JPS632087B2 - - Google Patents

Info

Publication number
JPS632087B2
JPS632087B2 JP57193067A JP19306782A JPS632087B2 JP S632087 B2 JPS632087 B2 JP S632087B2 JP 57193067 A JP57193067 A JP 57193067A JP 19306782 A JP19306782 A JP 19306782A JP S632087 B2 JPS632087 B2 JP S632087B2
Authority
JP
Japan
Prior art keywords
light
optical axis
catadioptric
optical system
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57193067A
Other languages
Japanese (ja)
Other versions
JPS5983116A (en
Inventor
Kaneyasu Ookawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP19306782A priority Critical patent/JPS5983116A/en
Publication of JPS5983116A publication Critical patent/JPS5983116A/en
Publication of JPS632087B2 publication Critical patent/JPS632087B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Description

【発明の詳細な説明】 本発明は、平行光学系のビームの平行度及び光
軸の傾きを高精度で検出し且つ調整し得るように
した光学系の調整装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical system adjustment device that can detect and adjust the parallelism of a beam and the inclination of an optical axis of a parallel optical system with high precision.

一般にレンズを使用して入射光を集束させる場
合、入射光が該レンズの光軸に対して平行な平行
ビームであるときは第1図Aに示したように入射
光は該レンズの焦点F′に集束するが、入射光が該
レンズの光軸上の光源から出る集束光または発散
光であるときは第1図BまたはCに示したように
入射光は焦点F′に対して各々前方または後方で光
軸上に集束し、また入射光が該レンズの光軸に対
して平行でない平行ビームであるときは第1図D
に示したように焦点F′を含む焦点面内で光軸から
離れた位置に集束する。これを利用して入射光の
集束位置を検出して、集束位置の焦点F′からの光
軸方向のずれ量Zを測定することにより入射光の
平行度を、集束位置の光軸からの距離hを測定す
ることにより光軸の傾きを各々検出し、二つの量
Z,hを各々ゼロにすることにより、光軸に対し
て平行な平行ビームを得る方式が従来行なわれて
いる。しかしながら、この方式は、光学レンズの
調整がかなり難しく而もビームの測定及び調整の
精度が低い(平行度で±2′、傾きで±20″程度の
測定精度である)等の欠点があり、特に半導体レ
ーザーを使用した光デイスク用ピツクアツプ等の
超精密分野に属する光学系の場合には実用上問題
があつた。
Generally, when a lens is used to focus incident light, if the incident light is a parallel beam parallel to the optical axis of the lens, the incident light will enter the focal point F' of the lens, as shown in Figure 1A. However, when the incident light is a convergent light or a diverging light emitted from a light source on the optical axis of the lens, the incident light is focused forward or toward the focal point F', respectively, as shown in FIG. 1B or C. When the lens is focused on the optical axis at the rear and the incident light is a parallel beam that is not parallel to the optical axis of the lens, Fig. 1D
As shown in , the light is focused at a position away from the optical axis within the focal plane including focal point F'. Utilizing this, the convergence position of the incident light is detected, and by measuring the amount of deviation Z of the convergence position from the focal point F' in the optical axis direction, the parallelism of the incident light can be determined by measuring the distance of the convergence position from the optical axis. Conventionally, a method has been used in which the inclination of the optical axis is detected by measuring h, and two quantities Z and h are set to zero, thereby obtaining a parallel beam parallel to the optical axis. However, this method has drawbacks such as it is quite difficult to adjust the optical lens and the accuracy of beam measurement and adjustment is low (measuring accuracy of approximately ±2' for parallelism and ±20'' for tilt). In particular, practical problems have arisen in the case of optical systems belonging to ultra-precision fields such as optical disk pickups that use semiconductor lasers.

本発明は、以上の点に鑑み、平行光学系のビー
ムの平行度及び光軸の傾きを高精度で検出し且つ
調整し得るようにしたレンズ系の調整装置を提供
せんとするものである。
In view of the above points, it is an object of the present invention to provide a lens system adjustment device that can detect and adjust the parallelism of a beam of a parallel optical system and the inclination of an optical axis with high precision.

