JPS63314875A - Light emitting diode chip structure - Google Patents

Light emitting diode chip structure

Info

Publication number
JPS63314875A
JPS63314875A JP62150104A JP15010487A JPS63314875A JP S63314875 A JPS63314875 A JP S63314875A JP 62150104 A JP62150104 A JP 62150104A JP 15010487 A JP15010487 A JP 15010487A JP S63314875 A JPS63314875 A JP S63314875A
Authority
JP
Japan
Prior art keywords
light emitting
layer
light
led
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62150104A
Other languages
Japanese (ja)
Inventor
Ko Takahashi
高橋 香
Masaki Kajita
梶田 正喜
Mitsuharu Yoshida
吉田 光春
Takahide Kuwabara
桑原 隆秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP62150104A priority Critical patent/JPS63314875A/en
Publication of JPS63314875A publication Critical patent/JPS63314875A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To reduce the content of aluminum as much as possible and to enhance durability without varying an emitting light intensity by reducing the x value of a Ga1-xAlxAs light confinement layer to a predetermined value or smaller. CONSTITUTION:An LED 10 is formed as a laminated structure of a p-type Ga1-xAlxAs (x=0.7 or less) as a light confinement layer 12, a p-type Ga1-xAlxAs (x=0.35) as a light emitting layer 13 laminated thereon, and an n-type Ga1-xAlxAs (x=0.7 or smaller) as a light confinement layer 14 laminated on the layer 13, and a p-n junction is formed between the layers 13 and 14. An LED 10 is covered with a protective film 15 formed of an oxide film on the whole periphery except metal electrodes 16, 17, and a reflection of the light from a crystal end is regulated. The content of the aluminum is set to x=0.7 to obtain its durability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は発光ダイオードチップ、特にGaAlAsダブ
ルヘテロ接合発光ダイオードチップの構造に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a light emitting diode chip, particularly a GaAlAs double heterojunction light emitting diode chip.

・〔従来の技術及び問題点〕 近時、発光ダイオード(以下、LEDと略す)の発光効
率は著しく向上し、例えばm−v族化合物半導体を用い
たpn接合構造のLEDは、バイロフトランプや文字記
号などの表示装置等に広く利用され、また光通信用光源
や照明用光源としても実用化されつつある。
・[Prior art and problems] In recent years, the luminous efficiency of light emitting diodes (hereinafter abbreviated as LEDs) has significantly improved, and for example, LEDs with a pn junction structure using m-v group compound semiconductors have It is widely used in display devices for symbols, etc., and is also being put into practical use as a light source for optical communications and a light source for illumination.

このようなLEDの素材として、一般に1n+−xGa
、 p、 Ga+−xAl、w^Sv In+−x G
ag AS+−y  Pyなど異種のm−v族化合物半
導体の混晶を用いて、その成分比(X又はyの値)を変
えることにより禁制帯幅、屈折率の異なる結晶層を積層
した、所謂ダブルヘテロ接合を構成したLEDが知られ
ている。
The material for such LEDs is generally 1n+-xGa.
, p, Ga+-xAl, w^Sv In+-x G
ag AS+-y Using mixed crystals of different types of m-v group compound semiconductors such as Py, by changing the component ratio (X or y value), crystal layers with different forbidden band widths and refractive indexes are stacked, so-called. LEDs configured with a double heterojunction are known.

