JPH04310836A - Method for measure distribution of refractive index - Google Patents

Method for measure distribution of refractive index

Info

Publication number
JPH04310836A
JPH04310836A JP7780091A JP7780091A JPH04310836A JP H04310836 A JPH04310836 A JP H04310836A JP 7780091 A JP7780091 A JP 7780091A JP 7780091 A JP7780091 A JP 7780091A JP H04310836 A JPH04310836 A JP H04310836A
Authority
JP
Japan
Prior art keywords
refractive index
sample
measurement
measurement sample
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7780091A
Other languages
Japanese (ja)
Inventor
Takeshi Hashimoto
武 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP7780091A priority Critical patent/JPH04310836A/en
Publication of JPH04310836A publication Critical patent/JPH04310836A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable a measurement shape of distribution of a refractive index to be measured highly accurately and easily by increasing positioning accuracy of a measurement sample. CONSTITUTION:An interposed member 6 is placed between a measurement sample 5 and a sample-installation side surface 4b of a medium member 4 and the interval between the both is so set that the interposed member has a thickness preventing an adhesion force between the measurement sample and the medium member. Therefore, by performing coating on the sample- installation side surface 4b or by adopting the medium member 4 and the interposed member 6 with mutually small difference in the refractive index, the reflectivity of the boundary surface between the medium member 4 and the interposed member 6 is reduced and the contrast of interference fringes which is generated in reference to a reflection light on the boundary surface between the measurement material 5 and the interposed member 6 including brightness/ darkness boundary information is reduced, thus enabling the brightness/darkness boundary to be detected.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、屈折率分布を有する光
学素子の屈折率分布形状を、光の全反射を利用して測定
する屈折率分布測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refractive index distribution measuring method for measuring the refractive index distribution shape of an optical element having a refractive index distribution using total reflection of light.

【0002】0002

【従来の技術】近年、屈折率分布を持つ屈折率分布型光
学素子が、ビデオディスク装置のピックアップやコピー
装置のアレーレンズとして多用化されてきている。更に
光エレクトロニクス分野では光導波路や屈折率分布を持
つ平板マイクロレンズ等の比較的微少な屈折率分布型光
学素子が、映像分野では銀塩カメラやビデオカメラ,顕
微鏡等のレンズ系として比較的大口径な屈折率分布型光
学素子が夫々実用化されつつある。
2. Description of the Related Art In recent years, refractive index distribution type optical elements having a refractive index distribution have been widely used as pickups in video disc devices and array lenses in copying devices. Furthermore, in the field of optoelectronics, relatively small graded refractive index optical elements such as optical waveguides and flat plate microlenses with graded refractive index are used; in the field of imaging, relatively large diameter optical elements are used as lens systems for silver halide cameras, video cameras, microscopes, etc. Various refractive index gradient optical elements are being put into practical use.

【0003】これら屈折率分布型光学素子の特性は、そ
の屈折率分布状態に大きく依存している為、実用化に際
しては各素子における屈折率分布形状を高精度に測定で
きる方法が必要である。
The characteristics of these gradient index optical elements are largely dependent on the state of their refractive index distribution, and therefore, for practical use, a method is required that can measure the shape of the refractive index distribution in each element with high precision.

【0004】従来、このような屈折率分布を測定する方
法としては、屈折率分布の中心軸に対して直角方向に切
断研磨した薄片試料を干渉顕微鏡で観察し、薄片試料の
単位厚さ当たりの光路長差を求めることにより屈折率の
分布を測定する縦方向干渉法や、円柱状測定試料の屈折
率分布中心軸に対して直角方向に光線を透過させ、光線
追跡を行うことにより屈折率分布を求める横方向干渉法
が知られている。
Conventionally, a method for measuring such a refractive index distribution is to observe a thin sample cut and polished in a direction perpendicular to the central axis of the refractive index distribution using an interference microscope, and to calculate the per unit thickness of the thin sample. The refractive index distribution can be measured by longitudinal interferometry, which measures the refractive index distribution by determining the optical path length difference, or by transmitting a ray in a direction perpendicular to the central axis of the refractive index distribution of a cylindrical measurement sample and tracing the ray. A lateral interferometry method is known to find the .

【0005】更に最近では、特開昭63−275936
号公報に記載されているような測定方法も提案されてい
る。この方法は、周知の技術であるプルフリッヒの屈折
計の原理を応用したものであり、図9に示すように、屈
折率の分布を測定する測定試料101の測定面を半球状
の測定台102の試料設置面102Aに密着配置し、上
記設置面102A以外の半球面102Bを介して集光レ
ンズ103によって測定台設置面102A上の測定点1
04に収束されるレーザー光105を入射させて行うも
のである。測定点104に照射された収束光の内、該点
104で全反射臨界角φcよりも大きい入射角範囲で入
射する光束領域の光は全反射となるため、入射光とほぼ
同様な明るさの光領域106の反射光が得られ、全反射
臨界角φcよりも小さい入射角範囲で入射する光束領域
の光は一部が測定点104から透過射出してしまうため
、入射光よりも暗い光領域107の反射光が得られる。 よって測定点104を反射した光束を観察すると明暗境
界108をはさんで比較的明るい光領域106と比較的
暗い光領域107とに分かれた光束断面109が測定で
きる。このように、全反射臨界角φcを持って入射した
光は明部と暗部の境界である明暗境界108として反射
されるので、明暗境界108の光線が測定面法線と成す
角度を測定すれば、その値が全反射臨界角φcであり、
測定台102の既知の屈折率no から測定点104に
おける測定試料101の屈折率nが下記(1)式から求
められる。 n=no sinφc               
       (1)更に、測定試料101を測定台1
02に密着させたまま水平移動させれば、測定試料10
1の屈折率分布形状が求められるというものである。
[0005] More recently, Japanese Patent Application Laid-Open No. 63-275936
A measurement method as described in the above publication has also been proposed. This method applies the principle of Pulfrich's refractometer, which is a well-known technique, and as shown in FIG. The measurement point 1 on the measurement stage installation surface 102A is placed in close contact with the sample installation surface 102A, and is captured by the condenser lens 103 through the hemispherical surface 102B other than the installation surface 102A.
This is done by inputting a laser beam 105 that is converged onto the laser beam 04. Of the convergent light irradiated to the measurement point 104, the light in the luminous flux region that enters at the point 104 at an incident angle range larger than the total reflection critical angle φc is totally reflected, so it has almost the same brightness as the incident light. The reflected light of the light region 106 is obtained, and a portion of the light in the luminous flux region that enters at an incident angle range smaller than the total reflection critical angle φc is transmitted and emitted from the measurement point 104, so the light region is darker than the incident light. 107 reflected lights are obtained. Therefore, when the light beam reflected from the measurement point 104 is observed, a cross section 109 of the light beam divided into a relatively bright light region 106 and a relatively dark light region 107 across the bright/dark boundary 108 can be measured. In this way, the incident light having the critical angle of total reflection φc is reflected as the bright and dark boundary 108, which is the boundary between the bright and dark areas, so if we measure the angle that the light ray at the bright and dark boundary 108 makes with the normal to the measurement surface, , its value is the total internal reflection critical angle φc,
The refractive index n of the measurement sample 101 at the measurement point 104 is determined from the known refractive index no of the measurement table 102 using the following equation (1). n=no sinφc
(1) Furthermore, the measurement sample 101 is placed on the measurement table 1.
If the measurement sample 10 is moved horizontally while keeping it in close contact with
The refractive index distribution shape of 1 is found.