先づ第2図により本発明の原理を説明する。第
2図において、1はプリズムで、面1a及び1b
のなす角が該プリズムを構成するガラスの空気に
対する臨界角に設定されていると共に面1bは反
射膜を施すことにより反射鏡になつている。2及
び3はプリズム1の面1aを透過した光を検出す
る受光素子である。最初にプリズム1内に入射し
面1aで反射した後面1bに垂直に入射する光線
aを考える。この光線aがプリズム1内に入射し
た後面1aに入射する角度、即ち光線a0の面1a
への入射角、はθcであるから、光線a0は面1aで
全反射する。面1aで全反射された光線a1は面1
bに対して垂直に入射し、面1bで反射された光
線a2は光線a1と同じ径路をとつて再び面1aに入
射角θcで入射して全反射され、面1aで全反射さ
れた光線a3は光線a0と同じ径路をとつてプリズム
1の外へ出て再び光源へ戻る。従つてこの場合、
光線a0も光線a2も面1aで全反射し全く透過しな
いので、受光素子2及び3には光が入射せず、そ
の検出値はゼロである。次に光線bを考えると、
この光線bがプリズム1内に入射した後面1aに
入射する角度、即ち光線b0の面1aへの入射角は
θcより大きいので、光線b0は面1aで全反射す
る。面1aで全反射された光線b1は面1bに対し
てほぼ垂直に入射し、面1bで反射された光線b2
は再び面1aに入射するが、このときの光線b2
面1aに対する入射角はθcより小さいので、光線
b2の一部が透過して光線b3′として受光素子3に
入射して、面1aで反射された光線b3はプリズム
1の外へ出る。従つてこの場合受光素子3のみが
検出を行なう。また光線cの場合には、この光線
cがプリズム1内に入射した後面1aに入射する
角度、即ち光線c0の面1aの入射角がθcより小さ
いため、光線c0は一部が光線c1′として透過して
受光素子2に入射し、面1aで反射された光線c1
は面1bで反射された光線c2として再び面1aに
入射するが、このときの光線c2の面1aに対する
入射角はθcより大きいので全反射され、面1aで
全反射された光線c3はプリズム1の外へ出る。従
つてこの場合受光素子2のみが検出を行なう。さ
らに何れの場合にも面1aへの入射角が臨界角θc
より小さい場合、入射角が小さい程面1aにおけ
る透過率が大きくなるので、受光素子2及び3の
検出値が大きい。かくして受光素子2及び3の検
出値が共にゼロの場合にのみ、入射光は光軸に平
行な平行ビームであることになる。
First, the principle of the present invention will be explained with reference to FIG. In Figure 2, 1 is a prism with surfaces 1a and 1b.
The angle formed by the prism is set to be the critical angle with respect to the air of the glass constituting the prism, and the surface 1b is formed into a reflective mirror by applying a reflective film. 2 and 3 are light receiving elements that detect light transmitted through the surface 1a of the prism 1. First, consider a ray a that enters the prism 1, is reflected by the surface 1a, and then enters the rear surface 1b perpendicularly. The angle at which this ray a enters the prism 1 and the rear surface 1a, that is, the surface 1a of the ray a0
Since the angle of incidence on the surface is θ c , the ray a 0 is totally reflected at the surface 1a. Ray a 1 totally reflected by surface 1a is surface 1
Light ray a2 , which is incident perpendicularly to b and reflected by surface 1b, takes the same path as ray a1 , enters surface 1a again at an incident angle θc , is totally reflected, and is totally reflected by surface 1a. The ray a3 takes the same path as the ray a0 , exits the prism 1, and returns to the light source. Therefore, in this case,
Since both the light ray a 0 and the light ray a 2 are totally reflected by the surface 1a and are not transmitted at all, no light enters the light receiving elements 2 and 3, and the detected value thereof is zero. Next, considering ray b,
Since the angle at which this ray b enters the rear surface 1a of the prism 1, that is, the angle of incidence of the ray b 0 on the surface 1a is greater than θ c , the ray b 0 is totally reflected on the surface 1a. The light ray b 1 totally reflected by the surface 1a is incident on the surface 1b almost perpendicularly, and the light ray b 2 reflected by the surface 1b
enters the surface 1a again, but at this time the angle of incidence of the ray b 2 on the surface 1a is smaller than θ c , so the ray
A part of b 2 is transmitted and enters the light receiving element 3 as a light beam b 3 ', and the light beam b 3 reflected by the surface 1a exits the prism 1. Therefore, in this case, only the light receiving element 3 performs detection. In addition, in the case of ray c, since the angle at which this ray c enters the prism 1 and enters the rear surface 1a, that is, the angle of incidence of the ray c 0 on the surface 1a is smaller than θ c , a part of the ray c 0 is a ray The light ray c 1 is transmitted as c 1 ′, enters the light receiving element 2, and is reflected by the surface 1a .
is reflected by surface 1b and enters surface 1a again as ray c2 , but since the incident angle of ray c2 to surface 1a at this time is greater than θ c , it is totally reflected, and the ray c that is totally reflected by surface 1a 3 goes out of prism 1. Therefore, in this case, only the light receiving element 2 performs detection. Furthermore, in either case, the angle of incidence on surface 1a is the critical angle θ c
If the angle of incidence is smaller, the smaller the incident angle, the greater the transmittance at the surface 1a, so the detection values of the light receiving elements 2 and 3 are large. Thus, only when the detection values of the light receiving elements 2 and 3 are both zero, the incident light is a parallel beam parallel to the optical axis.