このようなダブルヘテロ接合を形成することによって、
LEDはキャリヤ閉じ込め作用及び光閉じ込め作用をも
つようになり、発光効率1発光強度1発光波長などの諸
性能が著しく向上する。そのなかで、Ga1−xAll
 As結晶を用いたLEDは、可視域である赤色(約6
50nm)付近から約900r+sの赤外領域までの広
い波長領域で発光することがら大きな需要をもつLED
として注目されている。
By forming such a double heterojunction,
LEDs now have a carrier confinement function and a light confinement function, and various performances such as luminous efficiency, luminous intensity, and luminous wavelength are significantly improved. Among them, Ga1-xAll
LEDs using As crystals emit red light in the visible range (approximately 6
LEDs are in great demand because they emit light in a wide wavelength range from around 50nm to the infrared region of about 900r+s.
It is attracting attention as

従来のダブルヘテロ構造を有する可視域(約650〜6
70n+m )のGa1−、^1.AsLEDは、第3
図に示すように、主に光透過層となる基板のp型Ga+
−xAlx AsJli 1  (成分比は通常、x−
0,65)の上に、光閉じ込め層となるp型Ga+−X
AIX As層2(x =0.8)を液相成長などによ
って積層し、その上に活性層と呼ばれる発光層となるp
型のGaAlAs、 As層3  (x =0.35)
を積層し、更にその上にpn接合を形成するとともに、
光閉じ込め層としてのn型Ga+−、Alx As層4
 (x =0.8)を積層成長させてLEDとしている
。そして、:亥LEDの発光面及び背面には、オーミッ
ク接触のための金属電極6.7がそれぞれ形成されてい
る。さらに、これら両電極6,7を除く結晶の周囲全体
は、酸化膜等によって形成した保護膜5にて被覆されて
おり、これにより水分などからLEDを保護したりまた
結晶端からの光の反射を調整したりするようになってい
る。
Visible range with conventional double heterostructure (approximately 650 to 6
70n+m) Ga1-, ^1. AsLED is the third
As shown in the figure, mainly p-type Ga+ of the substrate that becomes the light-transmitting layer
-xAlx AsJli 1 (component ratio is usually x-
0,65), p-type Ga+-X which becomes an optical confinement layer
AIX As layer 2 (x = 0.8) is laminated by liquid phase growth, etc., and on top of that is a p layer that becomes a light emitting layer called an active layer.
Type GaAlAs, As layer 3 (x = 0.35)
and further form a pn junction on top of it,
n-type Ga+-, Alx As layer 4 as an optical confinement layer
(x = 0.8) is grown in layers to form an LED. Metal electrodes 6 and 7 for ohmic contact are formed on the light emitting surface and the back surface of the LED. Furthermore, the entire periphery of the crystal except for these two electrodes 6 and 7 is covered with a protective film 5 formed of an oxide film, etc., which protects the LED from moisture etc. and also reflects light from the crystal edges. It is now possible to adjust the

このように積層されるGap−、Aim As結晶層の
ガリウム(Ga)  とアルミニウム(AI)の組成比
(即ちXの値)を変えるのは、禁制帯幅及び屈折率を各
層で変えることによってLEDの発光効率等の性能を向
上させるためであり、発光113を挟む光閉じ込めN2
及び4は、!−0,8とAIの含有率が大きく設定され
ている。
The composition ratio of gallium (Ga) and aluminum (AI) (that is, the value of This is to improve the performance such as the luminous efficiency of the
And 4 is! -0.8, the content rate of AI is set high.

しかしながら、このようにAIの含有率を多くした従来
のLEDにおいては、^lが活性であること或いは酸化
されやすいことなどの理由により、次のような問題が生
じていた。
However, in conventional LEDs with such a high AI content, the following problems have arisen because ^l is active or easily oxidized.

