JPS63315919A - Beam diameter measuring instrument - Google Patents

Beam diameter measuring instrument

Info

Publication number
JPS63315919A
JPS63315919A JP62152592A JP15259287A JPS63315919A JP S63315919 A JPS63315919 A JP S63315919A JP 62152592 A JP62152592 A JP 62152592A JP 15259287 A JP15259287 A JP 15259287A JP S63315919 A JPS63315919 A JP S63315919A
Authority
JP
Japan
Prior art keywords
transmitted light
variable
beam diameter
diameter measuring
varying member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62152592A
Other languages
Japanese (ja)
Other versions
JPH0561572B2 (en
Inventor
Masaru Mukoda
向田 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62152592A priority Critical patent/JPS63315919A/en
Publication of JPS63315919A publication Critical patent/JPS63315919A/en
Publication of JPH0561572B2 publication Critical patent/JPH0561572B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To obtain a stable focus gain by using a transmitted light quantity varying member which consists of two areas differing in transmissivity and is uniform in reflection factor. CONSTITUTION:The transmitted light quantity varying member 2 consists of the high transmissivity area 21, low transmissivity area 22, and a reflecting film 24 which covers the beam incidence surface of the transmitted light quantity varying member 2 so that the reflection factor to a beam 5 for automatic focusing is constant. Consequently, the quantity of reflected light on the surface of the transmitted light quantity varying member 2 of an automatic focusing laser can be made uniform, so the stable focus gain is obtained and the beam is focused on the surface of the varying member 2 at all times.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ビーム径叶1定装置、特に、元ディスク原盤
蕗光装置の露光用レーザのビーム径を測定するためのビ
ーム径測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a beam diameter measuring device, particularly to a beam diameter measuring device for measuring the beam diameter of an exposure laser of a source disk mastering device. .

〔従来の技術) 従来のビーム径測定装置は、平板法の透明基板と、この
透明基数のビーム入射面に、ナイフエ。
[Prior art] A conventional beam diameter measuring device uses a flat plate method transparent substrate and a knife-edge on the beam incidence surface of this transparent base.

ジ伏に形成された元遮断面横領域をもつナイフェツジ部
材とs nil記ナイフェツジ部材がビームな一定速度
で垂直に横切るナイフェツジ部材の移動手段と、上記透
明基板を透過したビームを受光し光電変換する光電変換
手段とを含んで構成される。
A knife member having a transverse area of the original blocking surface formed horizontally and a means for moving the knife member in which the knife member crosses perpendicularly at a constant speed as a beam, and receiving and photoelectrically converting the beam transmitted through the transparent substrate. and photoelectric conversion means.

次に、従来のビーム径測定装置の一例について、図面を
参照し、詳細に説明する。
Next, an example of a conventional beam diameter measuring device will be described in detail with reference to the drawings.

第2図に示すビーム径測定装置は、オートフォーカス用
ビーム5を用いた公知のオートフォーカス手段によりレ
ンズ6を駆動させ、ナイフェツジ部材70表面上に合焦
させたビーム1をナイフェツジ部73が移動手段3によ
りビームlの元軸に垂直な移動力量AK一定速度で横切
るようになっている。
In the beam diameter measuring device shown in FIG. 2, a lens 6 is driven by a known autofocus means using an autofocus beam 5, and a knife section 73 moves the beam 1 focused onto the surface of a knife member 70. 3, the beam l crosses at a constant speed with a moving force AK perpendicular to the original axis.

との伏態で、ナイフェツジ部73がビーム1を横切る時
、ビーム1の一部は遮元部72により泗光され、透明部
71を透過したビーム1の強度は遮光部72がビーム1
を遮断するにつれて変化する。この傾度変化を光電変換
手段4で受光し、光電変換することにより透過光量信号
aを得、公知の方法にて解析し、ビーム1のビーム径を
算出する0 〔発明が解決しようとする問題点〕 しかしながら、このような上述した従来のビーム径測定
装置は、透明基板の一部に蒸着形成された金属薄膜等に
よる元端断面積領域をもつナイフェツジ部材を用いてお
り、ナイフェツジ部の両ff1llで、反射率が大きく
異なっているため、ナイフェツジ部がビームを横切る時
、オートフォーカス用ビームの反射光重は、犬きく変動
し、フォーカスゲインが不安定と7より、ビームをナイ
フェツジ部材の表面に合焦できず、焦点面でのビーム径
を正確に測定できないという欠点があった。
When the knife part 73 crosses the beam 1 in the upside-down position, a part of the beam 1 is filtered by the shielding part 72, and the intensity of the beam 1 transmitted through the transparent part 71 is reduced by the shielding part 72.
changes as it is blocked. This gradient change is received by the photoelectric conversion means 4 and photoelectrically converted to obtain a transmitted light amount signal a, which is analyzed by a known method to calculate the beam diameter of the beam 1. [Problems to be Solved by the Invention] ] However, the above-mentioned conventional beam diameter measuring device uses a knife member having a base end cross-sectional area made of a metal thin film or the like formed by vapor deposition on a part of a transparent substrate, and both ff1ll of the knife part Since the reflectance differs greatly, when the knife part crosses the beam, the reflected light weight of the autofocus beam fluctuates considerably, and if the focus gain is unstable, it is difficult to focus the beam on the surface of the knife part. The drawback was that the beam diameter at the focal plane could not be accurately measured.