次に、上述の原理を用いた本発明の実施例を説
明する。第3図及び第4図において、10はプリ
ズムで、これを構成するガラスの臨界角付近の入
射角の光線に対する反射防止膜を施した面10a
と反射膜を施すことにより反射鏡になつている面
10bとを備えており、該面10a及び10bの
なす角が該プリズム10を構成するガラスの空気
に対する臨界角θcに設定されている。11及び1
2は10aからの透過光を検出する受光素子で、
プリズム10に対して固定的に配設されている。
13は被検光学系でレンズ14を有している。1
5は被検光学系13の基準面13aにより所定の
方向に被検光学系13を取付ける装着部、16は
装着部15を基準面13aに平行な面内で光軸O
の周りに回転可能に保持する固定部材で、回転方
位を読取るための目盛りを備えていると共に被検
光学系13、装着部15と一体的に光軸Oに対し
て第4図紙面内で俯仰可能に構成されており、さ
らにこの俯仰角を読取るための目盛りを有してい
る。17は光軸O上で光軸方向に移動可能に配設
された光源である。尚、光源17から出て光軸O
に沿つて進む光が被検光学系13のない場合プリ
ズム10に入射し面10aに臨界角θcなる入射角
で入射して全反射せしめられ面10bに垂直に入
射するように、各部材が配置されている。18は
受光素子11と受光素子12との感度を同一レベ
ルにする即ち光源からの光が各受光素子11,1
2に達するまでの反射率の差を補正するための補
正回路で、入力に対し面10bでの反射率をかけ
た値に対応する信号を出力する。19は減算回
路、20は絶対値回路、21はピーク検出器、2
2はモータ駆動回路、23は伝動機構を介して装
着部15を光軸Oの周りに回動せしめるモータ、
24は最小値検出回路、25は俯仰角制御装置、
26は加算回路、27は最小値検出回路、28は
モータ駆動回路、29は光源17を光軸Oに沿つ
て移動せしめるモータである。
Next, an embodiment of the present invention using the above-described principle will be described. In FIGS. 3 and 4, 10 is a prism, and a surface 10a is coated with an anti-reflection coating for light rays having an incident angle near the critical angle of the glass constituting the prism.
and a surface 10b which forms a reflecting mirror by applying a reflective film, and the angle formed by the surfaces 10a and 10b is set to be the critical angle θ c of the glass constituting the prism 10 with respect to air. 11 and 1
2 is a light receiving element that detects the transmitted light from 10a,
It is fixedly arranged with respect to the prism 10.
Reference numeral 13 denotes an optical system to be tested, which has a lens 14 . 1
Reference numeral 5 denotes a mounting part for mounting the test optical system 13 in a predetermined direction using the reference plane 13a of the test optical system 13, and 16 indicates a mounting part for mounting the test optical system 13 in a predetermined direction using the reference plane 13a.
It is a fixed member that is rotatably held around the optical axis O, and is equipped with a scale for reading the rotational direction, and is integrally mounted with the optical system 13 and the mounting part 15 to be tilted up and down in the plane of the paper in Fig. 4 with respect to the optical axis O. Furthermore, it has a scale for reading the elevation angle. 17 is a light source disposed on the optical axis O so as to be movable in the optical axis direction. In addition, the optical axis O is emitted from the light source 17.
Each member is arranged so that, in the absence of the optical system 13 to be tested, the light traveling along the prism 10 enters the prism 10, enters the surface 10a at a critical angle of incidence θ c , is totally reflected, and enters the surface 10b perpendicularly. It is located. Reference numeral 18 makes the sensitivity of the light receiving element 11 and the light receiving element 12 the same level, that is, the light from the light source is transmitted to each light receiving element 11, 1.
This is a correction circuit for correcting the difference in reflectance up to 2, and outputs a signal corresponding to the value obtained by multiplying the input by the reflectance at the surface 10b. 19 is a subtraction circuit, 20 is an absolute value circuit, 21 is a peak detector, 2
2 is a motor drive circuit; 23 is a motor that rotates the mounting portion 15 around the optical axis O via a transmission mechanism;
24 is a minimum value detection circuit, 25 is an elevation angle control device,
26 is an adder circuit, 27 is a minimum value detection circuit, 28 is a motor drive circuit, and 29 is a motor that moves the light source 17 along the optical axis O.

