JPS63315491A - Method of controlling overhead travelling crane - Google Patents

Method of controlling overhead travelling crane

Info

Publication number
JPS63315491A
JPS63315491A JP62147851A JP14785187A JPS63315491A JP S63315491 A JPS63315491 A JP S63315491A JP 62147851 A JP62147851 A JP 62147851A JP 14785187 A JP14785187 A JP 14785187A JP S63315491 A JPS63315491 A JP S63315491A
Authority
JP
Japan
Prior art keywords
address
height
load
area
compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62147851A
Other languages
Japanese (ja)
Other versions
JP2513696B2 (en
Inventor
堀川 恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP62147851A priority Critical patent/JP2513696B2/en
Publication of JPS63315491A publication Critical patent/JPS63315491A/en
Application granted granted Critical
Publication of JP2513696B2 publication Critical patent/JP2513696B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は天井走行うレーンの制御方法、特に貯品ヤード
を複数の区画に区分して各区画に番地を附し、貯品の在
庫状況を番地毎に管理するとともに貯品運搬用の天井ク
レーンを制御する計算機システムの天井走行うレーンの
制御方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for controlling an overhead lane, and in particular, a method for controlling an overhead lane, in particular, dividing a storage yard into a plurality of sections, assigning an address to each section, and controlling the inventory status of stored goods. The present invention relates to a method for controlling overhead lanes of a computer system that manages traffic for each address and controls overhead cranes for transporting stored goods.

(従来の技術〕 従来、この種の天井クレーンの制御方法は、安全性を重
んじるあまりに、運搬する荷が運搬経路途中の障害物を
避けるのに絶対安全な高さにまで巻き上げた後任意に走
行と横行を行い、目的区画まで運搬しておha運転効率
や省エネルギ等が考慮されていないため、デユーティサ
イクルが長く、また消費電力に無駄があhaこれらの点
の改良方法として本出願人によha運搬開始区画より運
搬目標区画に至る直線経路を効率的に荷を運搬する制御
方法が特願昭62−76087で出願されている。
(Prior art) Conventionally, the control method for this type of overhead crane places too much emphasis on safety, so that the load to be transported is hoisted up to a height that is absolutely safe to avoid obstacles on the transport route, and then the crane is moved arbitrarily. Since the operation efficiency and energy saving are not taken into account, the duty cycle is long and the power consumption is wasted.As a method for improving these points, the present applicant proposed Japanese Patent Application No. 1987-76087 has been filed for a control method for efficiently transporting loads along a straight path from a transport start compartment to a transport target compartment.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した特願昭62−76087による制御方法は、も
し前記直線経路途中に積み上げられた貯品の高さのうち
に、運搬開始区画および運搬目標区画における貯品の高
さより高いものがあhaかつ、他の経路で直線経路の貯
品の高さよりも貯品の高さが低い経路があれば、その経
路を選んだ場合よha荷の巻上げと巻下げとに余分の電
力を消費するという欠点がある。
The control method according to the above-mentioned Japanese Patent Application No. 62-76087 is such that if the height of the stored goods piled up along the straight path is higher than the height of the stored goods in the transport start section and the transport target section, If there is another route where the height of the stored goods is lower than the height of the stored goods on the straight route, if that route is selected, the disadvantage is that extra power will be consumed for hoisting and lowering the load. There is.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の天井走行うレーンの制御方法は、天井走行うレ
ーンによha荷を任意の番地Aから他の任意の番地Bに
運搬するとき、 まず、貯品ヤードのうち、番地Aと番地Bの両区山間を
真直ぐに結ぶ帯状領域と、番地Aと番地Bの両区画をそ
れぞれ対角の位置に有する貯品ヤード内の長方形領域の
うち、番地Aの区画より貯品ヤードの長手方向に配列さ
れた区画領域端の対角位置の区画に至ha次いで該区画
より貯品ヤードの幅方向に配列された区画領域を経て番
地Bの区画に至る迂回領域、および番地Aの区画より貯
品ヤードの幅方向に配列された区画領@端の対角位置の
区画に至ha次いで該区画より貯品ヤードの長手方向に
配列された区画領域を経て番地Bの区画に至る迂回領域
を定め、番地Aおよび番地B以外の前記帯状領域とこれ
らの迂回領域に区画の全部または一部が重畳するすべて
の番地を検出し、 次に、帯状領域に属する番地に積み上げられた貯品の高
さのうち最高のものをha、とし、二つの迂回領域のそ
れぞれに属する番地に積み上げられた貯品の高さのうち
最高のものを、それぞれり。
The method of controlling an overhead running lane according to the present invention is that when transporting ha cargo from an arbitrary address A to another arbitrary address B through an overhead running lane, first, address A and address B of the storage yard are used. Of the rectangular area within the storage yard that has a belt-shaped area straight connecting the mountains of both sections, and both sections of address A and address B at diagonal positions, from the section of address A to the longitudinal direction of the storage yard. A detour area leading to a diagonal position at the end of the arranged compartment area, then a detour area from the compartment to the compartment at address B via the compartment area arranged in the width direction of the storage yard, and a detour area from the compartment at address A to the compartment at the address B. Determine a detour area from the partition area arranged in the width direction of the yard to a partition at a diagonal position at the end, then from the partition area to the partition area arranged in the longitudinal direction of the storage yard to the partition at address B, Detect all addresses whose plots overlap in whole or in part with the strip area other than address A and address B and these detour areas, and then calculate the height of the stored items piled up at the addresses belonging to the strip area. Let the highest one be ha, and let the height of the stored goods piled up at addresses belonging to each of the two detour areas be the highest.

およびheとし、番地Aと番地Bに積み上げられた運搬
材を除く貯品の高さを、それぞれha、hbとするとき
、これらの貯品の高さha、he、hc、hd、heを
比較して、he>h。
and he, and the heights of the stored goods piled up at addresses A and B, excluding materials to be transported, are ha and hb, respectively, then compare the heights ha, he, hc, hd, and he of these stored goods. Then, he>h.

およびり。Andri.