【0006】[0006]

【発明が解決しようとする課題】しかし、これら従来の
測定方法は各々異なった問題を持ち合わせている。まず
縦方向干渉法並びに横方向干渉法は共に検出精度は高い
ものの、前者の場合は測定試料に分布する屈折率の差が
大きくなればなるほど測定試料を薄片に切断研磨しなけ
れば精度の良い測定が行えず、測定物によっては数十μ
mもの大変薄い測定試料に加工しなければならないもの
もあり、測定試料の作成が非常に困難であると共に切断
研磨する為試料は常に破壊されなければ測定できなかっ
た。後者の場合は測定試料を非破壊的に測定できるとい
う利点があるものの測定試料の形状が円柱形状に限られ
る他、屈折率分布の測定に時間がかかってしまう等の欠
点があった。
[Problems to be Solved by the Invention] However, each of these conventional measurement methods has different problems. First, although both longitudinal and transverse interferometry have high detection accuracy, in the case of the former, the larger the difference in refractive index distributed in the measurement sample, the more accurate the measurement becomes unless the measurement sample is cut into thin pieces and polished. However, depending on the object being measured, the
Some samples had to be processed into extremely thin measurement samples, which were as thin as 1.5 m, making it very difficult to prepare the measurement samples, and because the samples were cut and polished, they had to be constantly destroyed in order to be able to be measured. In the latter case, although there is an advantage that the measurement sample can be measured non-destructively, there are disadvantages such as the shape of the measurement sample is limited to a cylindrical shape and it takes time to measure the refractive index distribution.

【0007】次に特開昭63−275936号公報に記
載されている方法は、構成が簡単な上に上記2つの測定
方法のかかえる欠点もほぼ解決された有効な方法ではあ
るものの、上述のように、収束した入射光束の一点の屈
折率分布を求めるものであるから、二次元的に走査して
その屈折率分布を求めなければならず、走査精度が屈折
率分布の測定精度を大きく左右することになる。特に測
定試料101をマッチング屈折液を介して測定台102
に密着させているので、測定試料101はその測定面を
、測定台102の平面状の試料設置面102Aをガイド
としてこれに倣って走査させなければならず、測定試料
101の測定面と測定台102の試料設置面102Aと
に高い加工精度が要求されることになる。又、マッチン
グ屈折液(マッチングオイル)の粘性により測定試料1
01の測定面と測定台102の試料設置面102Aとの
間には大きな密着(吸着)力が働くので、これらを位置
決め精度の高い走査系として構成することは実際にはか
なり困難であり、結局、測定試料の屈折率分布を高精度
に測定することは難しいものとなる欠点があった。
Next, although the method described in Japanese Patent Application Laid-Open No. 63-275936 has a simple structure and is an effective method that almost eliminates the drawbacks of the above two measurement methods, In order to obtain the refractive index distribution at one point of the converged incident light beam, it is necessary to scan two-dimensionally to obtain the refractive index distribution, and the scanning accuracy greatly affects the measurement accuracy of the refractive index distribution. It turns out. In particular, the measurement sample 101 is passed through the matching refractive liquid to the measurement table 102.
Therefore, the measurement surface of the measurement sample 101 must be scanned following the planar sample installation surface 102A of the measurement stand 102 as a guide, and the measurement surface of the measurement sample 101 and the measurement stand must be scanned. High processing accuracy is required for the sample installation surface 102A of 102. Also, due to the viscosity of the matching refractive liquid (matching oil), the measurement sample 1
Since a large adhesion (adsorption) force acts between the measurement surface 01 and the sample installation surface 102A of the measurement table 102, it is actually quite difficult to configure them as a scanning system with high positioning accuracy. However, there was a drawback that it was difficult to measure the refractive index distribution of the measurement sample with high precision.

【0008】本発明はこのような課題に鑑みて、屈折率
分布型光学素子の屈折率分布形状を簡単且つ高精度に測
定できるようにした屈折率分布測定方法を提供すること
を目的とする。
In view of the above problems, it is an object of the present invention to provide a refractive index distribution measuring method that allows the refractive index distribution shape of a refractive index distribution type optical element to be easily and highly accurately measured.

【0009】[0009]

【課題を解決するための手段】本発明による屈折率分布
測定方法は、屈折率分布を有する測定試料の一方の面に
、この測定試料より屈折率の大きい介在部材を介して、
測定試料より屈折率の大きい媒質部材の試料設置側面を
ほぼ平行に配置し、しかも媒質部材の試料設置側面と介
在部材の境界面の反射率を低く設定すると共に、介在部
材の厚さを測定試料と媒質部材の試料設置側面との間に
密着力がほとんど作用しない程度の所定の大きさに設定
するものとし、所定波長の電磁波を収束光として上述の
媒質部材及び介在部材を通して測定試料の測定位置へ入
射させ、介在部材と測定試料との境界面の全反射による
反射光の明暗境界を検出してこの測定位置での全反射臨
界角を測定し、更に上記測定試料と媒質部材の間隔を一
定に維持しつつ収束光に対して測定試料を相対的に走査
させて上述の処理を繰り返すことにより、測定試料の屈
折率分布を求めるようにしたことを特徴とするものであ
る。
[Means for Solving the Problems] A method for measuring refractive index distribution according to the present invention is to provide a method for measuring a refractive index distribution on one side of a measurement sample having a refractive index distribution through an intervening member having a refractive index higher than that of the measurement sample.
The sample-installed side surface of a medium member with a higher refractive index than the measurement sample is arranged almost parallel to the sample-installed side surface of the medium member, and the reflectance of the interface between the sample-installed side surface of the medium member and the intervening member is set to be low, and the thickness of the intervening member is The size shall be set to a predetermined size so that almost no adhesion force acts between the side surface of the medium member and the sample installation side, and electromagnetic waves of a predetermined wavelength are used as convergent light to pass through the above-mentioned medium member and intervening member to the measurement position of the measurement sample. The light and dark boundary of the reflected light due to total reflection at the interface between the intervening member and the measurement sample is detected, the total reflection critical angle at this measurement position is measured, and the distance between the measurement sample and the medium member is kept constant. The refractive index distribution of the measurement sample is obtained by repeating the above-mentioned process while scanning the measurement sample relative to the convergent light while maintaining the convergent light.