本発明実施例は以上のように構成されているか
ら、被検光学系13を装着部15に取付けて光源
17をONにすれば、モータ23が始動して被検
光学系13のレンズ14が光軸Oの周りに回動せ
しめられ、このとき光源17からの光はレンズ1
4を介してプリズム10に入射し、光軸Oに対し
て被検光学系13のレンズ14の光軸が傾いてい
るか光源17がレンズ14の焦点位置にないとき
即ちプリズム10に入射する光が光軸Oに平行な
平行光でない場合には前述の本発明原理に基づき
受光素子11及び/または12に光が入射するた
め、受光素子11,12から信号が出力される。
補正回路18で補正された受光素子11からの出
力I1と受光素子12からの出力I2とは減算回路1
9に入力され、さらに絶対値回路20で|I1−I2
|が演算される。ピーク検出器21で|I1−I2
の最大値が検出されるとモータ駆動回路22に信
号が出力されてモータ23が停止せしめられる。
かくして、プリズム10への入射ビームが傾いて
いる場合面10aへの入射角はビーム傾きの方位
が第4図において紙面内にあるときに最大または
最小となるため受光素子11及び12の出力の差
即ち|I1−I2|が最大値をとることから、ビーム
の傾き方位が第4図において紙面内に調整され
る。次に、俯仰角制御装置25を作動させて固定
部材16をあおりレンズ14を光軸Oに対して俯
仰させながら、絶対値回路20からの信号が入力
されている最小値検出回路24により|I1−I2
の最小値を検出しこのとき該俯仰角制御装置25
を停止せしめる。かくして、第2図において面1
bに垂直に入射する光線aに対して互いに逆方向
に同じ角度だけ傾斜している光線b及びcに関し
て光線b2の面1aへの入射角と光線c0の面1aへ
の入射角が等しいので受光素子2及び3の出力の
差が0となることから、被検光学系13のレンズ
14の光軸が光軸Oと一致するように調整され
る。さらに、モータ29を作動し、補正回路18
で補正された受光素子11の出力I1と受光素子1
2の出力I2とを加算回路26に入力して(I1+I2
を演算して、最小値検出回路27により(I1
I2)の最小値を検出してモータ駆動回路28に信
号を出力し、モータ29を停止せしめる。かくし
て光源17がレンズ14の焦点位置に位置せしめ
られ、光源17から出た光はレンズ14により光
軸Oに平行な平行光となつてプリズム10に入射
する。
Since the embodiment of the present invention is configured as described above, when the optical system 13 to be tested is attached to the mounting part 15 and the light source 17 is turned on, the motor 23 is started and the lens 14 of the optical system 13 to be tested is turned on. The light from the light source 17 is rotated around the optical axis O, and at this time the light from the light source 17 is directed to the lens 1.
4, and when the optical axis of the lens 14 of the optical system to be tested 13 is tilted with respect to the optical axis O or the light source 17 is not at the focal position of the lens 14, the light that enters the prism 10 If the light is not parallel to the optical axis O, the light is incident on the light receiving elements 11 and/or 12 based on the above-mentioned principle of the present invention, and thus a signal is output from the light receiving elements 11 and 12.
The output I1 from the light receiving element 11 corrected by the correction circuit 18 and the output I2 from the light receiving element 12 are calculated by the subtraction circuit 1.
9, and further in the absolute value circuit 20 |I 1 −I 2
| is calculated. At the peak detector 21 |I 1 −I 2 |
When the maximum value of is detected, a signal is output to the motor drive circuit 22 to stop the motor 23.
Thus, when the beam incident on the prism 10 is tilted, the angle of incidence on the surface 10a is maximum or minimum when the direction of the beam tilt is within the plane of the paper in FIG. That is, since |I 1 −I 2 | takes the maximum value, the inclination direction of the beam is adjusted within the plane of the paper in FIG. Next, while the elevation angle control device 25 is actuated to tilt the fixed member 16 and elevate the lens 14 with respect to the optical axis O, the minimum value detection circuit 24 to which the signal from the absolute value circuit 20 is input is activated to |I 1 −I 2
At this time, the elevation angle control device 25 detects the minimum value of
to stop. Thus, in FIG.
Regarding rays b and c, which are inclined by the same angle in opposite directions to ray a, which is incident perpendicular to b, the angle of incidence of ray b 2 on surface 1a is equal to the angle of incidence of ray c 0 on surface 1a. Therefore, since the difference between the outputs of the light receiving elements 2 and 3 becomes 0, the optical axis of the lens 14 of the optical system 13 to be tested is adjusted to coincide with the optical axis O. Furthermore, the motor 29 is operated, and the correction circuit 18
The output I 1 of the light receiving element 11 corrected by and the light receiving element 1
2 output I 2 is input to the adder circuit 26 (I 1 + I 2 )
The minimum value detection circuit 27 calculates (I 1 +
I 2 ) is detected and a signal is output to the motor drive circuit 28 to stop the motor 29. The light source 17 is thus positioned at the focal point of the lens 14, and the light emitted from the light source 17 is converted into parallel light parallel to the optical axis O by the lens 14 and enters the prism 10.