かつ、hc>hdおよびheのとき、高さhdと高さh
a、が異なる場合はいずれか低い方の迂回領域を、また
高さhdと高さhaが等しい場合はいずれか一方の迂回
領域を、荷の運搬経路として選出し、 次に、選出した迂回領域のうち、番地Aより他端の対角
位置の番地Fに至る領域と、該領域の延長上に番地Fよ
り番地Bに至る領域を一直線に配列したものとして、そ
れぞれの番地に積み上げられた貯品の高さにおける該番
地の区画線のうち番地Aに近い側の区画線を、番地Aの
運搬材を除く貯品の高さにおける区画線のうち移動方向
側の区画線から眺めた面の水平面からの正または負の仰
角を演算して、それらのうち最大仰角を有する番地Gを
選出し、 次に、番地Gの貯品の高さをhlIとして、高さhaと
の差h(・he−he)を荷の巻上げをするのに要する
時間1hまたは荷の巻下げをするのに要する時間先1を
、巻上げまたは巻下げ最高速度とそれらの加減速度とよ
り求め、一方、番地Aからクレーンの走行または横行を
開始してから最大速度に立上がる時間を計算し、この時
間を用いて、かつ、番地Gが番地Fから番地Bに至る間
の領域にあるときは、番地Fにおける荷の減速、停止と
引続く加速も考慮して、荷が番地Gの区画線に到達する
までの時間jg+または荷が番地Gの区画内に到達する
までの時間tg2を求めた後、まず、荷のatげを開始
して一定の巻上げ補正量Δhだけ巻上げを行い、次に、
高さhgが高さhaに等しい場合は荷の高さを保持した
まま、また高さhgが高さhaよりも大きい場合で、t
h≦tgIのときは、引続き巻上げを行いながらクレー
ンの走行または横行を開始して、高さの差りの巻上げ終
了時に荷の高さをその高さに保持したまま、番地Gの区
画向上部に荷を最大速度で移動させ、th>t、lIの
ときは、クレーンの走行または横行の開始を上述した時
点より時間thとtglの差だけ遅らせること以外は、
上述のth≦t、llのときと同様の方法で荷を移動さ
せ、 高さhgが高さhaよりも小さい場合で、tl≧js2
のときはクレーンの巻下げを開始するとともにクレーン
の移動を開始し、1m<tg2のときは、荷の高さをh
g+Δhに保持したままクレーンの走行または横行を開
始し、時間の差tg2−1、たけ遅らせて巻下げを開始
し、いずれのときも、荷を高さの差ha−hgだけ巻下
げながら番地Gの区画向上部に移動させ、 次に、番地Gの区画と番地Bの区画の間につぃて同様の
演算を行い、最初の巻上げ補正量Δhだけ巻上げる動作
を除く他の巻上げ、または巻下げ動作をくり返して荷を
次の目標とする番地の区画内に移動させ、 一方、クレーンの走行または横行については荷の移動を
移動速度から停止させるまでの時間中のクレーンの走行
または横行距離を演算し、荷が番地Fより該距離だけ手
前に到達した地点よりクレーンの減速を開始して、荷が
番地Fの区画内に到達したとき、クレーンの移動を停止
し、直ちに横行または走行を開始してふたたび最大速度
で荷を番地B方向に移動させ、同様に荷が番地Bより前
記距離だけ手前に到達した地点よりクレーンの減速を開
始して、荷が番地Bの区画内に到達したとき、クレーン
の移動を停止し、 最終的に、荷を最初の補正量Δhだけ巻下げることによ
ha荷の運搬を完了するものである。
And when hc>hd and he, the height hd and the height h
If a is different, select the lower detour area, or if the heights hd and ha are equal, select one of the detour areas as the load transportation route, and then select the selected detour area. Assuming that the area from address A to address F at the diagonal position on the other end, and the area extending from address F to address B on the extension of the area, are arranged in a straight line, the storage accumulated at each address is The side of the lot line closer to address A at the height of the goods, as viewed from the side of the lot line in the movement direction at the height of the stored goods excluding transported materials at address A. Calculate the positive or negative angle of elevation from the horizontal plane, select the address G that has the maximum angle of elevation, and then, assuming the height of the stored goods at address G as hlI, the difference from the height ha is h(・he-he) is the time required for hoisting the load (1 h) or the time required for lowering the load (1) is determined from the maximum hoisting or lowering speed and their acceleration/deceleration, and on the other hand, from address A, Calculate the time it takes for the crane to rise to its maximum speed after it starts traveling or traversing, and if address G is in the area between address F and address B, use this time to calculate the load at address F. After calculating the time jg+ for the load to reach the compartment line at address G or the time tg2 for the load to reach the compartment line at address G, taking into account the deceleration, stop, and subsequent acceleration of the load, first The winding is started by a certain winding correction amount Δh, and then,
When the height hg is equal to the height ha, the height of the load is maintained, and when the height hg is greater than the height ha, t
When h≦tgI, the crane starts traveling or traversing while continuing hoisting, and when the hoisting of the difference in height is completed, the height of the load is maintained at that height and the crane is moved to the upper part of the compartment at address G. The load is moved at the maximum speed in , and when th > t, lI, except that the start of crane travel or traversing is delayed by the difference between time th and tgl from the above-mentioned time point.
Move the load in the same way as when th≦t, ll above, and when the height hg is smaller than the height ha, tl≧js2
When , the crane starts lowering and moves, and when 1m<tg2, the height of the load is reduced to h.
The crane starts traveling or traversing while holding the load at g + Δh, and lowering is started after a delay of tg2-1, and in both cases, the load is lowered by the height difference ha-hg while reaching address G. Next, the same calculation is performed between the section with address G and the section with address B, and other winding or winding operations are performed except for the operation of winding by the first winding correction amount Δh. The lowering operation is repeated to move the load to the next target address, and on the other hand, the distance traveled or traversed by the crane during the time it takes to stop moving the load from the moving speed is calculated. Calculate the crane and start decelerating the crane from the point where the load reaches the specified distance before address F, and when the load reaches the section of address F, stop the crane's movement and immediately start traversing or traveling. Then, move the load again at the maximum speed in the direction of address B, and similarly start decelerating the crane from the point where the load reaches the distance before address B, and when the load reaches the compartment of address B. , the movement of the crane is stopped, and finally the load is lowered by the initial correction amount Δh, thereby completing the transportation of the ha load.

