack of several plates, and the first probe has a relatively narrow directivity characteristic to enable identification of each plate in the stack of several plates. A second probe with a relatively wide directivity is placed almost parallel to the first probe in the same pointing direction.
The probe is for reception only, and serves as a receiver for oblique flaw detection using two probes, with the first probe serving as a transmitter.

第1の探触子から所定の入射角で板ばねの一方の側面に
入射された超音波パルスは前記入射角と仮ばね(イ質に
よって主に定まる屈折角で板ばね内に准み、板ばね付は
根部の亀裂等の傷と板ばねの他方の側面での反射を経て
エコーとして戻ってくる。第1の探触子で受信されるエ
コー中には主に第1の探触子の指向特性のビーム幅で定
まる板ばね11G方向両(、、:8近傍の探傷領域にあ
る傷からのエコーが含まれ、これにまり仮ばオニの両側
面の表面から数理の深さの範囲に対する単一探触子によ
る斜角探帛が果される。一方、板ばねの両側面の表面か
ら数量を超える深さの範囲、即ち前記仮ばね幅方向両、
)j4近傍の探傷領域以外の残余の中間部領域にある幅
からのエコーは同様に板ばねの前記他方の側面での反射
r!経て第2の探触子によって受信される。この中間部
領域からのエコーを捉えるために第2の探触子は対応し
て比較的広い指向特性や与九られている。板ばねの幅方
向に全幅に亙る連続的な深1易領域を形成するための条
件は、両探触子の指向特性のビーム幅、探触子相互間隔
、板ば第1の幅寸法および入射角などによって幾何学的
に定め得る。
The ultrasonic pulse incident from the first probe on one side of the leaf spring at a predetermined angle of incidence is refracted into the leaf spring at a refraction angle mainly determined by the incident angle and the material of the temporary spring. Spring-loaded springs return as echoes through scratches such as cracks on the root and reflections on the other side of the leaf spring.The echoes received by the first probe mainly contain the echoes of the first probe. It includes echoes from flaws in the flaw detection area near the leaf spring 11G direction (,,:8), which is determined by the beam width of the directional characteristic. An oblique probe is carried out using a single probe.On the other hand, a range of depth exceeding the number from the surfaces of both sides of the leaf spring, that is, both sides of the temporary spring,
) Echoes from the width in the remaining intermediate area other than the flaw detection area near j4 are similarly reflected by the other side surface of the leaf spring r! and then received by the second probe. In order to capture echoes from this intermediate region, the second probe has a correspondingly relatively wide directivity characteristic. The conditions for forming a continuous deep easy region over the entire width in the width direction of the leaf spring are the beam width of the directional characteristics of both probes, the distance between the probes, the first width dimension of the leaf, and the incident It can be defined geometrically, such as by corners.

本発明の好ましい一実施態様においては、前記走査手段
は両探触子の入射角を遠隔調整する駆動装置を有してお
り、これによって好ましくは前記屈折角が45″になる
。1う入q1角が15〜25゜に七ノドされろ。加圧水
型原子炉用燃料集合体の上部ノズルの押さえばねは一般
に平行幅の板ばねで構成されており、従って屈折角を4
5°にずろと送43方向と受信方向とを平行にすること
ができ、両探触子を固定的に平行配置してその相対的な
方向調整を簡略化する、。
In a preferred embodiment of the invention, the scanning means has a drive for remotely adjusting the angle of incidence of both probes, so that the angle of refraction is preferably 45''. The angle should be adjusted to 15 to 25 degrees.The presser spring of the upper nozzle of a fuel assembly for a pressurized water reactor is generally composed of a flat spring with a parallel width.
The transmitting direction and the receiving direction can be made parallel by 5 degrees, and both probes are fixedly arranged in parallel to simplify relative direction adjustment.