〔問題点を解決するための手段) 本発明のビーム径測定装置は、ビームに対する透過率が
異なる2つの領域からなる透過光量可変部材と、該部材
の2つの領域の境界がビームを一定速度で垂直に横切る
透過光量可変部材の移動手段と、F4:i Mピ1fi
過元准可変部材を透過したビームを受光し、ブC電変換
する光電変換手段とを言んで構成され、前記透過光量可
変部材のビーム入射面の反射率が2つの領域で均一であ
るように構成されるO 〔実施例」 久に、本発明の実施例について、図面を参照して詳細に
説明する。
[Means for Solving the Problems] The beam diameter measuring device of the present invention includes a variable amount of transmitted light member consisting of two regions having different transmittances for the beam, and a boundary between the two regions of the member that allows the beam to move at a constant speed. A vertically traversing means for moving the transmitted light amount variable member, and F4:i M pi 1fi.
A photoelectric conversion means that receives the beam transmitted through the semi-transparent variable member and converts it into electric current, so that the reflectance of the beam incident surface of the transmitted light amount variable member is uniform in two regions. Embodiment Embodiments of the present invention will now be described in detail with reference to the drawings.

第1図は本発明の一実施例を示す構成図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

第1図に示ずビーム径測定装置において、オートフォー
カス用ビーム5を用いた公知のオートフォーカス手段に
より、レンズ6を駆動させ、透過光量可変部材2の表面
に合焦させたビーム1を、境界23が前記ビーム1の元
軸に垂直な力面Aに移動手段3により、一定速度で偵9
Jるよ5にする。
In a beam diameter measuring device (not shown in FIG. 1), a lens 6 is driven by a known autofocus means using an autofocus beam 5, and the beam 1 focused on the surface of the variable transmitted light amount member 2 is 23 is moved at a constant speed by the moving means 3 to the force plane A perpendicular to the original axis of the beam 1.
Make it Jyo5.

AiJ記透過光量可変部材2は、高透過率領域21と低
透過率領域22と、透過光量可変部材2のビーム入射面
上にメートフォーカス用ビーム5に対する反射兎が一定
となるように被覆された反射被膜24とで構成され、前
記両領域の境界23は、焦点面におけるビーム1のビー
ム径に対して十分に狭い幅をもった直線で形成されてい
る。
AiJ's variable transmitted light amount member 2 has a high transmittance region 21, a low transmittance region 22, and a beam incidence surface of the variable transmitted light amount member 2 coated so that the reflection of the mate focus beam 5 is constant. The boundary 23 between the two regions is formed by a straight line having a width sufficiently narrow with respect to the beam diameter of the beam 1 at the focal plane.

したがって、前記境界23が前記ビーム1を横切る時、
ビーム1は、高透過率領域21を透過する部分と低透過
率領域22を透過する部分とができ、ここで境が23は
、いわゆるナイフェツジの役割を果すことになるため、
@記透過光貨可変部材2を透過するビーム1を光電変換
手段4で受光して光電変換することにより、透過光量信
号aを得ることができる。したがって公知の方法によっ
てビーム1のビーム径を算出でざる。
Therefore, when the boundary 23 crosses the beam 1,
The beam 1 has a part that passes through the high transmittance area 21 and a part that passes through the low transmittance area 22, and the boundary 23 here plays the role of a so-called knife edge.
By receiving the beam 1 transmitted through the transmitted light quantity variable member 2 by the photoelectric conversion means 4 and photoelectrically converting it, a transmitted light amount signal a can be obtained. Therefore, the beam diameter of beam 1 cannot be calculated using a known method.

ざらに、遺i&光賞可変部材2の表面(ま、反射率が均
一な反射被膜24で形成されており、#I記透過″)’
ef&E’T変部材2の表面部材2域でオートフォーカ
ス用ビーム5の反射′jt、fは均一となるから、安定
したフォーカスゲインが得られ、常にビーム1は、透過
光ioT変部材2の表面が焦点面となるように保つこと
ができ、ビームlのビーム径を梢度艮〈測定することが
できる。
Generally speaking, the surface of the variable member 2 (well, it is formed of a reflective coating 24 with a uniform reflectance, and is transparent)'
Since the reflection 'jt, f of the autofocus beam 5 is uniform in the surface member 2 area of the ef&E'T transformation member 2, a stable focus gain can be obtained, and the beam 1 always reflects the surface of the transmitted light IoT transformation member 2. can be maintained so that the focal plane is the focal plane, and the beam diameter of the beam 1 can be measured.