【0010】0010

【作用】上述のような構成によれば、測定試料の走査時
に測定試料と媒質部材の間に位置する介在部材の粘性に
よる密着力がほとんど働かないから、測定試料の相対移
動がスムーズであり、媒質部材の試料設置側面に対する
測定試料の平行移動を容易に成し得るので、位置決め精
度の高い走査系が構成でき、高精度な屈折率分布の測定
を容易に行うことができる。
[Operation] According to the above-mentioned configuration, when the measurement sample is scanned, the adhesion force due to the viscosity of the intervening member located between the measurement sample and the medium member hardly acts, so that the relative movement of the measurement sample is smooth. Since the measurement sample can be easily moved in parallel to the sample installation side surface of the medium member, a scanning system with high positioning accuracy can be constructed, and a highly accurate measurement of the refractive index distribution can be easily performed.

【0011】尚、介在部材の厚さを、上述のように測定
試料と媒質部材の間に生じ得る介在部材の密着力がほと
んど作用しない程度の大きさにすると、位置決め精度上
は有利ではあるが、媒質部材の試料設置側面と介在部材
との境界面で反射した光と、明暗境界情報を含む介在部
材と測定試料との境界面で反射した光との干渉が起こり
、明暗境界付近にコントラストの高い干渉縞が発生する
ため、明暗境界の検出精度が低下する。これに対して、
媒質部材と介在部材との境界面での収束光の反射率を低
くしてこの境界面での反射光束の強度を下げることによ
り、干渉縞のコントラストを低くできて明暗境界を精密
に検出することができる。
[0011] It should be noted that if the thickness of the intervening member is set to such a value that the adhesion force of the intervening member that may occur between the measurement sample and the medium member as described above will hardly act, it is advantageous in terms of positioning accuracy. , interference occurs between the light reflected at the interface between the sample installation side of the medium member and the intervening member, and the light reflected at the interface between the intervening member containing brightness boundary information and the measurement sample, resulting in a contrast near the brightness and darkness boundary. Since high interference fringes are generated, the detection accuracy of bright and dark boundaries is reduced. On the contrary,
By lowering the reflectance of convergent light at the interface between the medium member and the intervening member and lowering the intensity of the reflected light flux at this interface, the contrast of interference fringes can be lowered and bright and dark boundaries can be detected precisely. Can be done.

【0012】0012

【実施例】以下、本発明の好適な第一実施例を図1を中
心に説明する。図1は本発明による方法を実施するため
の測定光学系を示すものであり、図中、1は波長632
.8nmのHe−Neレーザー,波長488nmのAr
レーザー,波長568.2nmのKrレーザー及び波長
441.6nmのHe−Cdレーザーを有する光源であ
り、図示しない切り換えミラーによって適宜のレーザー
光を測定対象等に応じて選択して射出するようになって
いる。2はこのレーザー光が入射される光束変換部材で
あり、入射するレーザー光束を倍率50倍の対物レンズ
と倍率5倍の対物レンズ(共に図示せず)とで約10倍
に広げた後、ワーキングディスタンス(レンズ先端から
測定点迄の距離)の長い20倍の対物レンズ(図示せず
)で収束する入射光束3に変換し、測定点上に収束させ
ることができるようになっている。
[Embodiment] A first preferred embodiment of the present invention will be described below with reference to FIG. FIG. 1 shows a measurement optical system for carrying out the method according to the present invention, and in the figure, 1 indicates a wavelength of 632.
.. 8nm He-Ne laser, wavelength 488nm Ar
The light source includes a laser, a Kr laser with a wavelength of 568.2 nm, and a He-Cd laser with a wavelength of 441.6 nm, and a switching mirror (not shown) selects and emits an appropriate laser beam depending on the object to be measured. There is. 2 is a beam converting member into which this laser beam is incident, and after the incident laser beam is expanded to about 10 times by an objective lens with a magnification of 50 times and an objective lens with a magnification of 5 times (both not shown), the working A 20x objective lens (not shown) with a long distance (distance from the tip of the lens to the measurement point) converts the incident light beam into a converging incident light beam 3, which can be focused on the measurement point.

【0013】4は入射光束3が入射する面4aが例えば
半径r=8mmの球面に形成され且つ試料設置側面4b
が略平面に形成される媒質部材であり、例えばHe−N
eレーザー光での屈折率が1.87852,アッベ数が
40.8の特性を有するガラス硝材から成っている。5
は試料設置側面4bに配置される測定対象である光学素
子即ち測定試料、6は媒質部材4の試料設置側面4bと
測定試料5との間に位置するマッチング屈折液即ち介在
部材であり、例えばHe−Neレーザー光での屈折率が
1.693,アッベ数が19の特性を有していて、その
厚さは媒質部材4の試料設置側面4bと測定試料5との
間隔に等しく、測定試料5を入射光束3に対して相対移
動させた場合に媒質部材4と測定試料5との間で介在部
材6の粘性による密着力がほとんど作用しない程度の一
定の大きさであるものとする。実験結果によれば、この
間隔は3μm以上が好ましく、しかも液ダレ等を考慮す
れば100μm以下であることが望ましい。本実施例で
は5μmとする。尚、媒質部材4と介在部材6の各屈折
率は、いずれも測定試料5の屈折率より高いものとする
4 has a surface 4a on which the incident light beam 3 enters, for example, a spherical surface with a radius r=8 mm, and a side surface 4b on which the sample is placed.
is a medium member formed substantially flat, for example, He-N
It is made of a glass material having a refractive index of 1.87852 and an Abbe number of 40.8 when e-laser light is used. 5
6 is an optical element to be measured, that is, a measurement sample placed on the sample installation side surface 4b, and 6 is a matching refractive liquid, that is, an intervening member located between the sample installation side surface 4b of the medium member 4 and the measurement sample 5. For example, He -Ne has a refractive index of 1.693 and an Abbe number of 19, and its thickness is equal to the distance between the sample installation side surface 4b of the medium member 4 and the measurement sample 5. It is assumed that the magnitude is such that when the intervening member 6 is moved relative to the incident light beam 3, the adhesion force due to the viscosity of the intervening member 6 hardly acts between the medium member 4 and the measurement sample 5. According to experimental results, this interval is preferably 3 .mu.m or more, and more preferably 100 .mu.m or less in consideration of liquid dripping and the like. In this embodiment, the thickness is 5 μm. Note that the refractive indexes of the medium member 4 and the intervening member 6 are both higher than the refractive index of the measurement sample 5.