〔作用〕[Effect]

このようにして、帯状領域の途中の貯品の最高の高さが
荷の運搬開始番地と運搬目標番地における貯品の高さよ
りも高いとき、帯状領域の貯品の最高の高さと二つの迂
回領域の途中の番地の貯品の最高の高さを比較して、い
ずれか最低の最高貯品高さを有する迂回領域を運搬経路
として選出し、運搬を開始する番地の貯品の高さから、
直線状に配列された迂回経路の終点の番地の貯品の高さ
を眺める視線より上方に突出する高さの貯品が存在する
最初の区画を求めて、該区画との高度差に安全上十分な
補正量を加えて、巻上げまたは巻下げを行いながら運搬
経路に沿い荷を移動させ、該区画の区画線(巻上げ時)
または上方(巻下げ時)に到達する前に、ふたたび同様
の演算をくり返して、上述した運搬経路内のすべての障
害となる貯品の山積みをかわしながら、可能な最大速度
で荷を移動させることができる。
In this way, when the maximum height of the stored goods in the middle of the strip area is higher than the height of the stored items at the transport start address and the transport target address, the maximum height of the stored goods in the belt area and the two detours are determined. Compare the highest heights of stored goods at addresses in the middle of the area, select the detour area with the lowest maximum stored goods height as the transport route, and select from the height of stored goods at the address where transport starts. ,
Find the first section where there is a stored item that protrudes above the line of sight of the stored item at the end address of the detour route arranged in a straight line, and calculate the height difference from the specified section for safety reasons. With sufficient compensation, move the load along the transport route while hoisting or lowering, and set the division line of the section (at the time of hoisting).
Or, before reaching the top (when unloading), repeat the same calculation again to move the load at the maximum possible speed while avoiding all the obstacles in the transport route mentioned above, such as piles of stored goods. Can be done.

〔実施例〕〔Example〕

本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の天井走行うレーンの制御方法の一実施
例が適用される貯品ヤードの番地区画(番地は未記入)
を示す平面図、第2図は本実施例により番地Aの区画か
ら番地Bの区画まで貯品を運搬するときの演算に用いら
れる、両区画を結ぶ帯状領域1(ドツトで示された範囲
)を示す貯品ヤード平面図、第3図は、番地Aの区画と
番地Bの区画を対角の位置に有する長方形領域の周辺に
沿う迂回領域2.3(二重線で囲まれた範囲)を示す貯
品ヤード平面図、第4図は第3図の迂回領域2について
番地Aより対角位置の番地F、に至る区画領域の延長上
に、番地F、より番地Bに至る区画領域を一直線に配列
した領域図、第5図および第6図は、それぞれ番地りに
おける貯品の異なる高さに対する巻上げ方法の説明図で
ある。
Figure 1 shows the address section of a storage yard to which an embodiment of the overhead lane control method of the present invention is applied (the address is not written).
FIG. 2 is a plan view showing a band-shaped area 1 (range indicated by a dot) connecting both compartments, which is used for calculations when transporting stored goods from the compartment with address A to the compartment with address B according to this embodiment. The floor plan of the storage yard shown in Figure 3 is a detour area 2.3 (range surrounded by double lines) along the periphery of a rectangular area that has a section with address A and a section with address B at diagonal positions. Fig. 4 is a plan view of the storage yard showing the detour area 2 in Fig. 3, and on the extension of the partition area from address A to address F, which is diagonally located, there is a partition area extending from address F to address B. The linearly arranged area diagrams, FIGS. 5 and 6, are explanatory diagrams of winding methods for different heights of stored items at addresses, respectively.

貯品ヤードは長平方向および長手方向に対して直角方向
に、それぞれ一定の長さ89幅すで碁盤目状に区分され
、それぞれの区画には番地が与えられておha貯品はす
べて各区画内に積み上げられて別置の(不図示)計算機
システムにより番地毎に在庫管理され、同時に貯品ヤー
ドに設置された貯品運搬用の天井走行うレーンも、この
計算機システムにより制御される。すなわち、各区画内
に置かれている個々の貯品の識別コードやサイズ等の諸
元およびその積み上げ高さが、常時、計算機システムに
入力されて番地毎に管理されておhaこれらの情報は必
要な場合、任意にクレーン制御に利用される。これらの
情報中の貯品積み上げ高さは、運搬された荷の着床検出
により自動的に、あるいはCRT等で監視して人手によ
ha容易に修正できる。
The storage yard is divided into a grid of fixed lengths and 89 widths in the longitudinal direction and the direction perpendicular to the longitudinal direction, and each section is given an address and all stored goods are stored in each section. The inventory is managed by address by a separate computer system (not shown), and at the same time, the overhead lane for transporting stored items installed in the storage yard is also controlled by this computer system. In other words, the identification codes, sizes, and other specifications of the individual stored items placed in each compartment, as well as their stacking heights, are constantly input into a computer system and managed for each address. Optionally used for crane control if necessary. The height of stored goods in this information can be easily corrected automatically by detecting the landing of the transported cargo, or manually by monitoring with a CRT or the like.

次に、第1図に示した貯品ヤードにおいて、本実施例を
用いて貯品を横持ちする場合の動作を説明する。
Next, an explanation will be given of the operation of horizontally holding stored goods using this embodiment in the stored goods yard shown in FIG.