前述のように、第1の探触子はその狭指向特性によって
板ばねの幅方向両端部寄りの探聞領域を受持ち、第2の
探触子は残りの幅方向中間部の搾(ぢ領域を受持ち、こ
のため好ましくは第2の探触子は第1の探触子よりも大
径の受信面を有する。1前記表示手段は両扉触子から出
力される受信エコー信号を増幅・検波し、送信波パルス
と同期した同期(3号に基づいて時間軸ゲーI・回路に
よって前記両1ア触子からの受信信号中から各々が受持
つ探傷領域に対応する時間fill範囲内の受信エコー
信号を取出し、例^ば画面を上下に分割した2現家画像
表示装置により第1と第2の探触子による受信エコー信
号を同一画面に別けて表示する。
As mentioned above, the first probe is in charge of the detection area near both ends of the leaf spring in the width direction due to its narrow directivity, and the second probe is in charge of the detection area in the middle part of the leaf spring in the width direction. For this purpose, the second probe preferably has a receiving surface with a larger diameter than the first probe.1 The display means amplifies and detects the received echo signal output from the double door touch. Then, synchronization with the transmitted wave pulse (based on No. 3, the time axis game I circuit detects received echoes within the time fill range corresponding to the respective flaw detection areas from among the received signals from both the first contactors) The signal is extracted, and the echo signals received by the first and second probes are displayed separately on the same screen using, for example, a two-way image display device that divides the screen into upper and lower sections.

本発明の特徴と利点を一層明確にするために本発明の好
ましい実施例を図面と共に説明すれば以下の通りである
In order to further clarify the features and advantages of the present invention, preferred embodiments of the present invention will be described below with reference to the drawings.

〔実施例〕〔Example〕

第1図は加圧水型原子炉用燃料集合体の上部ノズルに対
置した本発明の一実施例に係る超音波探傷装置のセ、す
部を示す平面図、第2図は同じ(その側面図である。
Fig. 1 is a plan view showing the center and bottom parts of an ultrasonic flaw detection device according to an embodiment of the present invention placed opposite to the upper nozzle of a fuel assembly for a pressurized water reactor, and Fig. 2 is the same (a side view thereof). be.

上部ノズル10はその頂面四辺A、B、C,Dにそれぞ
れ押さ^ばね11A、I In、I IC。
The upper nozzle 10 is pressed by springs 11A, I In, and I IC on its top four sides A, B, C, and D, respectively.

LIDを有し、各押さえばねは第2図に示すようにそれ
ぞれ付は根部で曲げられて傾r(状に片持ち支持された
幅19mmおよび厚さ3 、9 +nm程度の3枚重ね
の仮ばねa、b、cからなる。
As shown in Figure 2, each presser spring is a three-layer temporary structure with a width of 19 mm and a thickness of about 3,9 + nm, each with its base bent at its root and supported cantilevered in the shape of an incline. Consists of springs a, b, and c.

主な17島対象は各板ばねの付は根の曲げ部分Xに発生
ずる欠陥(亀裂)であり、どの板ばねに亀裂があるかも
検出口的に含まれる。この板ばf、lは燃料集合体一体
につき6種類、合計12枚あり、亀裂はそのうちのどれ
にも発生する可能性があって通常は約0.20111程
度の大きさのものである。
The main target of the 17 islands is defects (cracks) that occur at the bending part X of the root of each leaf spring, and it also includes the detection point of which leaf spring has the crack. There are six types of plates f and l in each fuel assembly, a total of 12 plates, and cracks can occur in any of them, and the size is usually about 0.20111.

この実施例では、第2図に示したように、板ばオニ付は
根部Xを含む傾斜下部の約40+nmにわたる限定範囲
Yを17傷の走査範囲としている。
In this embodiment, as shown in FIG. 2, the limited range Y extending about 40+ nm at the lower part of the slope including the root X is the scanning range of 17 scratches.