【0014】7は介在部材6との境界面に位置する測定
試料5の測定面上であって入射光束3が収束すべき理想
的な測定点に相当する媒質部材4の球面4aの球心であ
り、そのため、媒質部材4は完全な半球形状ではなく、
その肉厚は介在部材6の厚さ分だけ薄くなっている。8
は測定試料5を二次元走査させ且つ試料設置側面4bと
測定試料5との間隔をほぼ一定に保持するX−Yステー
ジ,あおりステージ等(図示せず)を有する走査手段で
あり、測定試料5を媒質部材4の試料設置側面4bに沿
って且つ試料設置側面4bとの間隔を一定に保持しつつ
相対移動させるようになっている。9は入射光束3が測
定面で反射された反射光束、10は測定点即ち媒質部材
4の球心7から約50mmの距離にあって球心7を中心
に回転可能なフォトディテクターが配置されていて反射
光束9を受光して全反射臨界角を測定する観察手段であ
り、受光する電磁波強度が最も急激に変化する位置即ち
明暗境界の反射光束9と測定面法線とのなす角を全反射
臨界角φcとして測定し得るようになっている。11は
測定された全反射臨界角φcより上記(1)式を用いて
測定試料5の測定面内の測定点7の屈折率を計算する演
算手段であり、これと同時に走査手段8からの測定位置
情報を取り込んで屈折率情報と共に処理して、測定試料
の屈折率分布形状を計算出力する機能をも併せ持ってい
る。
7 is the spherical center of the spherical surface 4a of the medium member 4, which is on the measurement surface of the measurement sample 5 located at the interface with the intervening member 6 and corresponds to the ideal measurement point on which the incident light beam 3 should converge. Therefore, the medium member 4 is not completely hemispherical,
Its wall thickness is reduced by the thickness of the intervening member 6. 8
is a scanning means having an X-Y stage, a tilt stage, etc. (not shown) for two-dimensionally scanning the measurement sample 5 and keeping the distance between the sample installation side surface 4b and the measurement sample 5 substantially constant; is relatively moved along the sample installation side surface 4b of the medium member 4 while maintaining a constant distance from the sample installation side surface 4b. Reference numeral 9 denotes a reflected light beam obtained by reflecting the incident light beam 3 on the measurement surface, and 10 indicates a measurement point, that is, a photodetector is arranged at a distance of approximately 50 mm from the spherical center 7 of the medium member 4 and is rotatable around the spherical center 7. This is an observation means that measures the critical angle of total reflection by receiving the reflected light beam 9 at a position where the received electromagnetic wave intensity changes most rapidly, that is, the angle between the reflected light beam 9 at the boundary between bright and dark and the normal to the measurement surface. It can be measured as the critical angle φc. 11 is a calculation means for calculating the refractive index of the measurement point 7 in the measurement plane of the measurement sample 5 from the measured total reflection critical angle φc using the above equation (1); It also has the function of capturing position information and processing it together with refractive index information to calculate and output the refractive index distribution shape of the measurement sample.

【0015】ところで、介在部材6が介在する媒質部材
4と測定試料5との間の間隔を密着力が働かない程度に
設定することによって、媒質部材4の試料設置側面4b
と介在部材6との境界面で反射する光束と、介在部材6
と測定試料5との境界面で反射する明暗境界情報を含む
光束との干渉が発生するため、明暗境界付近にコントラ
ストの高い干渉縞が発生して、明暗境界の検出精度に悪
影響が生じる。本実施例では、この改善手段として、媒
質部材4の試料設置側面4bと介在部材6との境界面に
おける反射率を下げて干渉縞のコントラストを低くする
手段を提案する。
By the way, by setting the distance between the medium member 4 and the measurement sample 5 with the intervening member 6 to such an extent that no adhesion force is exerted, the sample installation side surface 4b of the medium member 4 can be
The light beam reflected at the interface between the intervening member 6 and the intervening member 6
Since interference occurs with the light beam containing bright/dark boundary information reflected at the interface between the light and the measurement sample 5, high-contrast interference fringes are generated near the bright/dark boundary, which adversely affects detection accuracy of the bright/dark boundary. In this embodiment, as a means for improving this, a means is proposed that lowers the reflectance at the interface between the sample installation side surface 4b of the medium member 4 and the intervening member 6 to lower the contrast of the interference fringes.

【0016】即ち、媒質部材4の試料設置側面4aに多
層膜コーティングを施すことにより、介在部材6との境
界での反射率を下げることが出来る。コーティングは、
媒質部材4の試料設置側面4b上に中心から直径1mm
の範囲で、Al2 03 を厚さ36nm,Y2 03
 を厚さ101nm,Al2 03 を厚さ85nm,
Y2 03 を厚さ78nm,Al2 03 を厚さ9
4nm及びY2 03 を厚さ38nmに順次積層した
ものであって、6層コート13として構成されている。
That is, by applying a multilayer coating to the sample installation side surface 4a of the medium member 4, the reflectance at the boundary with the intervening member 6 can be lowered. The coating is
1 mm in diameter from the center on the sample installation side 4b of the medium member 4
The thickness of Al2 03 is 36 nm, Y2 03
101 nm thick, Al2 03 85 nm thick,
Y2 03 with a thickness of 78 nm, Al2 03 with a thickness of 9
4 nm and Y2 03 are sequentially laminated to a thickness of 38 nm, and is configured as a 6-layer coat 13.