第5図には本発明による第二の実施例が示され
ており、第3図に示した実施例と同じ構成要素に
は同じ符号を付してその説明を省略すれば、30
はプリズムで、面30a及び30bのなす角はプ
リズム10を構成するガラスの空気に対する臨界
角である必要はなく、例えば直角プリズムでもよ
い。31は反射鏡で、光源から面30aに対して
該プリズム30を構成するガラスの空気に対する
臨界角にほゞ等しい入射角で入射した光が面30
aで全反射された後該反射鏡31に垂直に入射す
るように調整可能に配置されている。32は例え
ば偏光ビームスプリツタと1/4波長板の組合せか
ら成る光アイソレータで光源への戻り光を遮断す
ると共に例えば光源が半導体レーザーの場合にノ
イズを低減させるために役立つ。
FIG. 5 shows a second embodiment of the present invention, in which the same components as those in the embodiment shown in FIG.
is a prism, and the angle formed by the surfaces 30a and 30b does not need to be a critical angle for the air of the glass constituting the prism 10, and may be a right-angled prism, for example. Reference numeral 31 denotes a reflecting mirror, through which light from a light source enters the surface 30a at an incident angle approximately equal to the critical angle of air for the glass constituting the prism 30.
The light beam is arranged so as to be adjustable so that it is totally reflected by a and then enters the reflecting mirror 31 perpendicularly. Reference numeral 32 denotes an optical isolator consisting of a combination of a polarizing beam splitter and a 1/4 wavelength plate, which serves to block light returning to the light source and to reduce noise when the light source is a semiconductor laser, for example.