即ち、光閉じ込め層2及び4の^l混晶比が高いため吸
湿性が高く、水分の吸着によってその表面及び裏面に光
の吸収層を生成しやすく、それによって光が吸収されて
LEDの発光強度が動作時間の経過と共に低下していく
ことが多かった。このような発光強度の低下を防ぐため
に酸化膜等の保護膜5を形成して両電8i6.7を除く
周囲全面を密封しているのであるが、防湿効果上充分で
なくLEDの性能低下は避けられなかった。また、At
の含有率が高いために光閉じ込め層4の表面が酸化しや
すくこれに対し電極7のオーミック接触がとりにくいた
め歩留まりの低下を来していた。
In other words, the light confinement layers 2 and 4 have a high ^l mixed crystal ratio, so they have high hygroscopicity, and by adsorbing moisture, light absorption layers are easily generated on the front and back surfaces of the layers, which absorb light and cause the LED to emit light. The strength often decreased over time. In order to prevent such a reduction in luminous intensity, a protective film 5 such as an oxide film is formed to seal the entire area except for the 8i 6.7, but this is not sufficient in terms of moisture proofing and causes a decline in the performance of the LED. It was inevitable. Also, At
Due to the high content of the optical confinement layer 4, the surface of the optical confinement layer 4 is easily oxidized, and it is difficult to make ohmic contact with the electrode 7, resulting in a decrease in yield.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点に鑑み、アルミニウムの含有率を可能
な限り減少させることにより、発光強度が殆ど変化せず
、耐久性に富むGap−Jlw AsL EDを提供す
ることを目的としている。
In view of the above points, it is an object of the present invention to provide a Gap-Jlw AsL ED with almost no change in emission intensity and high durability by reducing the aluminum content as much as possible.

〔問題点を解決するための手段及び作用〕上記目的は本
発明によれば、GaA IAs発光層を上下から挟むG
a、□A1.As光閉じ込め層のX値がx=0.7以下
、好ましくはx−0,65以下であるダブルヘテロ接合
発光ダイオードチップにより達成される。
[Means and effects for solving the problem] According to the present invention, the above object is achieved by forming a G
a, □A1. This is achieved by a double heterojunction light emitting diode chip in which the As optical confinement layer has an X value of x=0.7 or less, preferably x-0.65 or less.

この発明によれば、光閉じ込めrMGap−Jim A
sのX値を減少したから、LEDの高温高温状態での使
用に対しても初期光度の低下率が抑えられ、オーミック
コンタクトが向上する。
According to this invention, optical confinement rMGap-Jim A
Since the X value of s is reduced, the rate of decrease in initial luminous intensity is suppressed even when the LED is used in high temperature conditions, and ohmic contact is improved.

〔実施例〕〔Example〕

以下、本発明によって得たGaAlAs L E Dの
断面購造例を示す第1図を参照して本発明をさらに説明
する。
Hereinafter, the present invention will be further explained with reference to FIG. 1, which shows a cross-sectional example of a GaAlAs LED obtained according to the present invention.

LEDIOは、光閉じ込めl112としてのp型のGa
p−xAlx As (x−0,7以下)と、その上に
積層された発光層13としてのp型Ga+−Jlx A
s (x −0,35)と、さらに該発光11113上
に積層された光閉じ込め層14としてのn型Ga+−、
Alx As (x =0.7以下)との積層構造体で
成り、上記p型の発光層13とn型の閉じ込め層14と
の間でpn接合が形成されている。 16.17はLE
DIOの発光面及び背面にそれぞれ形成された、オーミ
ック接触のための金属電極である。
LEDIO uses p-type Ga as optical confinement l112
p-xAlx As (x-0.7 or less) and p-type Ga+-Jlx A as the light emitting layer 13 laminated thereon
s (x −0,35), and n-type Ga+− as the optical confinement layer 14 layered on the light emitting layer 11113,
It is made of a laminated structure of AlxAs (x = 0.7 or less), and a pn junction is formed between the p-type light emitting layer 13 and the n-type confinement layer 14. 16.17 is LE
These are metal electrodes for ohmic contact formed on the light emitting surface and back surface of the DIO.

さらに、本実施例のLEDIOは、上記両電極16゜1
7の部分を除く周囲全体が酸化膜などによって形成され
た保護膜15にて被覆されており、外部の湿気からLE
DIOを保護し且つ結晶端からの光の反射を調整したり
するようになっている。
Furthermore, the LEDIO of this embodiment has both the electrodes 16°1
The entire surrounding area except for the part 7 is covered with a protective film 15 formed of an oxide film, etc., and the LE is protected from external moisture.
It protects the DIO and adjusts the reflection of light from the crystal edges.