いま、番地Aの区画内に高さhaに山積みされた貯品の
頂上から番地Bの区画内に山積みされた貯品の頂上まで
指定された1個の貯品な運搬する場合、まず、番地A、
Hの各区画の対応する角を直線で結んで形成された真直
ぐな帯状領域1を想定し、この帯状領域1と区画の全部
または一部が重畳するすべての番地を選出する。次に第
3図に示すように、番地Aと番地Bの両区画をそれぞれ
対角の位置に有する貯品ヤード内の長方形領域のうち、
番地Aの区画より貯品ヤードの長手方向に配列された区
画領域端の対角位置の番地F、の区画に至ha次いで該
区画より貯品ヤードの幅方向に配列された区画領域を経
て番地Bの区画に至る迂回領域2、および番地Aの区画
より貯品ヤードの幅方向に配列された区画領域端の対角
位置の番地F2の区画に至ha次いで該区画より貯品ヤ
ードの長手方向に配列された区画領域を経て番地Bの区
画に至る迂回領域3を定め、番地Aおよび番地B以外の
前記帯状領域1とこれらの迂回領域2.3に区画の全部
または一部が重畳するすべての区画の番地を検出する。
If you want to transport a designated stored item from the top of a pile of stored goods piled up to a height ha in a block with address A to the top of a pile of stored goods piled up in a block with address B, first, A,
Assuming a straight strip area 1 formed by connecting corresponding corners of each section of H with straight lines, all addresses where this strip area 1 and all or part of the section overlap are selected. Next, as shown in Fig. 3, among the rectangular areas in the storage yard that have both sections A and B at diagonal positions,
From the section with address A, go to the section with address F, located diagonally at the end of the sectioned area arranged in the longitudinal direction of the storage yard.Then from the section, go through the sectioned area arranged in the width direction of the storage yard, and then go to the address. A detour area 2 leading to section B, and a section from address A to section F2 at a diagonal position at the end of the section area arranged in the width direction of the storage yard, and then from the section in the longitudinal direction of the storage yard. A detour area 3 leading to the block with address B through the divided areas arranged in Detect the address of the parcel.

次に、帯状領域1に属する番地のうち、積み上げられた
貯品の高さが最高である番地Cの貯品の高さをhcとし
、二つの迂回領域2.3のそれぞれに属する番地のうち
、積み上げられた貯品の高さが最高である番地haEの
貯品の高さを、それぞれhd、heとじ、番地Aと番地
Bに積み上げられた運搬材を除く貯品の高さを、それぞ
れha、heとするとき、これらの貯品の高さha、h
b、hc、hd、heを比較して、hc>haおよびh
b かつ、hc>heおよびhaのとき、高さhdと高さh
a、が異なる場合はいずれか低い方の迂回領域を、また
高さhdと高さhgが等しい場合はいずれか一方の迂回
領域を、荷の運搬経路として選出する。いまの場合はh
c>ha、hb 、かつhc>hd、heであhaまた
he>hdであるものとして、迂回領域2が選出された
ものとする。
Next, among the addresses belonging to the strip area 1, the height of the stored goods at the address C, which has the highest height of the stored goods, is set as hc, and among the addresses belonging to each of the two detour areas 2.3, , the height of the stored goods at address haE, which has the highest height, are hd and he, respectively. When ha and he, the heights of these stored goods ha and h
Comparing b, hc, hd, he, hc>ha and h
b and when hc>he and ha, height hd and height h
If the heights hd and hg are equal, then one of the lower detour areas is selected as the load transport route. In this case h
It is assumed that the detour area 2 is selected on the assumption that c>ha, hb, hc>hd, he and ha and he>hd.

次に第4図に示すように、迂回領域2のうち、番地Aよ
り他端の対角位置の番地F1より番地Bに醪る領域と、
この領域の延長として番地F1より番地Bに至る領域を
荷の運搬方向順に一直線に配列したものとして、それぞ
れの区画内に積み上げられた貯品の高さを検索し、荷の
移動を開始する番地Aの運搬材を除く山積みの高さha
における区画線のうち移動方向側の区画線から、検索さ
れた各番地の山積みの高さにおける区画線のうち番地A
に近い区画線を眺めた水平面からの仰角(正または負)
を算出して、そのうちの最大角度を有する番地を決定す
る。例えば第3図中の番地りにおける山積みの高さをh
aとすると、この仰解される。いまの場合、これらの算
出された各角度のうち、番地りの仰角θd(正)が最大
であるものとする。
Next, as shown in FIG. 4, in the detour area 2, there is a region from address F1 to address B at the other end diagonal position than address A;
As an extension of this area, the area from address F1 to address B is arranged in a straight line in the order of the transport direction of the load, and the height of the stored goods stacked in each section is searched and the address where the movement of the load is started is searched. Height of the pile (ha) excluding transported materials in A
From the lot line on the movement direction side among the lot lines in , to the lot line A at the height of the pile of each searched address
Angle of elevation (positive or negative) from the horizontal plane when looking at the lot line near the
is calculated, and the address having the maximum angle is determined. For example, if the height of the pile at the address in Figure 3 is h
If it is a, then this argument is understood. In this case, it is assumed that among these calculated angles, the elevation angle θd (positive) of the address is the largest.

次に、番地Aより番地りに至るクレーンの走行速度が達
し得る最高速度に達する時間を求め、これを考慮に入れ
て、クレーンの荷(長さ81幅すと想定)が番地りの領
域に入るまでの時間tdlを求める。一方、番地りと番
地Aの山積みの高さの差ha−haを巻上げihとして
、この値りと巻上げの最高速度とその加減速度とから、
巻上げに要する時間thを求める。
Next, calculate the time required for the crane to reach the maximum speed it can reach from address A to the address, and take this into account when the crane load (assumed to be 81 mm long) reaches the area of the address. Find the time tdl until entering. On the other hand, let the difference ha-ha between the height of the pile of address and address A be the winding ih, and from this value, the maximum speed of winding, and its acceleration/deceleration,
Find the time th required for winding.

そこで、まずクレーンの巻上げを開始して、設定された
補正量Δhだけ荷を巻上げた後に、(+)th≦tdl
の場合 番地Aから、荷の巻上げを続けながら、設定した加速度
と速度にしたがいクレーンの走行を開始する。第5図は
th=tdlの場合を示しておha荷を巻上げながら運
搬すると、時間th後、巻上げが終った時点で荷は番地
りの区画線に到着しておha番地・Dの高さhaを補正
量Δhだけクリアすることが可能となっておha荷をそ
のまま一定の高さとして番地りの山積みの上方に進入さ
せる。th<tdlの場合は、荷が番地りの区画線に到
達するまで巻上げは終ha荷をその高さで番地りの区画
内に進入させる。
Therefore, first, the crane starts hoisting, and after hoisting the load by the set correction amount Δh, (+)th≦tdl
In this case, the crane starts traveling from address A according to the set acceleration and speed while continuing to hoist the load. Figure 5 shows the case where th = tdl, and when a load is hoisted and transported, after a time th, when the hoisting is finished, the load arrives at the lot line of the address and reaches the height of the address D. It becomes possible to clear ha by the correction amount Δh, and the ha cargo is allowed to enter above the pile at the address as it is at a constant height. If th<tdl, hoisting is continued until the load reaches the division line of the address, and the load enters the division of the address at that height.