【0017】本実施例はこのように構成されているから
、上述の従来技術と同様に、光源1から射出されて光束
変換部材2で収束光3となったレーザー光は、媒質部材
4の球面4a及び介在部材6を介して測定試料5の測定
点7で収束して、反射光束9となって観察手段10で受
光される。ここで、媒質部材4の試料設置側面4bと介
在部材6との境界面へ入射する収束光3は、試料設置側
面4b上の6層コート13によってこの面での反射率が
下げられる。よって、ここでの反射光と、介在部材6と
測定試料5との境界面で反射する明暗境界情報を含む反
射光とによって生じる干渉縞のコントラストが低下する
から、明暗境界を精密に検出することができる。そして
、観察手段10で受光された反射光束9は全反射臨界角
φcとして演算測定され、走査手段8からの測定位置情
報と共に演算されて、屈折率情報が出力される。更に、
走査手段8による測定試料5の走査の際、介在部材6の
粘性による密着力は殆ど作用しないから、試料設置側面
4bと測定試料5の測定面との間隔は一定に保たれた状
態で測定試料5をスムーズに移動でき、測定試料5を相
対的に走査しつつ測定を繰り返すことにより、屈折率分
布形状が検出される。
Since this embodiment is constructed in this manner, the laser beam emitted from the light source 1 and converted into convergent light 3 by the light flux converting member 2 is directed to the spherical surface of the medium member 4, as in the prior art described above. 4a and the intervening member 6, it converges at the measurement point 7 of the measurement sample 5, becomes a reflected light beam 9, and is received by the observation means 10. Here, the reflectance of the convergent light 3 incident on the interface between the sample installation side surface 4b of the medium member 4 and the intervening member 6 is lowered by the six-layer coating 13 on this surface. Therefore, the contrast of the interference fringes generated by the reflected light here and the reflected light containing bright/dark boundary information reflected at the interface between the intervening member 6 and the measurement sample 5 decreases, so that the bright/dark boundary cannot be detected precisely. Can be done. The reflected light beam 9 received by the observation means 10 is calculated and measured as a total reflection critical angle φc, and is calculated together with the measurement position information from the scanning means 8 to output refractive index information. Furthermore,
When the measurement sample 5 is scanned by the scanning means 8, the adhesion force due to the viscosity of the intervening member 6 hardly acts, so the distance between the sample installation side surface 4b and the measurement surface of the measurement sample 5 is kept constant. 5 can be moved smoothly and the refractive index distribution shape can be detected by repeating measurements while relatively scanning the measurement sample 5.

【0018】この6層コート13によるコーティングの
効果についてシミュレーションを行った結果が図2に示
されている。試料設置側面4bにコーティングを施さな
かった場合の、波長632.8nmのHe−Neレーザ
ー光を用いた時の反射率が破線で示され、一方本実施例
によるコーティングを施した場合の、光源1における四
種の波長のレーザー光を用いた時の各反射率が他の線で
示されている。両者を比較すると、コーティングを施し
た場合の反射率の方がかなり低く、コーティングの有効
性がよく理解できる。尚、図中、横軸にとった角度は、
媒質部材4の試料設置側面4bと介在部材6との境界か
らの反射光束9が、試料設置側面4bの法線となす角度
であり、円偏光の場合が示されている。
FIG. 2 shows the results of a simulation regarding the effect of the six-layer coating 13. The broken line shows the reflectance when using He-Ne laser light with a wavelength of 632.8 nm when no coating is applied to the sample installation side surface 4b, while the reflectance of the light source 1 when the coating according to this example is applied is shown. The respective reflectances when using laser beams of four different wavelengths are shown by other lines. Comparing the two, the reflectance when the coating was applied is considerably lower, giving a good understanding of the effectiveness of the coating. In addition, in the figure, the angle taken on the horizontal axis is
The reflected light beam 9 from the boundary between the sample installation side surface 4b of the medium member 4 and the intervening member 6 is the angle made with the normal line of the sample installation side surface 4b, and the case of circularly polarized light is shown.

【0019】次に、一例として波長488nmのArレ
ーザー光を用いた場合のエッジ付近即ち明暗境界付近に
表れる干渉縞の様子をシミュレーションしてみると、コ
ーティングしない場合が図3に、又コーティングした場
合が図4に、夫々示されるようになった。図3のコーテ
ィングしない場合には、エッジが干渉縞に埋もれて検出
できないが、コーティングを施せば図4のように、多少
の干渉縞は残るもののエッジに比べて干渉縞のコントラ
ストの方が低く、明暗境界を十分明確に検出できること
がわかる。尚、図3及び図4の横軸に示す角度は、媒質
部材4の試料設置側面4bと介在部材6との境界への入
射光束3が試料設置側面4bの法線となす角度であり、
円偏光の場合を示している。又、両図とも測定試料5の
測定点における屈折率を1.6としている。
Next, as an example, we simulated the state of interference fringes that appear near the edge, that is, near the bright and dark boundary when using Ar laser light with a wavelength of 488 nm. Figure 3 shows the case without coating, and the case with coating. are now shown in FIG. In the case without coating as shown in Fig. 3, the edge is buried in interference fringes and cannot be detected, but if coating is applied, as shown in Fig. 4, although some interference fringes remain, the contrast of the interference fringes is lower than that of the edges. It can be seen that the bright and dark boundaries can be detected sufficiently clearly. The angle shown on the horizontal axis in FIGS. 3 and 4 is the angle that the incident light beam 3 on the boundary between the sample installation side surface 4b of the medium member 4 and the intervening member 6 makes with the normal line of the sample installation side surface 4b,
The case of circularly polarized light is shown. Further, in both figures, the refractive index at the measurement point of the measurement sample 5 is set to 1.6.

【0020】上述のように本実施例によれば、走査手段
8による測定試料5の相対移動がスムーズであり、走査
手段8のX−Yステージやあおりステージも介在部材6
の密着力の影響を受けることなく、しかも、介在部材6
による干渉縞のコントラストを低く抑えることができる
から、製造コストの低い通常仕様のステージ等簡単な走
査手段を用いるだけで高い位置決め精度を実現できる。
As described above, according to this embodiment, the relative movement of the measurement sample 5 by the scanning means 8 is smooth, and the X-Y stage and tilting stage of the scanning means 8 are also moved by the intervening member 6.
Moreover, the intervening member 6
Since the contrast of interference fringes can be suppressed to a low level, high positioning accuracy can be achieved simply by using a simple scanning means such as a standard stage with low manufacturing cost.

【0021】次に、明暗境界付近に発生するコントラス
トの強い干渉縞を改善するための第二実施例について説
明する。本実施例では、媒質部材4と介在部材6との屈
折率差を小さくすることによって、両者の境界面におけ
る反射率を下げるようにした。
Next, a second embodiment will be described for improving interference fringes with strong contrast that occur near the bright-dark boundary. In this embodiment, by reducing the difference in refractive index between the medium member 4 and the intervening member 6, the reflectance at the interface between the two is reduced.