ここで、LEDloの発光波長は主に発光7113の禁
制帯幅で左右されるから、該発光層13の^lの量は使
用目的に応じて設計設定される。LEDloを可視域で
発光させる場合、該へ1の比率は!=0.35程度であ
り、また赤外領域で発光させる場合には該発光層13の
A1比率をさらに下げ得るから、発光層13における光
の吸収層の生成は殆ど生しない。
Here, since the emission wavelength of LEDlo is mainly influenced by the forbidden band width of the light emission 7113, the amount of ^l of the light emitting layer 13 is designed and set according to the purpose of use. When LEDlo emits light in the visible range, the ratio of 1 to 1 is! = about 0.35, and when emitting light in the infrared region, the A1 ratio of the light emitting layer 13 can be further lowered, so that almost no light absorption layer is generated in the light emitting layer 13.

従って、光閉じ込め層12及び14を形成する場合、上
記発光層13に比しどの程度禁制帯幅を広げ、屈折率を
変化させるかが問題となる。従来では初期性能に拘わる
あまり、AIの比率を必要以上に含有した光閉じ込め層
を形成し、その結果前述した如き問題が誘起されていた
Therefore, when forming the optical confinement layers 12 and 14, the question is how much the forbidden band width should be widened and the refractive index should be changed compared to the above-mentioned light emitting layer 13. In the past, due to the initial performance concerns, an optical confinement layer containing a higher proportion of AI than necessary was formed, resulting in the above-mentioned problems.

本発明者等は、光閉じ込め層12.14のAI含有率を
従来値よりも漸次低下させながら、LEDの性能、光強
度の時間的変化と歩留まりについて種々の実験を繰り返
し、最適のAI含有率を見出した。
The present inventors have repeatedly conducted various experiments on LED performance, temporal changes in light intensity, and yield while gradually lowering the AI content of the optical confinement layer 12.14 from the conventional value, and have determined the optimal AI content. I found out.

即ち、光閉じ込め層のAIの含有率(Gaに対するAI
の組成比)をx=o、7以下にすることにより本発明の
目的が達成されることを見出した。
That is, the content of AI in the optical confinement layer (AI relative to Ga)
It has been found that the object of the present invention can be achieved by setting the composition ratio (x=o) to 7 or less.

いま、光閉じ込め層となるpH12と1層14との^l
の含有率をx=0.65とし、Gas、 3sA1*、
 6SA3とした結晶層を用いたLEDを作製し、高温
(85℃)且つ高温(RH=85%)で動作状態(順方
向電流Iv =30taA)において発光強度の時間的
変化を、AI比率が0.8 と高い従来のGats、 
xAle、 *As光閉じ込め層2,4を有するLED
と比較した。その際、両者でそれぞれ保護膜を形成した
ものとこれを形成しないものを各25個宛作製した。
Now, ^l of pH 12 and 1 layer 14, which will become the optical confinement layer.
Let the content rate of x=0.65, Gas, 3sA1*,
An LED using a crystal layer made of 6SA3 was fabricated, and the temporal change in luminescence intensity was measured in an operating state (forward current Iv = 30 taA) at a high temperature (85°C) and high temperature (RH = 85%) when the AI ratio was 0. Conventional Gats, which is as high as .8,
xAle, *LED with As optical confinement layers 2, 4
compared with. At that time, 25 pieces each were manufactured, one with a protective film formed thereon and one without it.

その結果を第2図に示す。図中、イは保護膜を形成した
本発明によるLED、  口は本発明による保護膜無し
のり、ED、またハは保護膜を形成した従来のLED、
二は保護膜無しの従来のLEDである。
The results are shown in FIG. In the figure, A is an LED according to the present invention with a protective film formed thereon, the opening is a glue without a protective film according to the present invention, ED, and C is a conventional LED with a protective film formed thereon.
The second is a conventional LED without a protective film.