(2) th >tdlの場合 上述した(1)の場合のような運転をすれば、巻上げ量
りを巻上げる以荷に番地りの山積みに荷が衝突してしま
うので、この場合は第6図に示すように、まず巻上げの
みを継続して、クレーンの走行は時間をth−tdlだ
け遅らせて開始することによha荷は番地りをクリアす
ることができる。
(2) If th > tdl If you operate as in case (1) above, the load will collide with the pile at the address after hoisting the hoisting scale, so in this case, as shown in Figure 6. As shown in FIG. 1, by continuing only hoisting and starting the movement of the crane with a delay of th-tdl, the HA load can be cleared from the address.

次に、荷が番地りの区画内に入るまでに、ふたたび最初
の場合と同様の方法で、第4図について番地りから見た
迂回領域2内の各番地について仰角の最大のものを求め
る。第5図5第6図はいずれも終点Bの仰角(負)が唯
一最大である場合を示し、終点の番地Bが選ばれて、荷
をその高さのままとしてクレーンの走行を維続する。
Next, in the same manner as in the first case, the maximum angle of elevation for each address in the detour area 2 as seen from the address in FIG. 4 is determined until the load enters the address section. Figure 5 and Figure 6 both show the case where the elevation angle (negative) of the end point B is the only maximum, and the end point address B is selected and the crane continues to travel with the load at that height. .

一方、クレーンの走行速度から停止させるまでの時間中
のクレーンの走行距離を演算し、荷が番地F、よりその
距離だけ手前に到達した地点よりクレーンの減速を開始
して、荷が番地F1の区画内に到達したとき、クレーン
を停止し、直ちに番地Bの方向にクレーンの横行を開始
して、ふたたび最大速度で荷を運搬する。巻下げを開始
する地点は、終点の番地Bの山積みの高さhbと番地り
の山積みの高さhdとの差から巻下げ量が求まha上述
した前段の計算と全く同様にして巻下げに必要な時間を
計算し、この時間中にクレーンが移動を停止するまでの
横行を行う距離を演算することにより算出できる。また
、横行速度の減速を開始する地点は、荷の現在位置と番
地Bの間の残り横行距離と横行速度とその減速度より容
易に計算できる。
On the other hand, the distance traveled by the crane during the time until it is stopped is calculated from the traveling speed of the crane, and the crane is decelerated from the point when the load reaches address F by that distance, and the load is moved to address F1. Upon reaching the compartment, the crane is stopped and immediately begins traversing in the direction of address B, again transporting the load at maximum speed. The lowering point is determined from the difference between the height hb of the pile at address B at the end point and the height hd of the pile at address ha. This can be calculated by calculating the time required for this and calculating the distance that the crane will traverse until it stops moving during this time. Further, the point at which the deceleration of the traversing speed is started can be easily calculated from the remaining traversing distance between the current position of the load and the address B, the traversing speed, and its deceleration.

このようにして、クレーンの横行速度の減速と荷の巻下
げを行い、荷が番地Bの区画内に到達したとき、補正値
Δhだけ巻下して荷を置くことができる。
In this way, the traverse speed of the crane is reduced and the load is lowered, and when the load reaches the compartment at address B, it is possible to lower the load by the correction value Δh and place the load.

上述の例においては、途中障害となる山積みは番地りの
みとしたが、番地り以前、あるいは以後にも障害となる
山積みを有する番地が存在するときは同様の計算をくり
返すことによha目的を達することができる。
In the above example, only the address has a pile that becomes an obstacle, but if there is an address that has a pile that becomes an obstacle before or after the address, the same calculation can be repeated to solve the problem. can be reached.

実際の運用上は、次に記すような理由から運転方法や演
算に補正を行うことが必要となる。例えば第3図でいえ
ば、材料同士でこすらないように番地りの領域では高さ
hdよりも少し持ち上げてクリアさせるであろうし、ま
た番地Bの真上に来て少し巻き下すことにより終点の番
地Bの山積み上に載せる運転とすることが必要であha
クリアすべき高さの計算に当フては補正項Δhを導入す
ることにより可能とされる。すなわち、補正項Δhは、
積荷高さの計測誤差、衝突回避のための安全、あるいは
吊下げられた荷のたわみ等を全て含んだ補正量を表わし
ている。
In actual operation, it is necessary to correct the operating method and calculations for the following reasons. For example, in Figure 3, in order to prevent the materials from rubbing against each other, the area at the address would be lifted a little higher than the height hd to clear it, and when it came directly above address B, it would be rolled down a little to clear the area at the end point. It is necessary to operate the vehicle by placing it on top of the pile at address B.
This can be achieved by introducing a correction term Δh into the calculation of the height to be cleared. That is, the correction term Δh is
This represents a correction amount that includes all factors such as measurement errors in load height, safety for collision avoidance, and deflection of suspended loads.