第1の、tI3育彼探触子1は振動子径が1/4イ=ヂ
(約6.35mm)の小口径の狭指向特性の送受信子で
あり、第2の超音波探触子2は振動子径が374インチ
(約19In+++)の大口径の指向特性の広い受信子
である。これら探触子1,2は、互いの相対位置を変ん
ずに走査器3によって所定の向き、即ち互いに平行に上
部ノズル10の外側から各板ばオニa、b、cの側面に
15〜25°の入射角で向かい合う用に支持されたまま
、傾斜の上部から下部へ板ばねの長さ方向に沿って移動
さtl、これを各板ばねの厚さ分だけ上下にシフ1・さ
せて、且っ各板ばねの傾斜角にrテわせで方向を変えな
がら板ばね枚数分だけ繰り返すことで走査を行う。
The first tI3 probe 1 is a transmitter/receiver with a small diameter transducer having a diameter of 1/4 (approximately 6.35 mm) and narrow directivity characteristics, and the second ultrasonic probe 2 is a large-diameter receiver with a transducer diameter of 374 inches (approximately 19 In+++) and a wide directional characteristic. These probes 1 and 2 are oriented in a predetermined direction by the scanner 3 without changing their relative positions, that is, parallel to each other, from the outside of the upper nozzle 10 to the side surfaces of the plates a, b, and c. While supported so that they face each other at an incident angle of 25°, move them along the length of the leaf spring from the top to the bottom of the slope, and shift this up and down by the thickness of each leaf spring. , and scanning is performed by repeating as many times as the number of leaf springs while changing the direction according to the inclination angle of each leaf spring.

このため走査器3は上部ノズ/Lへの図示しない位置決
め固定1購の他に走査方向調!!機構と探触子方向調整
機構を有し、その1ア触子の走査方向と取付は方向とを
遠隔で調整出来るようになっている。
For this reason, the scanner 3 has a positioning fixation (not shown) to the upper nozzle/L, as well as scanning direction adjustment! ! It has a mechanism and a probe direction adjustment mechanism, and the scanning direction and mounting direction of one of the probes can be adjusted remotely.

尚、第1図に示したように、同様な探触子と走査器の組
合せを増設して同時走査を行うようにし、検査の能率を
高めろようにしてもよい。
Incidentally, as shown in FIG. 1, similar combinations of probes and scanners may be added to perform simultaneous scanning to improve inspection efficiency.

第1図でブロック4として示したのは超音波送受信ユニ
ットであり、その詳細構成の一例は第1図に示しである
What is shown as block 4 in FIG. 1 is an ultrasonic transmitting/receiving unit, and an example of its detailed configuration is shown in FIG.

第1図において、超音波送受信ユニット4は同期制御回
路46と送信パルス発生回?847を有し、同期制御回
路46からの同期パノLスに同期した駆動パルスや第1
の探触子1に供給して超音波送信バノLスを探触子1か
ら光するようにしである。ユニット4は各探触子からの
受信エコー信号のための信号処理回路をも備丈でおり、
これは第1の探触子lに対して、受信増幅回路141と
、検波回路142と、時間幅ゲート回路143と、ビデ
オ増幅回路144とを含み、又第2の探触子2に対して
、受信増幅回路241と、検波回路242と、時間幅ゲ
−1・回路243と、ビデオ増幅回路244とを含む。
In FIG. 1, the ultrasonic transmitter/receiver unit 4 includes a synchronization control circuit 46 and a transmission pulse generation time? 847, the drive pulse synchronized with the synchronous pano L from the synchronous control circuit 46 and the first
The probe 1 is supplied with ultrasonic wave transmitting light, and the ultrasonic wave transmitting light is emitted from the probe 1. Unit 4 is also equipped with a signal processing circuit for receiving echo signals from each probe.
This includes a reception amplifier circuit 141, a detection circuit 142, a time width gate circuit 143, and a video amplifier circuit 144 for the first probe l, and for the second probe 2. , a reception amplifier circuit 241, a detection circuit 242, a time width gate 1 circuit 243, and a video amplifier circuit 244.

ユニット4は更にこれらビデオ増幅回路、144,24
4のビデオ出力を表示するビデオ画1↑表示装置45を
有し、この表示装置45は各ビデオ増幅回路からのビデ
オ信号をそれぞれ別ニ表示する2現p分割両面を持って
いる。このようなユニット4の構成自体は基本的に従来
のものと同様であるが、この場合、時間幅ゲート回#1
43.243は、各々探触子1,2の受持ち探傷領域か
らのエコーだけを取出すために、同期制御回路46から
の同期信号によって送信パルス直後から所定時間経過後
のゲート起点およびゲート時間範囲を各々二箇所づつ設
定している。
Unit 4 further includes these video amplifier circuits, 144, 24.
The display device 45 has a video image 1↑ display device 45 for displaying video outputs of 4 video outputs, and this display device 45 has 2 p-divided surfaces for separately displaying video signals from each video amplifier circuit. The configuration of such a unit 4 itself is basically the same as the conventional one, but in this case, the time width gate circuit #1
43.243 sets the gate starting point and gate time range after a predetermined period of time has elapsed from immediately after the transmission pulse using a synchronization signal from the synchronization control circuit 46 in order to extract only the echoes from the respective flaw detection areas of the probes 1 and 2. Two locations are set for each.