この図から明らかなように、本発明によるLEDイは、
従来のLEDハに較べ発光強度の絶対値が変わらないば
かりでなく、動作時間が5ooo時間経過しても、従来
のLEDハに較べて強度変化は温かに少ない、また、保
護膜を設けない本発明のLED口についても発光強度は
余り低下していないことが分かる。
As is clear from this figure, the LED according to the present invention is
Not only does the absolute value of the emitted light intensity remain the same compared to conventional LEDs, but even after 500 hours of operation time, the intensity changes are much smaller than with conventional LEDs. It can be seen that the light emission intensity of the LED port of the invention did not decrease much.

尚、光閉じ込め層12.14のAI含有率は!−0.7
以下であれば実用上差支えがないが、!=0.65以下
が最適である。
Furthermore, what is the AI content of the optical confinement layer 12.14? -0.7
There is no practical problem if it is below, but! =0.65 or less is optimal.

このように、発光層13を挟む光閉じ込め層12及び1
4のAIの含有率をX=0.7以下、好ましくはX=0
.65以下にすることにより、発光強度の時間的低下が
最小化できるが、このAI含有率をどの程度まで減少し
得るかについて説明すると、発光層13を挟む光閉じ込
め層12.14に要求されるのは、発光層にキャリヤを
閉じ込めるため発光層13より禁制帯幅を広くすること
及び屈折率を小さくすることであり、これらを満足する
には発光層13よりも光閉じ込め層12.14のAI含
有率を多くしなければならない、そこでその範囲内で該
光閉じ込め層のAI含有率を決定すればよく、どのよう
な場合でもx=0.7、好ましくはX−0,65以下で
あれば良いのである。従って本発明は赤外領域のLED
にも適用できるのは勿論である。
In this way, the light confinement layers 12 and 1 sandwich the light emitting layer 13.
The content of AI in No. 4 is set to X = 0.7 or less, preferably X = 0.
.. By setting the AI content to 65 or less, the temporal decrease in emission intensity can be minimized, but to explain how much this AI content can be reduced, it is necessary to The purpose of this is to make the forbidden band width wider and the refractive index smaller than that of the light emitting layer 13 in order to confine carriers in the light emitting layer. Therefore, the AI content of the optical confinement layer should be determined within that range, and in any case, x = 0.7, preferably x - 0.65 or less. It's good. Therefore, the present invention is an LED in the infrared region.
Of course, it can also be applied to

本発明によれば、p型の光閉じ込め層12のAI含有率
を下げることが可能となったことから、従来のLEDに
形成していた基板となるp型光透過層1と本発明による
上記p型の光閉じ込め層12とのAI含有率が同じにな
り、その結果、二層を同一製造条件で同時に成長させる
ことができるようになる。従って成長材料、治具、製造
工程数等が低減され得る。
According to the present invention, it is possible to lower the AI content of the p-type light confinement layer 12, so that the p-type light transmitting layer 1, which is a substrate formed in a conventional LED, and the above-mentioned light confinement layer 12 according to the present invention The AI content is the same as that of the p-type optical confinement layer 12, and as a result, the two layers can be grown simultaneously under the same manufacturing conditions. Therefore, the number of growth materials, jigs, manufacturing steps, etc. can be reduced.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、発光層を上下から
挟む両光閉じ込め層Ga+−,A1x AsのX値をX
−0,7、好ましくはx−0,65以下に設定したから
、AI含有率が低下したことにより結晶層表面が酸化し
にく(なり、そのためオーミック接触の電極が形成しや
すくなって歩留まりが向上する。
As described above, according to the present invention, the
-0.7, preferably x-0.65 or less, the lower AI content makes it difficult for the surface of the crystal layer to oxidize (which makes it easier to form ohmic contact electrodes, resulting in lower yields). improves.