(発明の効果) 以上説明したように本発明は、貯品ヤード内の任意の番
地Aから他の任意の番地Bに荷を天井クレーンにより運
搬するとき、帯状領域に属する番地の貯品の最高の高さ
が、番地A、Bの貯品の高さよりも高く、かつ、少なく
ともいずれかの迂回領域の貯品の最高の高さよりも高い
とき、該迂回領域の貯品の最高の高さよりも高いとき、
該迂回領域を荷の運搬経路に選定して、番地Aから番地
Bを眺めて、途中の山積みのうち視線から山積みがはみ
出している区画を選定し、その高さをクリアする荷の高
さで荷を保持して該区画を通過するように巻上げまたは
巻下げ量とそのタイミングを演算して制御するとともに
、荷を迂回領域に沿い移動させ、途中、障害となった山
積みの区画をクリアする都度、同様の演算をくり返すこ
とによha帯状領域を番地Aから番地Bまで荷を運搬す
る場合に比較して、巻上げ、および巻下げに要するエネ
ルギーを節約することができるという効果がある。
(Effects of the Invention) As explained above, the present invention provides the following advantages: when a load is transported from an arbitrary address A in a storage yard to another arbitrary address B by an overhead crane, the highest is higher than the height of the stored items at addresses A and B, and higher than the maximum height of the stored items in at least one of the detour areas, than the maximum height of the stored items in the detour area. When it's high,
Select this detour area as the transport route for the load, look from address A to address B, select a section of the pile that protrudes from the line of sight, and set the height of the load to clear that height. It calculates and controls the amount and timing of hoisting or lowering so as to hold the load and pass through the section, and also moves the load along the detour area, each time clearing a pile of sections that were an obstacle along the way. , by repeating similar calculations, the effect is that the energy required for hoisting and lowering can be saved compared to the case where a load is transported from address A to address B in a ha band-shaped area.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の天井走行うレーンの制御方法の一実施
例が適用される貯品ヤードの番地区画を示す平面図、第
2図は本実施例により番地Aの区画から番地Bの区画ま
で貯品を運搬するときの演算に用いられる、両区画を結
ぶ帯状領域1(ドツトで示された範囲)を示す貯品ヤー
ド平面図、第3図は番地Aの区画と番地Bの区画を対角
の位置に有する長方形領域の周辺に沿う迂回領域2.3
(二重線で囲まれた範囲)を示す貯品ヤード平面図、第
4図は第3図の迂回領域2について、番地Aより対角位
置の番地F1に至る区画領域の延長上に、番地F1より
番地Bに至る区画領域を一直線に配列した領域図、第5
図および第6図は、それぞれ番地りにおける貯品の異な
る高さに対する巻上げ方法の説明図である。 1・・・・・・帯状領域、 2.3・・・迂回領域、 A、B、C,D、E、F、、F2・・・区画の番地、a
・・・・・・一区画の長平方向の長さ、b −−−−−
−一区画の幅方向の長さ、hお・・・番地Aの貯品山積
み高さ、 hb−・・番地Bの貯品山積み高さ、 hd−・・番地りの貯品山積み高さ、 Δh・・・巻上げ補正量、 θd・・・番地Aの区画線(移動側)から番地りの区画
線(番地A側)を眺めた仰角。
FIG. 1 is a plan view showing the address divisions of a storage yard to which an embodiment of the overhead lane control method of the present invention is applied, and FIG. 2 is a plan view showing the divisions from address A to address B according to this embodiment. A floor plan of the storage yard showing the strip area 1 (range indicated by dots) connecting both compartments, which is used for calculations when transporting stored goods to Detour area 2.3 along the periphery of the rectangular area at the diagonal position
Figure 4 is a plan view of the storage yard showing (the area surrounded by double lines), regarding the detour area 2 in Figure 3, the address Area diagram in which the divided areas from F1 to address B are arranged in a straight line, No. 5
FIG. 6 and FIG. 6 are explanatory diagrams of winding methods for different heights of stored items at addresses, respectively. 1... Strip area, 2.3... Detour area, A, B, C, D, E, F,, F2... Block address, a
・・・・・・Length of one section in the horizontal direction, b −−−−−
- Length in the width direction of one section, h...Height of the pile of stored goods at address A, hb--Height of the pile of stored goods at address B, hd--Height of the pile of stored goods at address B, Δh: Winding correction amount, θd: Elevation angle when viewing the address partition line (address A side) from the partition line of address A (moving side).

Claims (1)