【0022】その一例として、媒質部材4としてHe−
Neレーザー光の波長での屈折率が1.69426,ア
ッベ数30.1の硝材を用いた場合の、He−Neレー
ザー光の波長とHe−Cdレーザー光の波長による媒質
部材4と介在部材6との間の境界面での反射率を、図5
で夫々実線と一点鎖線で示した。ここで、実線で示す反
射率は、介在部材6としてのマッチング屈折液のHe−
Neレーザー光の波長での屈折率が1.6931であり
、媒質部材4との屈折率差が約0.001程度である場
合のものである。又、一点鎖線で示す反射率は、He−
Cdレーザー光の波長での媒質部材4の屈折率が1.7
2742,マッチング屈折液の屈折率が1.72733
(上述のものとは別のマッチング屈折液である)であり
、両者の屈折率差が0.0001程度である場合のもの
である。更に、比較のために、上述の第一実施例の図2
で破線で示された媒質部材4にコーティングしないもの
の境界面での反射率が破線で示されており、この場合は
、媒質部材4としてHe−Neレーザー光の波長での屈
折率が1.87852,介在部材6であるマッチング屈
折液として同じくHe−Neレーザー光の波長での屈折
率が1.693になっている。
As an example, He-
Medium member 4 and intervening member 6 according to the wavelength of He-Ne laser light and the wavelength of He-Cd laser light when using a glass material with a refractive index of 1.69426 at the wavelength of Ne laser light and an Abbe number of 30.1 Figure 5 shows the reflectance at the interface between
are shown by a solid line and a dashed-dotted line, respectively. Here, the reflectance shown by the solid line is the He-
The refractive index at the wavelength of the Ne laser beam is 1.6931, and the difference in refractive index with the medium member 4 is about 0.001. In addition, the reflectance indicated by the dashed line is He-
The refractive index of the medium member 4 at the wavelength of the Cd laser beam is 1.7.
2742, the refractive index of the matching refractive liquid is 1.72733
(This is a matching refractive liquid different from the one described above), and the difference in refractive index between the two is about 0.0001. Furthermore, for comparison, FIG.
The broken line shows the reflectance at the interface of the medium member 4 which is not coated, which is shown by the broken line, and in this case, the medium member 4 has a refractive index of 1.87852 at the wavelength of the He-Ne laser beam. The matching refractive liquid, which is the intervening member 6, also has a refractive index of 1.693 at the wavelength of the He-Ne laser beam.

【0023】本実施例によれば、従来の方法と比較して
、媒質部材4と介在部材6との境界面における反射率を
低減させるのに有効であることが理解できる。尚、図5
の横軸に示す角度は、媒質部材4の試料設置側面4bと
介在部材6との境界面からの射出光即ち反射光が、試料
設置側面4bの法線となす角度であり、円偏光の場合が
示されている。
It can be seen that this embodiment is more effective in reducing the reflectance at the interface between the medium member 4 and the intervening member 6 than the conventional method. Furthermore, Figure 5
The angle shown on the horizontal axis is the angle that the emitted light, that is, the reflected light, from the interface between the sample installation side surface 4b of the medium member 4 and the intervening member 6 makes with the normal line of the sample installation side surface 4b, and in the case of circularly polarized light. It is shown.

【0024】次に、第一実施例と同様に、上述の各反射
率に基づいてエッジ付近即ち明暗境界付近に表れる干渉
縞についてシミュレーションを行った結果を図6乃至図
8に示す。まず、図6はHe−Neレーザー光の波長に
よる媒質部材4と介在部材6の屈折率差が約0.2であ
る図5の破線の場合を示すものであり、この場合エッジ
が干渉縞に埋もれて明暗境界を検出できない。又、図7
は屈折率差が約0.001程度である図5の実線の場合
であり、エッジを十分検出できる。又、図8はHe−C
dレーザー光の波長による屈折率差が約0.0001程
度である図5の一点鎖線の場合を示すものであり、この
場合も十分エッジを検出できる。
Next, in the same manner as in the first embodiment, the results of a simulation of interference fringes appearing near the edge, that is, near the bright/dark boundary, are shown in FIGS. 6 to 8 based on the above-mentioned reflectances. First, FIG. 6 shows the case indicated by the broken line in FIG. 5, where the difference in refractive index between the medium member 4 and the intervening member 6 depending on the wavelength of the He-Ne laser beam is about 0.2. In this case, the edge becomes an interference fringe. It is buried and the bright/dark boundary cannot be detected. Also, Figure 7
This is the case shown by the solid line in FIG. 5 where the refractive index difference is approximately 0.001, and edges can be sufficiently detected. In addition, Fig. 8 shows He-C
This shows the case of the dashed dotted line in FIG. 5 in which the difference in refractive index depending on the wavelength of the d laser beam is about 0.0001, and in this case as well, edges can be detected sufficiently.

【0025】尚、図6乃至図8の横軸に示す角度は、媒
質部材4の試料設置側面4bと介在部材6との境界面へ
の入射光が、試料設置側面4bの法線となす角度であり
、円偏光の場合が示されている。又、これら三つのデー
タは測定試料5の測定点における屈折率を1.6とした
ものである。
The angle shown on the horizontal axis in FIGS. 6 to 8 is the angle that the incident light on the interface between the sample installation side surface 4b of the medium member 4 and the intervening member 6 makes with the normal line of the sample installation side surface 4b. , and the case of circularly polarized light is shown. Furthermore, these three data are based on the assumption that the refractive index at the measurement point of the measurement sample 5 is 1.6.

【0026】又、上述の各媒質部材4は、屈折率が介在
部材6の屈折率より大きい数値のものが挙げられている
が、介在部材6の屈折率より小さい数値のものであって
もよい。尚、媒質部材4と介在部材6との屈折率差に関
しては、種々の数値でシミュレーションした結果、上述
の数値例に限定されることなく屈折率差が0.05程度
以下であれば、干渉縞のコントラストを低下させてエッ
ジを検出できるという効果を得ることができると思われ
る。
Furthermore, although each medium member 4 described above has a refractive index larger than the refractive index of the intervening member 6, it may have a refractive index smaller than the refractive index of the intervening member 6. . Regarding the refractive index difference between the medium member 4 and the intervening member 6, as a result of simulations using various numerical values, it is not limited to the numerical examples mentioned above, but if the refractive index difference is about 0.05 or less, interference fringes will occur. It seems possible to obtain the effect that edges can be detected by lowering the contrast of the image.