また、水分に対する安定性が向上し、光の吸収層の生成
を防止し得る。従って、高温高湿の過酷な使用環境にお
いても発光強度が長時間変化しないので、本LEDを用
いた表示装置を車両等に搭載するなど屋外での使用にも
充分耐え得る信軌性を有する。
Furthermore, the stability against moisture is improved and the formation of a light absorption layer can be prevented. Therefore, the luminous intensity does not change for a long time even in a harsh operating environment of high temperature and high humidity, so that the display device using this LED has enough reliability to withstand outdoor use, such as when mounted on a vehicle or the like.

さらに、本発明によれば、LEDの周囲に保護膜を形成
しなくても充分な品質が確保されるので製造コストを低
減でき、また上記保護膜を設ければ、発光強度の時間的
変化を小さくできるとともに信鎖性が一層増大すること
になる。
Furthermore, according to the present invention, sufficient quality can be ensured without forming a protective film around the LED, so manufacturing costs can be reduced, and by providing the above protective film, temporal changes in emission intensity can be reduced. It can be made smaller and reliability can be further increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるGaAlAs L E Dの側断
面図、第2図は本発明のGaAlAs L E Dの発
光強度の時間的変化を、従来のGaAlAs L E 
Dと比較したグラフである。 第3図は従来のGaAlAs L E Dの側断面図で
ある。 10−− GaAlAs  L E D ; 12−−
−p型のGap−++AIx As光閉じ込めIti;
 13−p型のGa1−、A1. As発光層;14−
− n型のGap−XAim As光閉じ込め層; 1
5・−・・保護膜i 16.17−・・−電極。 特許出願人:スタンレー電気株式会社 代 理 人:弁理士 平 山 −車 間    : 弁理士  海  津  保  三筒1図 b 第2図
FIG. 1 is a side cross-sectional view of the GaAlAs L E D according to the present invention, and FIG. 2 shows the temporal change in emission intensity of the GaAlAs L E D according to the present invention compared to that of the conventional GaAlAs L E D.
This is a graph compared with D. FIG. 3 is a side sectional view of a conventional GaAlAs LED. 10-- GaAlAs LED; 12--
-p-type Gap-++AIx As optical confinement Iti;
13-p-type Ga1-, A1. As light emitting layer; 14-
- n-type Gap-XAim As optical confinement layer; 1
5.--Protective film i 16.17--Electrode. Patent applicant: Stanley Electric Co., Ltd. Representative: Patent attorney Hirayama - Distance: Patent attorney Tamotsu Kaizu Figure 1b Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)GaAlAs発光層がGa_1_−_xAl_x
As光閉じ込め層により上下から挟まれた構造のGaA
lAsダブルヘテロ接合発光ダイオードにおいて、 上記Ga_1_−_xAl_xAs光閉じ込め層のx値
がx=0.7以下であることを特徴とするGaAlAs
発光ダイオードチップ構造。
(1) GaAlAs light emitting layer is Ga_1_-_xAl_x
GaA sandwiched from above and below by As optical confinement layers
In the lAs double heterojunction light emitting diode, the Ga_1_-_xAl_xAs optical confinement layer has an x value of x=0.7 or less.
Light emitting diode chip structure.
(2)前記GaAlAs発光ダイオードの電極を除く周
囲全体が、酸化膜等の保護膜にて被覆されていることを
特徴とする、特許請求の範囲第1項に記載のGaAlA
s発光ダイオードチップ構造。
(2) The GaAlAs according to claim 1, wherein the entire circumference of the GaAlAs light emitting diode except for the electrodes is covered with a protective film such as an oxide film.
s Light emitting diode chip structure.
JP62150104A 1987-06-18 1987-06-18 Light emitting diode chip structure Pending JPS63314875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62150104A JPS63314875A (en) 1987-06-18 1987-06-18 Light emitting diode chip structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62150104A JPS63314875A (en) 1987-06-18 1987-06-18 Light emitting diode chip structure

Publications (1)

Publication Number Publication Date
JPS63314875A true JPS63314875A (en) 1988-12-22