【特許請求の範囲】 1、貯品ヤードの長手方向および長手方向に直角の幅方
向がそれぞれ一定の長さで区分されて碁盤目状の複数の
区画が構成され、それぞれの区画にはその区画を示す番
地が附されており、常時、各番地区画内に積上げられた
個々の貯品の種別、寸法等の諸元およびそれらの積み上
げ高さを記録して、これらの貯品の在庫管理を行うとと
もに、貯品ヤードに設置された貯品運搬用の天井走行う
レーンの現在位置を常時入力して、その制御を行う計算
機システムの天井走行うレーンの制御方法であって、 前記天井走行うレーンにより、荷を任意の番地Aから他
の任意の番地Bに運搬するとき、まず、貯品ヤードのう
ち、番地Aと番地Bの両区画間を真直ぐに結ぶ帯状領域
と、番地Aと番地Bの両区画をそれぞれ対角の位置に有
する貯品ヤード内の長方形領域のうち、番地Aの区画よ
り貯品ヤードの長手方向に配列された区画領域端の対角
位置の区画に至り、次いで該区画より貯品ヤードの幅方
向に配列された区画領域を経て番地Bの区画に至る迂回
領域、および番地Aの区画より貯品ヤードの幅方向に配
列された区画領域端の対角位置の区画に至り、次いで該
区画より貯品ヤードの長手方向に配列された区画領域を
経て番地Bの区画に至る迂回領域を定め、番地Aおよび
番地B以外の前記帯状領域とこれらの迂回領域に区画の
全部または一部が重畳するすべての番地を検出し、 次に、帯状領域に属する番地に積み上げられた貯品の高
さのうち最高のものをh_cとし、二つの迂回領域のそ
れぞれに属する番地に積み上げられた貯品の高さのうち
最高のものを、それぞれh_dおよびh_eとし、番地
Aと番地Bに積み上げられた運搬材を除く貯品の高さを
、それぞれh_a、h_bとするとき、これらの貯品の
高さh_a、h_b、h_c、h_d、h_eを比較し
て、h_c>h_aおよびh_b かつ、h_c>h_dおよびh_aのとき、高さh_d
と高さh_eが異なる場合はいずれか低い方の迂回領域
を、また高さh_dと高さh_eが等しい場合はいずれ
か一方の迂回領域を、荷の運搬経路として選出し、 次に、選出した迂回領域のうち、番地Aより他端の対角
位置の番地Fに至る領域と、該領域の延長上に番地Fよ
り番地Bに至る領域を一直線に配列したものとして、そ
れぞれの番地に積み上げられた貯品の高さにおける該番
地の区画線のうち番地Aに近い側の区画線を、番地Aの
運搬材を除く貯品の高さにおける区画線のうち移動方向
側の区画線から眺めた面の水平面からの正または負の仰
角を演算して、それらのうち最大仰角を有する番地Gを
選出し、 次に、番地Gの貯品の高さをh_gとして、高さh_a
との差h(=h_g−h_a)を荷の巻上げをするのに
要する時間t_hまたは荷の巻下げをするのに要する時
間t_lを、巻上げまたは巻下げ最高速度とそれらの加
減速度とより求め、一方、番地Aからクレーンの走行ま
たは横行を開始してから最大速度に立上がる時間を計算
し、この時間を用いて、かつ、番地Gが番地Fから番地
Bに至る間の領域にあるときは、番地Fにおける荷の減
速、停止と引続く加速も考慮して荷が番地Gの区画線に
到達するまでの時間t_g_1または荷が番地Gの区画
内に到達するまでの時間t_g_2を求めた後、 まず、荷の巻上げを開始して一定の巻上げ補正量Δhだ
け巻上げを行い、 次に、高さh_gが高さh_aに等しい場合は荷の高さ
を保持したまま、また高さh_gが高さh_aよりも大
きい場合で、t_h≦t_g_1のときは、引続き巻上
げを行いながらクレーンの走行または横行を開始して、
高さの差hの巻上げ終了時に荷の高さをその高さに保持
したまま、番地Gの区画内上部に荷を最大速度で移動さ
せ、t_h>t_g_1のときは、クレーンの走行また
は横行の開始を上述した時点より時間t_hとt_g_
1の差だけ遅らせること以外は、上述のt_h≦t_g
_1のときと同様の方法で荷を移動させ、 高さh_gが高さh_aよりも小さい場合で、t_l≧
t_g_2のときはクレーンの巻下げを開始するととも
にクレーンの移動を開始し、t_l<をa_2のときは
、荷の高さをh_a+Δhに保持したままクレーンの走
行または横行を開始し、時間の差t_g_2−t_lだ
け遅らせて巻上げを開始し、いずれのときも、荷を高さ
の差h_a−h_gだけ巻下げながら番地Gの区画内上
部に移動させ、 次に、番地Gの区画と番地Bの区画の間について同様の
演算を行い、最初の巻上げ補正量Δhだけ巻上げる動作
を除く他の巻上げ、または巻下げ動作をくり返して荷を
次の目標とする番地の区画内に移動させ、 一方、クレーンの走行または横行については荷の移動を
移動速度から停止させるまでの時間中のクレーンの走行
または横行距離を演算し、荷が番地Fより該距離だけ手
前に到達した地点よりクレーンの減速を開始して、荷が
番地Fの区画内に到達したとき、クレーンの移動を停止
し、直ちに横行または走行を開始してふたたび最大速度
で荷を番地B方向に移動させ、同様に荷が番地Bより前
記距離だけ手前に到達した地点よりクレーンの減速を開
始して、荷が番地Bの区画内に到達したとき、クレーン
の移動を停止し、 最終的に、荷を最初の補正量Δhだけ巻下げる天井走行
うレーンの制御方法。 2、前記補正量Δhは、貯品の積み上げ高さの誤差や、
貯品相互間の摩擦および衝突回避のための安全、あるい
は、クレーンに荷を吊下げたときのクレーンおよび荷の
撓み量を考慮して設定された値である特許請求の範囲第
1項に記載の天井走行うレーンの制御方法。
[Scope of Claims] 1. The storage yard is divided into a plurality of sections in a grid pattern by dividing each of the longitudinal direction and the width direction perpendicular to the longitudinal direction by a certain length, and each section has its own section. Inventory management of these stored items is carried out by constantly recording the types, dimensions, and other specifications of each stored item piled up in each address block, as well as their stacking height. A method for controlling an overhead running lane of a computer system, which controls the overhead running lane by constantly inputting the current position of an overhead running lane installed in a storage yard for transporting stored goods, the method comprising: When transporting cargo from an arbitrary address A to another arbitrary address B using a lane, first, in the storage yard, there is a strip-shaped area that connects both sections A and B in a straight line, and an area between A and B. Among the rectangular areas in the storage yard that have both sections B at diagonal positions, the section with address A reaches the section at the diagonal position at the end of the section area arranged in the longitudinal direction of the storage yard, and then A detour area leading from the compartment to the compartment at address B via the compartment area arranged in the width direction of the storage yard, and a diagonal position of the end of the compartment area arranged in the width direction of the storage yard from the compartment at address A. Determine a detour area leading to the section, and then from the section through the section areas arranged in the longitudinal direction of the storage yard to the section at address B, and divide the strip area other than address A and address B into these detour areas. Next, the highest height of the stored goods piled up at the addresses belonging to the strip area is set as h_c, and the addresses belonging to each of the two detour areas are detected. Let h_d and h_e be the highest heights of stored goods piled up at address A and address B, respectively, and let h_a and h_b be the heights of stored goods piled up at address A and address B, excluding transport materials, respectively. Compare the heights h_a, h_b, h_c, h_d, h_e of these stored items, and when h_c>h_a and h_b and h_c>h_d and h_a, the height h_d
If the height h_e and the height h_e are different, select the lower detour area, or if the height h_d and the height h_e are equal, select one of the detour areas as the load transportation route. In the detour area, an area from address A to address F at the other end diagonally, and an area extending from address F to address B on the extension of the area are arranged in a straight line, and are stacked at each address. The lot line on the side closer to address A of the lot line at the height of the stored goods stored at address A is viewed from the lot line on the moving direction side among the lot lines at the height of the stored goods excluding the transported materials at address A. Calculate the positive or negative elevation angle of the surface from the horizontal plane, select the address G with the maximum elevation angle among them, and then, assuming the height of the store at address G as h_g, the height h_a
The time t_h required to hoist the load or the time t_l required to lower the load is calculated from the maximum hoisting or lowering speed and their acceleration/deceleration, and On the other hand, calculate the time from when the crane starts traveling or traversing from address A to the maximum speed, and using this time, and when address G is in the area between address F and address B, , after determining the time t_g_1 until the load reaches the compartment line at address G or the time t_g_2 until the load reaches the compartment at address G, taking into account deceleration, stop, and subsequent acceleration of the load at address F. , First, start hoisting the load and hoist it by a certain hoisting correction amount Δh. Next, if the height h_g is equal to the height h_a, the height of the load is maintained, and the height h_g is If t_h≦t_g_1, the crane starts traveling or traversing while continuing to hoist.
At the end of hoisting the height difference h, the load is moved to the upper part of the compartment at address G at maximum speed while maintaining the height of the load. Time t_h and t_g_ from the time when the start is mentioned above.
Except for delaying by a difference of 1, the above t_h≦t_g
Move the load in the same way as in _1, and when the height h_g is smaller than the height h_a, t_l≧
When t_g_2, the crane starts lowering and moves, and when t_l<a_2, the crane starts traveling or traversing while maintaining the height of the load at h_a+Δh, and the time difference is t_g_2. - Start hoisting with a delay of t_l, and in each case, lower the load by the height difference h_a-h_g and move it to the upper part of the compartment at address G, and then move it to the upper part of the compartment at address G and the compartment at address B. Similar calculations are performed between 1 and 2, and other hoisting or lowering operations are repeated except for the operation of hoisting by the first hoisting correction amount Δh, and the load is moved to the next target address area. For traveling or traversing, calculate the traveling or traversing distance of the crane during the time from the moving speed to stopping the movement of the load, and start decelerating the crane from the point where the load reaches the specified distance before address F. When the load reaches the compartment at address F, the crane stops moving, immediately starts traversing or running, and moves the load again at maximum speed in the direction of address B. The crane starts decelerating from the point where it reaches the front by the distance, and when the load reaches the area with address B, the crane stops moving, and finally lowers the load by the initial correction amount Δh. How to control the lane in which you run. 2. The correction amount Δh is based on the error in the stacking height of stored items,
According to claim 1, the value is set in consideration of safety for avoiding friction and collision between stored items, or the amount of deflection of the crane and the load when the load is suspended from the crane. A method of controlling lanes that run overhead.
JP62147851A 1987-06-16 1987-06-16 Control method for overhead traveling crane Expired - Lifetime JP2513696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62147851A JP2513696B2 (en) 1987-06-16 1987-06-16 Control method for overhead traveling crane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62147851A JP2513696B2 (en) 1987-06-16 1987-06-16 Control method for overhead traveling crane