〔発明の効果〕〔Effect of the invention〕

本発明のビーム径測定装置は、光通1析面積領域を一部
にもつ透明基板によるナイフェツジ部材を用いるかわり
に、透過率が異なる2つの領域からなり反射率は均一で
ある透過光量可変部材を用いることにより、オートフす
−カス用レーザの透過光量可変部材表面での反射光量を
均一にすることができるため、安定したフォーカスゲイ
ンが得られビームを常に前記透過光量可変部材表面に合
焦できるので、焦点面におけるビーム径を梢度良く測定
できるという効果がある。
The beam diameter measuring device of the present invention uses a variable transmitted light amount member that is made up of two areas with different transmittances and has a uniform reflectance, instead of using a knife member made of a transparent substrate that partially has one analysis area area for light transmission. By using this, it is possible to make the amount of reflected light of the automatic laser for scraping uniform on the surface of the variable amount of transmitted light member, so a stable focus gain can be obtained and the beam can always be focused on the surface of the variable amount of transmitted light member. This has the effect that the beam diameter at the focal plane can be measured with good accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す(4成図、第2図は従
来の一例を示す構成図である。 1・・・・・・ビーム、2・・・・・・透過光量可変部
材、21・・・・・・高透過率領域、22・・・・・・
低透過率領域、23°゛パ゛境界、24・・・・・・反
射被膜、3・・・・・・移動手段、4・・・・・光電変
換手段、5・・・・・・オートフォーカスJ1ル−ザ、
6・・・・・・レンズ、7・・・・・・ナイフェツジ部
材、71・・・・・・透明基板、72・・・・・・−!
3光部材、73・・・・・・ナイフェツジ伏部分、 条  ブ  L斗a
Fig. 1 shows an embodiment of the present invention (four composition diagrams, Fig. 2 is a configuration diagram showing a conventional example. 1... Beam, 2... Variable amount of transmitted light Member, 21... High transmittance region, 22...
Low transmittance area, 23° power boundary, 24...Reflective coating, 3...Movement means, 4...Photoelectric conversion means, 5...Auto Focus J1 Loser,
6...Lens, 7...Knifetsu member, 71...Transparent substrate, 72...-!
3. Light member, 73...Knife cover part, line bu L a

Claims (1)

【特許請求の範囲】[Claims] ビームに対する透過率が異なる2つの領域でビーム入射
面の反射率が均一な透過光量可変部材と、前記透過光量
可変部材の2つの領域の境界がビームを一定速度で垂直
に横切るように前記透過光量可変部材を移動させるため
の移動手段と、前記透過光量可変部材を透過したビーム
を受光し光電変換する光電変換手段とを含むことを特徴
とするビーム径測定装置。
A variable amount of transmitted light member whose beam incidence surface has a uniform reflectance in two regions having different transmittances for the beam, and a variable amount of transmitted light such that the boundary between the two regions of the variable variable transmitted light member crosses the beam perpendicularly at a constant speed. A beam diameter measuring device comprising a moving means for moving the variable member, and a photoelectric conversion means for receiving and photoelectrically converting the beam transmitted through the variable transmitted light amount member.
JP62152592A 1987-06-19 1987-06-19 Beam diameter measuring instrument Granted JPS63315919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62152592A JPS63315919A (en) 1987-06-19 1987-06-19 Beam diameter measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62152592A JPS63315919A (en) 1987-06-19 1987-06-19 Beam diameter measuring instrument

Publications (2)

Publication Number Publication Date
JPS63315919A true JPS63315919A (en) 1988-12-23
JPH0561572B2 JPH0561572B2 (en) 1993-09-06

Family

ID=15543807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62152592A Granted JPS63315919A (en) 1987-06-19 1987-06-19 Beam diameter measuring instrument

Country Status (1)

Country Link
JP (1) JPS63315919A (en)

Also Published As

Publication number Publication date
JPH0561572B2 (en) 1993-09-06

Similar Documents

Publication Publication Date Title
CA1176879A (en) Single facet wobble free scanner
US4514083A (en) Distance measuring apparatus
US5537247A (en) Single aperture confocal imaging system
US4531054A (en) Wavefront light beam splitter
US4072423A (en) Light interference device with low degree of spacial coherence
US6198862B1 (en) Optical position detector
JPS63315919A (en) Beam diameter measuring instrument
JPS5483853A (en) Measuring device
JPH04310836A (en) Method for measure distribution of refractive index
KR0164281B1 (en) Automatic focus adjusting device for microscopes
JPH05340869A (en) Thin film measuring instrument
JPS6131907A (en) Film thickness measuring instrument
JPH07120379A (en) Optical system for high-sensitivity reflection measuring apparatus
JPS58139043A (en) Measuring device for condensing performance of lens
EP0162973A1 (en) Distance measuring device
JP2904422B2 (en) Light head
JP2838441B2 (en) Optoelectronics recording device
JP2666495B2 (en) Refractive index distribution measuring method and refractive index distribution measuring device
SU1058875A1 (en) Laser profilograph
JPS632087B2 (en)
JPH10158834A (en) Optical system for film thickness measurement and film forming system having the optical system
JPS605896B2 (en) Reflectance measuring device
JPS60211304A (en) Measuring instrument for parallelism
JPH03282228A (en) Beam-diameter measuring apparatus
RU101812U1 (en) DEVICE FOR NON-DESTRUCTIVE MEASUREMENT OF THICKNESS OF DIELECTRIC AND SEMICONDUCTOR FILMS