【0027】上述の各実施例では、介在部材6の屈折率
に合わせてこれと差の小さい屈折率を有する媒質部材4
を採用するようにしたが、これは、屈折率の高いマッチ
ング屈折液は揮発や凝固等を起こす等特性が不安定であ
ったり有毒であったりして取扱い上不利であるために、
特性が安定的で無害な範囲の屈折率の比較的低いマッチ
ング屈折液を用いるようにしたためである。従って、原
理的には、屈折率の高い媒質部材4を採用して、これに
近似した屈折率を有する介在部材6を用いるようにして
もよく、例えば管理された密室等ではこのような組み合
わせを採用することも可能である。
In each of the embodiments described above, the medium member 4 having a refractive index having a small difference from the refractive index of the intervening member 6 is used.
This is because matching refractive liquids with high refractive indexes have unstable properties such as volatilization and coagulation, and are toxic, making them difficult to handle.
This is because a matching refractive liquid having stable characteristics and a relatively low refractive index within a harmless range is used. Therefore, in principle, the medium member 4 with a high refractive index may be used and the intervening member 6 with a refractive index similar to this may be used. For example, such a combination may be used in a controlled closed room. It is also possible to adopt

【0028】又、上述の各実施例では、光源1としてレ
ーザーによるコヒーレント光源を用いたが、Xeランプ
等のインコヒーレント光源をモノクロメータ等で分光し
て用いたり、或いは輝線光源を用いるようにしてもよい
。又、観察手段10としてフォトディテクターに代えて
、CCDアレーやCCDカメラ等を用いてもよく、或い
は目視による観察をするようにしてもよい。
Further, in each of the above embodiments, a coherent light source using a laser is used as the light source 1, but an incoherent light source such as a Xe lamp may be used after being separated by a monochromator, or an emission line light source may be used. Good too. Further, instead of the photodetector as the observation means 10, a CCD array, a CCD camera, etc. may be used, or visual observation may be performed.

【0029】[0029]

【発明の効果】上述のように、本発明に係る屈折率分布
測定方法は、測定試料と媒質部材との間に密着力がほと
んど作用しない程度の厚さの介在部材を介在させると共
に、媒質部材と介在部材との境界面での光の反射率を低
下させるようにしたから、測定試料の走査の際の位置決
めが非常に精密になり、しかも測定時に発生し得る明暗
境界付近の干渉縞のコントラストを低くして明暗境界の
検出精度の低下を阻止することができ、測定試料の屈折
率分布形状の高精度な測定を簡単に行うことができる。
Effects of the Invention As described above, the refractive index distribution measuring method according to the present invention involves interposing an intervening member having a thickness such that almost no adhesion force acts between the measurement sample and the medium member, and By reducing the reflectance of light at the interface between the surface and the intervening member, positioning during scanning of the measurement sample becomes extremely precise, and the contrast of interference fringes near the bright-dark boundary that may occur during measurement is reduced. By lowering the value, it is possible to prevent the detection accuracy of the bright-dark boundary from deteriorating, and it is possible to easily measure the refractive index distribution shape of the measurement sample with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明による屈折率分布測定方法の一実施例を
示す原理図である。
FIG. 1 is a principle diagram showing an embodiment of the refractive index distribution measuring method according to the present invention.

【図2】第一実施例における媒質部材と介在部材との境
界面での反射率の低減効果を示す図である。
FIG. 2 is a diagram showing the effect of reducing reflectance at the interface between the medium member and the intervening member in the first embodiment.

【図3】コーティングを施さなかった場合の明暗境界付
近に表れる干渉縞の様子を示す図である。
FIG. 3 is a diagram showing how interference fringes appear near the bright-dark boundary when no coating is applied.

【図4】コーティングを施した場合の明暗境界付近に表
れる干渉縞の様子を示す図である。
FIG. 4 is a diagram showing how interference fringes appear near the bright/dark boundary when coating is applied.

【図5】第二実施例における媒質部材と介在部材との境
界面での反射率の低減効果を示す図である。
FIG. 5 is a diagram showing the effect of reducing reflectance at the interface between the medium member and the intervening member in the second embodiment.

【図6】屈折率差が0.2の場合の明暗境界付近に表れ
る干渉縞の様子を示す図である。
FIG. 6 is a diagram showing interference fringes that appear near the bright-dark boundary when the refractive index difference is 0.2.

【図7】屈折率差が0.001の場合の明暗境界付近に
表れる干渉縞の様子を示す図である。
FIG. 7 is a diagram showing how interference fringes appear near the bright-dark boundary when the refractive index difference is 0.001.

【図8】屈折率差が0.0001の場合の明暗境界付近
に表れる干渉縞の様子を示す図である。
FIG. 8 is a diagram showing how interference fringes appear near the bright-dark boundary when the refractive index difference is 0.0001.

【図9】従来の屈折率分布測定方法の原理図である。FIG. 9 is a principle diagram of a conventional refractive index distribution measurement method.

【符号の説明】[Explanation of symbols]

1      光源 4      媒質部材 5      測定試料 6      介在部材 7      測定点 10    観察手段 1 Light source 4 Medium member 5 Measurement sample 6 Intervening member 7 Measurement point 10 Observation means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  屈折率分布を有する測定試料の一方の
面に、該測定試料より屈折率の大きい介在部材を介して
、上記測定試料より屈折率の大きい媒質部材の試料設置
側面をほぼ平行に配置し、且つ、上記媒質部材の試料設
置側面と上記介在部材の境界面の反射率を低く設定する
と共に、上記介在部材の厚さを、上記媒質部材の試料設
置側面と測定試料との間に密着力がほとんど働かない程
度の大きさに設定し、所定波長の電磁波を収束光として
上記媒質部材及び介在部材を通して測定試料の測定位置
へ入射させ、上記介在部材と測定試料との境界面の全反
射による反射光の明暗境界を検出して、上記測定位置で
の全反射臨界角を測定し、更に上記収束光に対して測定
試料と媒質部材の試料設置側面との間隔を一定に保ちつ
つ上記測定試料を相対的に走査させて上記処理を繰り返
すことにより、測定試料の屈折率分布を求めるようにし
たことを特徴とする屈折率分布測定方法。
Claim 1: A sample-installed side surface of a medium member having a refractive index higher than that of the measurement sample is placed approximately parallel to one surface of a measurement sample having a refractive index distribution through an intervening member having a higher refractive index than the measurement sample. and set the reflectance of the interface between the sample installation side of the medium member and the intervening member to be low, and set the thickness of the intervening member to be between the sample installation side of the medium member and the measurement sample. The size is set to such an extent that almost no adhesion force is exerted, and electromagnetic waves of a predetermined wavelength are made to enter the measurement position of the measurement sample through the medium member and the intervening member as convergent light, and the entire interface between the intervening member and the measurement sample is The brightness boundary of the reflected light due to reflection is detected to measure the critical angle of total reflection at the measurement position, and the distance between the measurement sample and the side surface of the medium member on which the sample is installed is kept constant with respect to the convergent light. A refractive index distribution measuring method characterized in that the refractive index distribution of a measurement sample is determined by relatively scanning the measurement sample and repeating the above process.
JP7780091A 1991-04-10 1991-04-10 Method for measure distribution of refractive index Withdrawn JPH04310836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7780091A JPH04310836A (en) 1991-04-10 1991-04-10 Method for measure distribution of refractive index