第4図に、押さえばねの仮ばねaと探触子1゜2との位
置関係をばねの上面から示しである。図において12は
仮ばね固定用のスクリュー穴である。被測定物は水中に
あり、探触子1,2も水中に沈められ、したがってこの
場合、被測定物と探触子との間の超音波伝搬媒体は水で
ある。
FIG. 4 shows the positional relationship between the temporary spring a of the presser spring and the probe 1.degree. 2, viewed from the top of the spring. In the figure, 12 is a screw hole for temporarily fixing the spring. The object to be measured is in water and the probes 1, 2 are also submerged in water, so in this case the ultrasonic propagation medium between the object to be measured and the probe is water.

3枚の板ばねのうちから最初に探傷するものを選び、ば
ねの付は根部から40m+aのところで探触子の高さを
その板ばねに合わせ、走査装置3の走査方向および探−
触子の入射角調整を遠隔上ノドする。その後、超音波パ
ルスを送信しなから探触子を仮ばね付は根部へ移動させ
て走査し、両方の探触子1,2で受信エコーを捉える。
Select the leaf spring to be tested first from among the three leaf springs, adjust the height of the probe to the leaf spring when the spring is 40m+a from the root, and adjust the scanning direction of the scanning device 3 and the detection position.
Remotely adjust the angle of incidence of the tentacle. Thereafter, without transmitting the ultrasonic pulse, the probe is moved to the base of the temporary spring and scanned, and the received echoes are captured by both probes 1 and 2.

これを3枚の仮ばねについて行えば一組の押さ文ばねの
探傷が完了し、これを四組の押さえばオニについて行う
If this is done for three temporary springs, the flaw detection for one set of pressed springs is completed, and this is done for four sets of pressed springs.

さて、送受イ3用保触子1から発射された超音波ハフ1
ス1すい入射角15〜25°で仮ばねIIの外側面に♀
゛]めに入射し、媒体と板ばねとの境界で屈折仝起こす
。この場合、屈折角が45°近辺で最も良好な感度の探
傷が行λ、そのために前記入射角を15〜25°として
いる。尚、第4図てTは送(3彼パルス、Sは表置反射
波、Fは欠陥エコー、Wはスクリュー穴12の内壁から
のエコーである。
Now, the ultrasonic huff 1 emitted from the transmitter/receiver A3 retainer 1
♀ on the outer surface of temporary spring II at an incident angle of 15 to 25 degrees.
゛] and is refracted at the boundary between the medium and the leaf spring. In this case, flaw detection with the best sensitivity occurs when the refraction angle is around 45°, and therefore the incident angle is set to 15 to 25°. In FIG. 4, T is a transmission pulse, S is a surface reflected wave, F is a defect echo, and W is an echo from the inner wall of the screw hole 12.

第5図は、板ばねの付は根部からの距離りで現した走査
位置と対応させて、送信波パルスTと欠陥エコーFとの
経路を各探触子の受持73深傷領域に関連して示したも
のである。この図から判るように、本発明では単一の探
触子1で送受信を行う深部法と、送(3を一方の探触子
1で行い受信を他方のj7触子2で別に行う17傷法と
を同時に行うものであり、n″[の単一探触子方式によ
って第5図(a ) (e )に示すように仮ばね幅方
向の両端部の約3.4+++aづつの領域を探傷し、後
者の二押触子方式によって第5図(b l (d )に
示すように両立18部の約3.0++uaづつの領域を
除く残余の中間部領域をIf f175する。尚、第5
図で(b)の経路図はL−28閣のとき、よた(d)の
経路図はL−611IIiのときのものである。
Figure 5 shows that the attachment of the leaf spring corresponds to the scanning position expressed by the distance from the root, and the path of the transmitted wave pulse T and defect echo F is related to the deep flaw area of each probe. This is what was shown. As can be seen from this figure, in the present invention, there is a deep method in which transmission and reception are performed with a single probe 1, and a 17-incision method in which transmission (3) is performed with one probe 1 and reception is performed separately with the other J7 probe 2. As shown in Figure 5 (a) and (e), an area of about 3.4+++a at each end in the width direction of the temporary spring is detected using a single probe method of n''[. Then, as shown in FIG. 5 (b l (d)), by using the latter two-pressing contact method, the remaining intermediate area excluding the area of about 3.0++ ua of the 18 parts is If f175.
In the figure, the route map in (b) is for L-28, and the route map in (d) is for L-611IIi.