Family

ID=15489590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62150104A Pending JPS63314875A (en) 1987-06-18 1987-06-18 Light emitting diode chip structure

Country Status (1)

Country Link
JP (1) JPS63314875A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488235A (en) * 1993-03-15 1996-01-30 Kabushiki Kaisha Toshiba Semiconductor light-emitting element and method for manufacturing therefor
JPH0927639A (en) * 1995-07-12 1997-01-28 Toshiba Corp Semiconductor device
US5639674A (en) * 1994-03-14 1997-06-17 Kabushiki Kaisha Toshiba Semiconductor light-emitting element and method for manufacturing therefor
JP2003163375A (en) * 2001-11-29 2003-06-06 Sanyo Electric Co Ltd Nitride semiconductor element and its manufacturing method
JP2004266057A (en) * 2003-02-28 2004-09-24 Sharp Corp Oxide semiconductor light emitting element and manufacturing method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5274292A (en) * 1975-12-17 1977-06-22 Hitachi Ltd Semiconductor laser element
JPS5518078A (en) * 1978-07-27 1980-02-07 Fujitsu Ltd Semiconductor light emission device
JPS6017969A (en) * 1983-07-12 1985-01-29 Matsushita Electric Ind Co Ltd Light emitting semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5274292A (en) * 1975-12-17 1977-06-22 Hitachi Ltd Semiconductor laser element
JPS5518078A (en) * 1978-07-27 1980-02-07 Fujitsu Ltd Semiconductor light emission device
JPS6017969A (en) * 1983-07-12 1985-01-29 Matsushita Electric Ind Co Ltd Light emitting semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488235A (en) * 1993-03-15 1996-01-30 Kabushiki Kaisha Toshiba Semiconductor light-emitting element and method for manufacturing therefor
US5639674A (en) * 1994-03-14 1997-06-17 Kabushiki Kaisha Toshiba Semiconductor light-emitting element and method for manufacturing therefor
JPH0927639A (en) * 1995-07-12 1997-01-28 Toshiba Corp Semiconductor device
JP2003163375A (en) * 2001-11-29 2003-06-06 Sanyo Electric Co Ltd Nitride semiconductor element and its manufacturing method
JP2004266057A (en) * 2003-02-28 2004-09-24 Sharp Corp Oxide semiconductor light emitting element and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US9269871B2 (en) Light emitting diode
US5696389A (en) Light-emitting semiconductor device
US20070267640A1 (en) Semiconductor light emitting diode and method of manufacturing the same
US10756960B2 (en) Light-emitting device
US5008891A (en) Semiconductor light-emitting devices
KR20110106445A (en) Light-emitting diode, method for producing same, and light-emitting diode lamp
JPH0738150A (en) Semiconductor light emitting device
US20210328100A1 (en) Single chip multi band led
US11843076B2 (en) Single chip multi band led and application thereof
US20220278251A1 (en) Light-emitting diode chip
JP2005019695A (en) Semiconductor light-emitting device
JPH09232627A (en) White light emitting device
US5814838A (en) Light emitting semiconductor element with ZN doping
US6864514B2 (en) Light emitting diode
JPS63314875A (en) Light emitting diode chip structure
KR100818457B1 (en) Compound semiconductor light-emitting diode
JP2890392B2 (en) III-V nitride semiconductor light emitting device
JP2004260111A (en) Semiconductor light-emitting element and semiconductor light-emitting device using the same
KR20190010988A (en) Light emitting diode for automobile head lamp
JP2006270073A (en) Light-emitting diode and method of manufacturing it
JPH0974218A (en) Semiconductor light emitting element
JP2001168381A (en) AlGaInP LIGHT EMITTING DIODE
JP2004095649A (en) Oxide semiconductor light emitting device
EP4135056A1 (en) Single-chip multi-band light-emitting diode
JP3747867B2 (en) Pn junction type compound semiconductor light emitting device, manufacturing method thereof, lamp and light source