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7780091A JPH04310836A (en) 1991-04-10 1991-04-10 Method for measure distribution of refractive index

Publications (1)

Publication Number Publication Date
JPH04310836A true JPH04310836A (en) 1992-11-02

Family

ID=13644081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7780091A Withdrawn JPH04310836A (en) 1991-04-10 1991-04-10 Method for measure distribution of refractive index

Country Status (1)

Country Link
JP (1) JPH04310836A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10306669A1 (en) * 2003-02-13 2004-09-09 Bundesrepublik Deutschland, vertr. d. d. Bundesministerium für Wirtschaft und Arbeit, dieses vertr. d. d. Präsidenten der Physikalisch-Technischen Bundesanstalt Interferometric shape checking device, used during shaping of a lens surface, couples light into lens through surface not being shaped and measures light rays reflected from inside of surface being shaped
WO2015065892A1 (en) * 2013-10-30 2015-05-07 Corning Incorporated Apparatus and methods for measuring mode spectra for ion-exchanged glasses having steep index region
JP2016212103A (en) * 2015-04-30 2016-12-15 アントン パール オプトテック ゲゼルシャフト ミット ベシュレンクテル ハフツング Wavelength calibration of refractometers
US9534981B2 (en) 2014-12-23 2017-01-03 Corning Incorporated Prism-coupling systems and methods for characterizing ion-exchanged waveguides with large depth-of-layer
US9696207B2 (en) 2014-04-23 2017-07-04 Corning Incorporated Method of enhancing contrast in prism coupling measurements of stress
US10156488B2 (en) 2013-08-29 2018-12-18 Corning Incorporated Prism-coupling systems and methods for characterizing curved parts
JP2019520549A (en) * 2016-05-03 2019-07-18 ベンタナ メディカル システムズ, インコーポレイテッド System and method for monitoring reagent concentration
US11384011B2 (en) 2014-07-17 2022-07-12 Corning Incorporated Glass sheet and system and method for making glass sheet

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10306669A1 (en) * 2003-02-13 2004-09-09 Bundesrepublik Deutschland, vertr. d. d. Bundesministerium für Wirtschaft und Arbeit, dieses vertr. d. d. Präsidenten der Physikalisch-Technischen Bundesanstalt Interferometric shape checking device, used during shaping of a lens surface, couples light into lens through surface not being shaped and measures light rays reflected from inside of surface being shaped
DE10306669B4 (en) * 2003-02-13 2005-04-14 Bundesrepublik Deutschland, vertr. d. d. Bundesministerium für Wirtschaft und Arbeit, dieses vertr. d. d. Präsidenten der Physikalisch-Technischen Bundesanstalt Method for checking the shaping and apparatus for the shaping of an optically transparent body
US10156488B2 (en) 2013-08-29 2018-12-18 Corning Incorporated Prism-coupling systems and methods for characterizing curved parts
US10495530B2 (en) 2013-08-29 2019-12-03 Corning Incorporated Prism-coupling systems and methods for characterizing curved parts
WO2015065892A1 (en) * 2013-10-30 2015-05-07 Corning Incorporated Apparatus and methods for measuring mode spectra for ion-exchanged glasses having steep index region
US9983064B2 (en) 2013-10-30 2018-05-29 Corning Incorporated Apparatus and methods for measuring mode spectra for ion-exchanged glasses having steep index region
US11079280B2 (en) 2013-10-30 2021-08-03 Corning Incorporated Apparatus and methods for measuring mode spectra for ion-exchanged glasses having steep index region
US9696207B2 (en) 2014-04-23 2017-07-04 Corning Incorporated Method of enhancing contrast in prism coupling measurements of stress
US11384011B2 (en) 2014-07-17 2022-07-12 Corning Incorporated Glass sheet and system and method for making glass sheet
US9534981B2 (en) 2014-12-23 2017-01-03 Corning Incorporated Prism-coupling systems and methods for characterizing ion-exchanged waveguides with large depth-of-layer
JP2016212103A (en) * 2015-04-30 2016-12-15 アントン パール オプトテック ゲゼルシャフト ミット ベシュレンクテル ハフツング Wavelength calibration of refractometers
JP2019520549A (en) * 2016-05-03 2019-07-18 ベンタナ メディカル システムズ, インコーポレイテッド System and method for monitoring reagent concentration

Similar Documents

Publication Publication Date Title
US4732473A (en) Apparatus for, and methods of, determining the characteristics of semi-conductor wafers
JP3459327B2 (en) Method and apparatus for measuring layer thickness and refractive index of laminated structure
US4160598A (en) Apparatus for the determination of focused spot size and structure
JPH0718806B2 (en) Optical internal inspection support device and method
CA2206212A1 (en) Phase shifting diffraction interferometer
Ishihara et al. High-speed surface measurement using a non-scanning multiple-beam confocal microscope
US20050092893A1 (en) Method and arrangement for focusing in an optical measurement
US9239237B2 (en) Optical alignment apparatus and methodology for a video based metrology tool
US5963326A (en) Ellipsometer
US5309214A (en) Method for measuring distributed dispersion of gradient-index optical elements and optical system to be used for carrying out the method
KR100950351B1 (en) Fringe pattern discriminator for grazing incidence interferometer
CN107561007A (en) A kind of measured thin film apparatus and method
US6396580B1 (en) Method and device for polychromatic fluorescence correlation spectroscopy
Baker Microscope image comparator
JPH04310836A (en) Method for measure distribution of refractive index
CN109580182B (en) Method and device for measuring refractive index of curved optical element based on Brewster's law
KR101716452B1 (en) System and method for measuring high height by digital holography microscope
EP0128183B1 (en) Inspection apparatus and method
JP2001235317A (en) Apparatus for measuring radius of curvature of optical spherical surface
US5929992A (en) Compact interferometric test system for ellipses
JP3871183B2 (en) Method and apparatus for measuring three-dimensional shape of optical element
JP4555925B2 (en) 3D shape measuring device
JPS6165107A (en) Inspecting method for surface defect
CN1042777A (en) The quality testing of lens surface
JP3155569B2 (en) Dispersion distribution measurement method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711