Publications (2)

Publication Number Publication Date
JPS63315491A true JPS63315491A (en) 1988-12-23
JP2513696B2 JP2513696B2 (en) 1996-07-03

Family

ID=15439691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62147851A Expired - Lifetime JP2513696B2 (en) 1987-06-16 1987-06-16 Control method for overhead traveling crane

Country Status (1)

Country Link
JP (1) JP2513696B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062130A (en) * 2007-09-05 2009-03-26 Jfe Steel Kk Method and device for controlling interference between crane and truck
JP2010058956A (en) * 2008-09-05 2010-03-18 Daifuku Co Ltd Article storage facility
JP2010058957A (en) * 2008-09-05 2010-03-18 Daifuku Co Ltd Article storage facility
JP2013040052A (en) * 2012-11-30 2013-02-28 Daifuku Co Ltd Article storage facility
US9221604B2 (en) 2008-09-05 2015-12-29 Daifuku Co., Ltd. Article storage facility and method of operation therefor
JP2018030714A (en) * 2016-06-22 2018-03-01 ザ・ボーイング・カンパニーThe Boeing Company Systems and methods for object guidance and collision avoidance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062130A (en) * 2007-09-05 2009-03-26 Jfe Steel Kk Method and device for controlling interference between crane and truck
JP2010058956A (en) * 2008-09-05 2010-03-18 Daifuku Co Ltd Article storage facility
JP2010058957A (en) * 2008-09-05 2010-03-18 Daifuku Co Ltd Article storage facility
US9221604B2 (en) 2008-09-05 2015-12-29 Daifuku Co., Ltd. Article storage facility and method of operation therefor
JP2013040052A (en) * 2012-11-30 2013-02-28 Daifuku Co Ltd Article storage facility
JP2018030714A (en) * 2016-06-22 2018-03-01 ザ・ボーイング・カンパニーThe Boeing Company Systems and methods for object guidance and collision avoidance

Also Published As

Publication number Publication date
JP2513696B2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
US4753357A (en) Container crane
CN209275405U (en) High density intelligent warehousing system
WO2020082812A1 (en) High-density intelligent warehousing system and warehousing loading and unloading method
CN109132610B (en) Automatic wharf loading and unloading system and method for single-box span yard crane
JP2019077522A (en) Container terminal and method for operating the same
CN106029547A (en) Stacker crane with an intermediate storage area for containers
JPS63315491A (en) Method of controlling overhead travelling crane
JP2518176B2 (en) Control method for overhead traveling crane
JP2000255786A (en) Container terminal
JP2023520206A (en) Parcel-based speed reduction
JP2023524443A (en) Optimizing the operating capacity of container handling vehicles assigned to interact with the same ports for transferring storage containers to and from automated storage and retrieval systems. good use
CN114030906B (en) Automatic wharf container loading and unloading system and loading and unloading method
CN116101671A (en) Method, device, equipment and storage medium for carrying bagged materials
JPS6025341B2 (en) Automatic warehouse for coils
JP5105671B2 (en) Container terminal system
JPH05286527A (en) Control of crane for stocking/delivery work and device therefor
WO2020049285A1 (en) Vehicle for hatch cover storage
CN218950468U (en) Automatic empty bin yard system
JPS62121193A (en) Method of automatically operating crane
JPH04235806A (en) Warehousing-delivery work of automatic storage
JPH08208180A (en) Trolley traverse stop aligning device of crane
JP2020083538A (en) Method and program for determining reposition site, and crane control system
CN116477386A (en) Efficient operation container port land area system and operation method thereof
BR102021002222A2 (en) ROBOTIZED SYSTEM FOR HANDLING AND STORAGE OF CONTAINERS IN VERTICAL STRUCTURES
CN117114215A (en) Multi-vehicle conflict avoidance algorithm based on grid map self-adaptive time window