この第二の実施例によれば、その作用は第3図
に示した実施例と同様であり、プリズム30の面
30aと30bのなす角を臨界角に仕上げる代り
に反射鏡31を調整することにより同様の作用を
得るようにしてある。
According to this second embodiment, its operation is similar to that of the embodiment shown in FIG. The same effect can be obtained by

以上述べたように本発明によれば、プリズムの
臨界角を利用して平行光学系のビームの平行度及
び光軸の傾きを極めて容易且つ高精度で検出し且
つ調整することができるので、非常に効果的であ
る。さらに第二の実施例の場合には戻り光が光ア
イソレータ32により光源17に戻らないように
してあるので、半導体レーザーのように戻り光が
出力に影響を与えるような場合には極めて有効で
ある。ここで、全反射面(面1a,10a,30
a)はプリズムの一面である必要はなく、単にガ
ラス板等の透明板であつてもよい。
As described above, according to the present invention, the parallelism of the beam of the parallel optical system and the inclination of the optical axis can be detected and adjusted extremely easily and with high precision by using the critical angle of the prism. effective. Furthermore, in the case of the second embodiment, the returned light is prevented from returning to the light source 17 by the optical isolator 32, which is extremely effective in cases where the returned light affects the output, such as in semiconductor lasers. . Here, total reflection surfaces (surfaces 1a, 10a, 30
a) does not need to be one surface of the prism, and may simply be a transparent plate such as a glass plate.

尚、以上の説明では、調整の操作をモータによ
り行なつているが、受光素子の出力を観察しなが
ら手動により各調整操作を行なつてもよく、特に
振動によつて悪影響が生じやすい場合には手動に
よる調整が好ましい。また受光素子は、一つを分
割して使用するようにすればでもよく、他の光電
変換装置でも差し支えない。さらに第二の実施例
においては面30aに反射防止膜を施していない
が、特に高精度を要しない場合には実用上十分で
ある。
In the above explanation, the adjustment operations are performed using a motor, but each adjustment operation may also be performed manually while observing the output of the light receiving element, especially when vibrations are likely to cause adverse effects. Manual adjustment is preferred. Further, the light receiving element may be divided into one for use, and other photoelectric conversion devices may also be used. Further, in the second embodiment, the surface 30a is not coated with an antireflection film, but this is sufficient for practical use if particularly high precision is not required.