第5図の場合の各j〒触子1,2の探傷領域に対応した
第1図の時間軸ゲート回路143,243による時間軸
ゲートの表示は、例えば第6図に示ず上うに、表示装置
45の画面下部の第10深触了1による探傷結婁のΔエ
コー9表示145に前記第5図(a ) (C)に対応
するデーl−表示GnおよびGcを、そして画面上部の
第2の探触子2によろ171チ結宋のAスロー1表示2
45に前記第5図(b ) (d lに対応するゲート
表示GbおよびG d rzそれぞ第1方形LL+!、
(または仰度変調でもよい)で表示vろ1うにする。こ
れらのゲート表示範囲内に現れろ受信エコーは板ばねの
付は根部に生にた亀裂等の欠陥であるとfq別されろ。
In the case of FIG. 5, the display of the time axis gate by the time axis gate circuits 143, 243 of FIG. The ΔEcho 9 display 145 of the flaw detection result by the 10th deep touch 1 at the bottom of the screen of the device 45 shows data Gn and Gc corresponding to FIGS. 5(a) and 5(C), and the 2 probe 2 171 Chi Song A slow 1 display 2
45, the gate indications Gb and Gdrz corresponding to dl in FIG. 5(b) (first square LL+!, respectively),
(or elevation modulation may also be used). Received echoes that appear within the display range of these gates should be identified as defects such as cracks in the base of the leaf spring.

〔発明の効里〕[Efficacy of invention]

以上に述べエコように、本発明によれば、!l’−探触
子法と二探触子法による探傷を同時に行って双方の受信
エコーを同一画面に表示するから片方の探(371法だ
けでは検出できない欠陥でも両方で補い合うことかでさ
、広い指向特性の受信qI用探触子を用いるので一回の
走査で欠陥を見落す率が極めて少なくなる。また狭い指
向特性の送受43用探触子を用いろことにより一組3枚
重ねの板ばねの個々につき超音波送信パルス少選択的に
入射させることができ、板ばね個々の識別も可能である
から、欠陥がどの板ばねに生じたかを判定できるもので
ある。さらに走査装置を水中の燃I4集合体の上部ノズ
/Lに位置決めしさえすれば、あとは全て遠隔でコント
ロールできるように構成でき、従って核物質取扱上の基
準を満足し得る装置構成が実現できるものである。
According to the present invention, as mentioned above, eco-friendly! Since flaw detection by the l'-probe method and the two-probe method is performed simultaneously and the received echoes of both are displayed on the same screen, defects that cannot be detected with only one method (371 method) can be compensated for by both methods. Since a receiving qI probe with a wide directional characteristic is used, the probability of overlooking defects in a single scan is extremely low.Also, by using a transmitting/receiving 43 probe with a narrow directional characteristic, a set of 3-ply probes is used. Ultrasonic transmission pulses can be selectively applied to individual leaf springs, and individual leaf springs can be identified, so it is possible to determine which leaf spring has a defect.Furthermore, the scanning device can be placed underwater. As long as it is positioned at the upper nozzle/L of the fuel I4 assembly, everything else can be controlled remotely, making it possible to realize an apparatus configuration that satisfies nuclear material handling standards.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る超音波探傷装置のセッ
サ部を加圧水型原了炉用燃T3集r?体の上部ノズノ[
の上面から示した平面図、第2図は同じく側面図、第1
図は超音波送受信ユニツトの構成例を示すブロック図、
第4図は仮ばねと探触子との17渦中の位置関係を超音
波の経路と共に示した説明図、第5図は板ばねの付は根
部からのE 21 Lで現した走査位置と対応させて送
信波パルスTと欠陥エコーFとの経路を各探触子の受持
ち探傷領域に関連して示した説明図、第6図は表示装置
の表示画面の一例を示す説明図である。 1:第1の探触子、2:第2のj7触子、3:走査装置
、4:超音波送受信ユニ・ノド、10・上部、ノズル、
11Δ、IIB、IIC,111): 押さえばね、a
、b、C: 板ばね、12ニスクリユー穴、141,2
41:増幅回路、142,242:検波回路、143,
243:時間軸ゲ−1・回路、144.244:  ビ
デオ増幅回路、45: 2現lビデオ表示装置、46:
同期制御回路、47.送信パルス発生回路。
FIG. 1 shows a tester section of an ultrasonic flaw detection device according to an embodiment of the present invention. The upper part of the body [
The second figure is also a side view, and the first figure is a plan view shown from the top.
The figure is a block diagram showing an example of the configuration of an ultrasonic transceiver unit.
Fig. 4 is an explanatory diagram showing the positional relationship between the temporary spring and the probe in the 17 vortex along with the path of the ultrasonic wave, and Fig. 5 shows the attachment of the leaf spring corresponding to the scanning position expressed by E 21 L from the root. FIG. 6 is an explanatory diagram showing the paths of the transmitted wave pulse T and the defect echo F in relation to the flaw detection area assigned to each probe, and FIG. 6 is an explanatory diagram showing an example of the display screen of the display device. 1: First probe, 2: Second j7 probe, 3: Scanning device, 4: Ultrasonic transmitting/receiving unit nod, 10, upper part, nozzle,
11Δ, IIB, IIC, 111): Pressing spring, a
, b, C: leaf spring, 12 varnish screw hole, 141,2
41: Amplification circuit, 142, 242: Detection circuit, 143,
243: Time axis game 1 circuit, 144.244: Video amplifier circuit, 45: 2-video display device, 46:
Synchronous control circuit, 47. Transmission pulse generation circuit.

Claims (1)

【特許請求の範囲】 1、加圧水型原子炉用燃料集合体の上部ノズル頂部に取
付けられて冷却材流れに対する燃料集合体の浮上りを防
止するための押さえばねを構成する数枚重ねの板ばねを
、前記上部ノズルに取付け状態のまま水中で超音波探傷
する装置であって、数枚重ねの板ばねの各枚を識別可能
とするために比較的狭い指向特性をもつ第1の探触子と
、前記第1の探触子と同じ指向方向にほぼ平行配置され
た比較的広い指向特性をもつ第2の探触子と、これら両
探触子を板ばねの側面に所定の入射角で指向させて各枚
毎に板ばね長さ方向に走査を行う走査手段と、第1の探
触子に送信パルスを供給する手段と、第1と第2の探触
子による受信エコー信号を信号処理して表示する探傷表
示手段とを備えたことを特徴とする板ばねの超音波探傷
装置。 2、前記走査手段が両探触子の入射角を遠隔調整する駆
動装置を有することを特徴とする特許請求の範囲第1項
に記載の板ばねの超音波探傷装置。 3、第1の探触子がその狭指向特性によって板ばねの幅
方向両端部寄りの探傷領域を受持ち、第2の探触子が残
りの幅方向中間部の探傷領域を受持つように第1の探触
子よりも大径の受信面を有し、前記表示手段がこれら両
探触子からの受信信号中から各々が受持つ探傷領域に対
応する時間軸範囲内の受信エコー信号を取出して表示す
る時間軸ゲート回路を有することを特徴とする特許請求
の範囲第1項に記載の板ばねの超音波探傷装置。 4、前記入射角が15〜25°の範囲内に定められてい
ることを特徴とする特許請求の範囲第1項に記載の板ば
ねの超音波探傷装置。 5、前記探傷表示手段が第1と第2の探触子による受信
エコー信号を別けて表示する2現象表示器を有すること
を特徴とする特許請求の範囲第1項に記載の板ばねの超
音波探傷装置。
[Scope of Claims] 1. A multi-ply leaf spring that is attached to the top of the upper nozzle of a fuel assembly for a pressurized water reactor and constitutes a pressing spring for preventing the fuel assembly from floating against the flow of coolant. This is an apparatus for performing ultrasonic flaw detection underwater while attached to the upper nozzle, the first probe having a relatively narrow directivity characteristic in order to be able to identify each leaf of a stack of several leaf springs. and a second probe with a relatively wide directivity that is arranged substantially parallel to the same direction as the first probe, and both probes are placed on the side surface of the leaf spring at a predetermined angle of incidence. scanning means for scanning each leaf spring in the longitudinal direction by directing them; means for supplying transmission pulses to the first probe; and means for supplying transmission pulses to the first probe; 1. An ultrasonic flaw detection device for a leaf spring, comprising a flaw detection and display means for processing and displaying flaws. 2. The ultrasonic flaw detection apparatus for a leaf spring according to claim 1, wherein the scanning means has a drive device that remotely adjusts the angle of incidence of both probes. 3. The first probe is in charge of the flaw detection area near both ends of the leaf spring in the width direction due to its narrow directivity, and the second probe is in charge of the flaw detection area in the middle part of the remaining width direction. The display means extracts received echo signals within a time axis range corresponding to the flaw detection area that each probe is responsible for from among the received signals from both of the probes. 2. The ultrasonic flaw detection device for a leaf spring according to claim 1, further comprising a time axis gate circuit for displaying a time axis. 4. The ultrasonic flaw detection device for a leaf spring according to claim 1, wherein the incident angle is set within a range of 15 to 25 degrees. 5. The blade spring according to claim 1, wherein the flaw detection display means has a two-phenomenon display that separately displays echo signals received by the first and second probes. Sonic flaw detection equipment.
JP62151444A 1987-06-19 1987-06-19 Ultrasonic flaw detector for plate spring Pending JPS63315943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62151444A JPS63315943A (en) 1987-06-19 1987-06-19 Ultrasonic flaw detector for plate spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62151444A JPS63315943A (en) 1987-06-19 1987-06-19 Ultrasonic flaw detector for plate spring