また、本発明装置により光軸合せを行なつた
後、被検光学系を取付けるべき他の装置の光軸を
光軸Oと予め一致させておいて、被検光学系を該
装置に取付けると、非常に高精度に光軸合せした
状態で被検光学系を組込むことが可能となる。
Furthermore, after aligning the optical axes using the device of the present invention, if the optical axis of another device to which the optical system to be tested is to be attached is aligned with the optical axis O in advance, then the optical system to be tested is attached to the device. , it becomes possible to incorporate the optical system to be tested with the optical axis aligned with very high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は入射光の平行度とレンズによる結像状
態を示す説明図、第2図は本発明の原理を示す説
明図、第3図及び第4図は本発明による第一の実
施例を示す概略図、第5図は本発明による第二の
実施例を示す図である。 1,10,30……プリズム、2,3,11,
12……受光素子、13……被検光学系、14…
…レンズ、15……装着部、16……固定部材、
17……光源、18……補正装置、19……減算
回路、20……絶対値回路、21……ピーク検出
器、22,28……モータ駆動回路、23,29
……モータ、24,27……最小値検出回路、2
5……俯仰角制御装置、26……加算回路、31
……反射鏡、32……光アイソレータ。
Fig. 1 is an explanatory diagram showing the parallelism of incident light and the image formation state by the lens, Fig. 2 is an explanatory diagram showing the principle of the invention, and Figs. 3 and 4 are illustrations of the first embodiment according to the invention. The schematic diagram shown in FIG. 5 is a diagram showing a second embodiment according to the present invention. 1, 10, 30...prism, 2, 3, 11,
12... Light receiving element, 13... Test optical system, 14...
... Lens, 15 ... Mounting part, 16 ... Fixing member,
17... Light source, 18... Correction device, 19... Subtraction circuit, 20... Absolute value circuit, 21... Peak detector, 22, 28... Motor drive circuit, 23, 29
... Motor, 24, 27 ... Minimum value detection circuit, 2
5... Elevation angle control device, 26... Addition circuit, 31
... Reflector, 32... Optical isolator.

Claims (1)

【特許請求の範囲】 1 光軸上に配設された光源と、該光軸に沿つて
該光源から出た光が臨界角で入射するように該光
軸に対して斜設された反射屈折面と、該反射屈折
面で全反射した前記光軸に沿う光が垂直に入射す
るように配設された反射面と、前記反射屈折面を
直接透過した光と該反射屈折面で全反射されさら
に前記反射面で反射された後該反射屈折面を透過
する光とを個々に検出し得るように該反射屈折面
の後方に配設された光電変換装置と、前記光源と
反射屈折面との間に被検光学系を保持する保持機
構とを備えていることを特徴とする、光学系の調
整装置。 2 光軸上に配設された光源と、該光軸に沿つて
該光源から出た光が臨界角で入射するように該光
軸に対して斜設された反射屈折面と、該反射屈折
面で全反射した前記光軸に沿う光が垂直に入射す
るように配設された反射面と、前記反射屈折面を
直接透過した光と該反射屈折面で全反射されさら
に前記反射面で反射された後該反射屈折面を透過
する光とを個々に検出し得るように該反射屈折面
の後方に配設された光電変換装置と、前記光源と
反射屈折面との間に被検光学系を光軸の周りに調
整可能に且つ光軸に対して俯仰方向に調整可能に
保持する保持機構と、前記光電変換装置の二つの
入射光に対する出力の差の最大値を検出する装置
と、該出力の和の最小値を検出する装置とを備え
ていて、被検光学系の光軸のずれを検出し得るよ
うにしたことを特徴とする、光学系の調整装置。 3 光電変換装置の二つの入射光に対する出力の
差の最小値を検出する装置を備えていて、被検光
学系の光軸のずれ及び焦点位置を検出し得るよう
にしたことを特徴とする、特許請求の範囲2に記
載の光学系の調整装置。
[Claims] 1. A light source disposed on the optical axis, and a catadioptric device disposed obliquely to the optical axis so that the light emitted from the light source along the optical axis is incident at a critical angle. a reflective surface disposed so that the light along the optical axis that is totally reflected by the catadioptric surface is incident perpendicularly, and the light that is directly transmitted through the catadioptric surface and the light that is totally reflected by the catadioptric surface is Furthermore, a photoelectric conversion device disposed behind the catadioptric surface so as to individually detect the light transmitted through the catadioptric surface after being reflected by the reflective surface; An optical system adjustment device, comprising: a holding mechanism that holds a test optical system therebetween. 2. A light source arranged on the optical axis, a catadioptric surface arranged obliquely with respect to the optical axis so that the light emitted from the light source along the optical axis is incident at a critical angle, and the catadioptric surface A reflective surface arranged so that the light along the optical axis that is totally reflected by the surface is incident perpendicularly, and the light that is directly transmitted through the catadioptric surface and the light that is totally reflected by the catadioptric surface and further reflected by the reflective surface. a photoelectric conversion device disposed behind the catadioptric surface so as to be able to individually detect the light transmitted through the catadioptric surface after the light has been transmitted, and a test optical system between the light source and the catadioptric surface. a holding mechanism that holds the photoelectric conversion device so as to be adjustable around the optical axis and in a vertical direction with respect to the optical axis; a device that detects the maximum difference in output of the photoelectric conversion device for two incident lights; 1. An optical system adjustment device, comprising: a device for detecting a minimum value of the sum of outputs, and capable of detecting a deviation of an optical axis of an optical system to be tested. 3. It is characterized by being equipped with a device for detecting the minimum value of the difference in output between two incident lights of the photoelectric conversion device, and capable of detecting the deviation of the optical axis and the focal position of the optical system to be tested. An optical system adjustment device according to claim 2.
JP19306782A 1982-11-02 1982-11-02 Adjustment device for optical system Granted JPS5983116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19306782A JPS5983116A (en) 1982-11-02 1982-11-02 Adjustment device for optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19306782A JPS5983116A (en) 1982-11-02 1982-11-02 Adjustment device for optical system