Publications (1)

Publication Number Publication Date
JPS63315943A true JPS63315943A (en) 1988-12-23

Family

ID=15518735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62151444A Pending JPS63315943A (en) 1987-06-19 1987-06-19 Ultrasonic flaw detector for plate spring

Country Status (1)

Country Link
JP (1) JPS63315943A (en)

Similar Documents

Publication Publication Date Title
JP5309198B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP6073389B2 (en) Ultrasonic immersion inspection of members with arbitrary surface contours
WO2018040117A1 (en) Method and system for ultrasonic imaging detection of welding seam of dual-array probe-based steel-rail
CN105699492B (en) A kind of ultrasonic imaging method for weld seam detection
US20070000328A1 (en) Ultrasonic method for the accurate measurement of crack height in dissimilar metal welds using phased array
US8037763B2 (en) Rail section weld inspection scanner
US9423380B2 (en) Ultrasonic inspection method, ultrasonic test method and ultrasonic inspection apparatus
CN109828028B (en) Ultrasonic defect detection qualitative system and qualitative method
CN103969341A (en) Ultrasonic testing special probe for butt girth welding of austenitic stainless steel pipe
CN107688050A (en) A kind of Air Coupling ultrasonic phase array detection means
CN111602049B (en) Arrangement for non-destructive testing and testing method thereof
JP5840910B2 (en) Ultrasonic flaw detection method
JP2013242202A (en) Ultrasonic inspection method and ultrasonic inspection apparatus
CN108663434A (en) A kind of coarse grain material total focus detection method of phased array supersonic defectoscope
CN205982178U (en) Rail welding seam ultrasound imaging detecting system based on two array probe
JPS63315943A (en) Ultrasonic flaw detector for plate spring
JP3497984B2 (en) Ultrasonic flaw detector
JPH1114611A (en) Electronic scanning system ultrasonic inspection equipment
Guo et al. Development of ultrasonic phased array systems for applications in tube and pipe inspection
KR20030000681A (en) Method for beam-forming of ocean acoustic tomography
JP2612890B2 (en) Ultrasonic flaw detection method
JP2021110615A (en) Ultrasonic inspection device and ultrasonic inspection method
JPS59116542A (en) Method for detecting flaw of square steel piece by electronic linear scanning
Quarry Horizontal Shear Wave Imaging of Large Optics
JPS60131453A (en) Probe of ultrasonic flaw detector