Publications (2)

Publication Number Publication Date
JPS5983116A JPS5983116A (en) 1984-05-14
JPS632087B2 true JPS632087B2 (en) 1988-01-16

Family

ID=16301649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19306782A Granted JPS5983116A (en) 1982-11-02 1982-11-02 Adjustment device for optical system

Country Status (1)

Country Link
JP (1) JPS5983116A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0512753Y2 (en) * 1986-09-30 1993-04-02
CN104296654B (en) * 2014-09-26 2017-06-09 中国科学院光电研究院 The detection means and method of laser tracker position sensor zero-bit alignment error
CN117073586B (en) * 2023-10-17 2024-01-09 青岛迈朗格智能制造有限公司 Device and method for detecting parallelism of mechanical shaft of coaxial double-shaft turntable

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884626A (en) * 1972-02-08 1973-11-10
JPS567246A (en) * 1979-06-25 1981-01-24 Olympus Optical Co Ltd Method and unit for focus detection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884626A (en) * 1972-02-08 1973-11-10
JPS567246A (en) * 1979-06-25 1981-01-24 Olympus Optical Co Ltd Method and unit for focus detection

Also Published As

Publication number Publication date
JPS5983116A (en) 1984-05-14

Similar Documents

Publication Publication Date Title
US4207467A (en) Film measuring apparatus and method
FR2458830A1 (en) OPTICAL REPRESENTATION SYSTEM PROVIDED WITH AN OPTOELECTRONIC DETECTION SYSTEM FOR DETERMINING A GAP BETWEEN THE IMAGE PLAN OF THE REPRESENTATION SYSTEM AND A SECOND PLAN FOR REPRESENTATION
JPH0363001B2 (en)
JP4732569B2 (en) Method for continuously determining the optical layer thickness of a coating
JPS632087B2 (en)
JP3120885B2 (en) Mirror surface measuring device
CN106969717B (en) Calibration method and measurement method of symmetrical optical bridge type self-stabilizing laser diameter measuring system
JPS5483853A (en) Measuring device
JP3340824B2 (en) Optical system including total reflection prism
JPH07294231A (en) Optical surface roughness sensor
JPH07113547B2 (en) Sample plane position measuring device
JPH06331940A (en) Optical monitoring device
JP2851053B2 (en) Light beam incident angle detection sensor
JP2001133232A (en) Measuring apparatus for inclination of object to be inspected
JPS60235027A (en) Narrow wavelength band light emitting and receiving apparatus
JPS6226729Y2 (en)
JPH0530084Y2 (en)
JP2808713B2 (en) Optical micro displacement measuring device
JPS60211304A (en) Measuring instrument for parallelism
KR970003953Y1 (en) Focusing device of semiconductor exposure equipment
JP2826618B2 (en) Rangefinder inspection equipment
JPH10158834A (en) Optical system for film thickness measurement and film forming system having the optical system
JPH027035B2 (en)
JPS59138916A (en) Range finder
JPH0652165B2 (en) Interferometer